DIHEDRAL-LIKE CONSTRUCTIONS OF AUTOMORPHIC LOOPS

Mouna Aboras

Department of Mathematics University of Denver

Third Mile High Conference On NonAssociative Mathematics
University of Denver, 16 August 2013

Review facts about dihedral groups and automorphic loops.

Definition(Dihedral groups)

The dihedral group of degree n and order $2 n$, denoted as $D i h_{n}$ is the group generated by two elements a and b with multiplication determined by $b^{n}=a^{2}=1$ and $a \cdot b=b^{n-1} \cdot a$.

Review facts about dihedral groups and automorphic loops.

Definition(Dihedral groups)

The dihedral group of degree n and order $2 n$, denoted as $D i h_{n}$ is the group generated by two elements a and b with multiplication determined

$$
\text { by } b^{n}=a^{2}=1 \text { and } a \cdot b=b^{n-1} \cdot a \text {. }
$$

Definitions

For a loop Q define

Left and right translations of y by x Multiplication group of Q Inner mapping group of Q Automorphism group of Q
$L_{x}(y)=x y$ and $R_{x}(y)=y x$ $\operatorname{MIt}(Q)=<L_{x}, R_{x}: x \in Q>$. $\operatorname{Inn}(Q)=(M / t(Q))_{1}$. $\operatorname{Aut}(Q)=$ the automorphism group of G.

Automorphic loops

Definition(Automorphic loops)

A loop is automorphic (or an A-loop) if every inner mapping is an automorphism, that is, if $\operatorname{Inn}(Q) \leq \operatorname{Aut}(Q)$.

Automorphic loops

Definition(Automorphic loops)

A loop is automorphic (or an A-loop) if every inner mapping is an automorphism, that is, if $\operatorname{lnn}(Q) \leq \operatorname{Aut}(Q)$.

Proposition (Bruck and Paige)

A loop Q is an automorphic loop if and only if, for all $x, y, u, v \in Q$

$$
\begin{gather*}
(u v) R_{x, y}=u R_{x, y} \cdot v R_{x, y}, \tag{r}\\
(u v) L_{x, y}=u L_{x, y} \cdot v L_{x, y} \tag{l}\\
(u v) T_{x}=u T_{x} \cdot v T_{x} . \tag{m}
\end{gather*}
$$

Remark

To check that a particular loop is automorphic, it is not necessary to verify all of the conditions $\left(A_{r}\right),\left(A_{\ell}\right)$ and $\left(A_{m}\right)$.

Automorphic loops

Proposition(Johnson, Kinyon, Nagy and Vojtěchovský.)
Let Q be a loop satisfying $\left(A_{m}\right)$ and $\left(A_{l}\right)$. Then Q is automorphic.

Automorphic loops

Proposition(Johnson, Kinyon, Nagy and Vojtěchovský.)

Let Q be a loop satisfying $\left(A_{m}\right)$ and $\left(A_{l}\right)$. Then Q is automorphic.

Definitions

Commutator $\quad x y=(y x) \cdot[x, y]$, for $x, y \in Q$.

Associator
$(x y) z=x(y z) \cdot[x, y, z]$, for $x, y, z \in Q$.
Commutant $\quad C(Q)=\{x \in Q: x y=y x$ for every $y \in Q\}$

Definitions

For a loop Q define Left nucleus of Q

$$
\begin{aligned}
& N_{\lambda}=\{a \in Q \mid a x \cdot y=a \cdot x y, \forall x, y \in Q\} . \\
& N_{\rho}=\{a \in Q \mid x y \cdot a=x \cdot y a, \forall x, y \in Q\} . \\
& N_{\mu}=\{a \in Q \mid x a \cdot y=x \cdot a y, \forall x, y \in Q\} . \\
& N(Q)=N_{\lambda}(Q) \cap N_{\rho}(Q) \cap N_{\mu}(Q) .
\end{aligned}
$$

Generalization

Generalized dihedral loop

For an integer $m \geq 1$, an abelian group $(G,+)$ and an automorphism α of G, define $\operatorname{Dih}(m, G, \alpha)$ on $\mathbb{Z}_{m} \times G$ by

$$
\begin{equation*}
(i, u) \cdot(j, v)=\left(i+j,\left(s_{j} u+v\right) \alpha^{i j}\right) \tag{1}
\end{equation*}
$$

where $s_{i}=(-1)^{i} \bmod m$, and we interpreted $\alpha^{i j}$ as

- Interpret $\alpha^{i j}$ as $\alpha^{i j} \bmod m$, is called the dihedral reducing modulo m, and it is denoted by $\operatorname{Dih}_{\text {red }}(m, G, \alpha)$. In these calculations we no more have $\alpha^{i} \alpha^{j}=\alpha^{i+j}$.
- interpret $\alpha^{i j}$ as ordinary integral exponent, is called the dihedral not reducing modulo m, and it is denoted by $\operatorname{Dih}(m, G, \alpha)$. We demand that $i, j \in\{0, \ldots, m-1\}$ and we have $\alpha^{i} \alpha^{j}=\alpha^{i+j}$, so the multiplication formula is unambiguous.

Generalized dihedral loop

Remark

- Note that when $m=2$ the two interpretations coincide. This is because $\alpha^{i j}=\alpha^{i j} \bmod m$ for every $i, j \in\{0,1\}$. But for $m>2$ the two interpretations do not coincide in general. For instance, if $m=3$ and $|\alpha|>3$ then $\alpha^{2} \alpha^{2}=\alpha^{4} \neq \alpha=\alpha^{2 \cdot 2} \bmod 3$.
- $\operatorname{Dih}(m, G, \alpha)$ is not necessarily isomorphic to $\operatorname{Dih}_{\text {red }}(m, G, \alpha)$. There are examples of order 20. It turns out that $\operatorname{Dih}(m, G, \alpha)$ is an automorphic loop if and only if $\operatorname{Dih}_{\text {red }}(m, G, \alpha)$ is an automorphic loop, in which case
$\operatorname{Dih}(m, G, \alpha) \cong \operatorname{Dih} h_{\text {red }}(m, G, \alpha)$.In such case the two constructions coincide. So it suffices to work with only one of the constructions.

Main result

Question

Which choices of parameters m, G, α make the loop $\operatorname{Dih}(m, G, \alpha)$ an automorphic loop, particularly a nonassociative automorphic loop?.

Main result

Question

Which choices of parameters m, G, α make the loop $\operatorname{Dih}(m, G, \alpha)$ an automorphic loop, particularly a nonassociative automorphic loop?.

Main Theorem

Let $Q=\operatorname{Dih}(m, G, \alpha)$,
(i) If $m=2$ then Q is automorphic.
(ii) If $m>2$ is even then Q is automorphic iff $\alpha^{2}=\mathrm{id}$.
(iii) If $m>2$ is odd then Q is automorphic iff $\alpha=\operatorname{id}$ and $2 G=0$, in which case Q is a group.

Middle Nucleus and Commutant

Propositon
Let $Q=\operatorname{Dih}(m, G, \alpha)$. If m is even and $\alpha^{2}=i d$ then $N_{\mu}=<2>\times G$. In particular when $m=2$ then $N_{\mu}=\{0\} \times G \cong G$.

Middle Nucleus and Commutant

Propositon

Let $Q=\operatorname{Dih}(m, G, \alpha)$. If m is even and $\alpha^{2}=i d$ then $N_{\mu}=<2>\times G$. In particular when $m=2$ then $N_{\mu}=\{0\} \times G \cong G$.

Corollary

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$. Then $N_{\mu}(Q)$ is an abelian group.

Corollary

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$, with middle nucleus $N_{\mu}(Q)$.Then $\left[Q: N_{\mu}(Q)\right]=2$.

Middle Nucleus and Commutant

Lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$.
(i) If $\exp G \leq 2$ then $C(Q)=Q$.
(ii) If $\exp G>2$ then $(i, u) \in C(Q)$ iff i is even and $|u| \leq 2$.
(iii) $C(Q)$ is a normal subloop of Q.

Left Commutators and Associators

Left commutator

- The left commutator $[(i, u),(j, v)]$ is

$$
\left(0,\left(\left(s_{j}-1\right) u+\left(1-s_{i}\right) v\right) \alpha^{i j}\right)
$$

- $[(i, u),(j, v)] \in 0 \times 2 G$.

Left Commutators and Associators

Left commutator

- The left commutator $[(i, u),(j, v)]$ is

$$
\left(0,\left(\left(s_{j}-1\right) u+\left(1-s_{i}\right) v\right) \alpha^{i j}\right)
$$

- $[(i, u),(j, v)] \in 0 \times 2 G$.

lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$. Then $0 \times 2 G$ is normal subloop of Q.

Left Commutators and Associators

Left associator

- Left associator $[(i, u),(j, v),(k, w)]$ is

$$
\left(0,\left(s_{j+k} u\left(1-\alpha^{-j k}\right) \alpha^{i j}+w\left(1-\alpha^{i j}\right)\right) \alpha^{(i+j) k}\right)
$$

for all $i, j, k \in \mathbb{Z}_{m}, u, w \in G$.

- $[(i, u),(j, v),(k, w)] \in 0 \times(1-\alpha) G$.

Left Commutators and Associators

Left associator

- Left associator $[(i, u),(j, v),(k, w)]$ is

$$
\left(0,\left(s_{j+k} u\left(1-\alpha^{-j k}\right) \alpha^{i j}+w\left(1-\alpha^{i j}\right)\right) \alpha^{(i+j) k}\right)
$$

for all $i, j, k \in \mathbb{Z}_{m}, u, w \in G$.

- $[(i, u),(j, v),(k, w)] \in 0 \times(1-\alpha) G$.

Lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$. Then $0 \times(1-\alpha) G$ is normal subloop of Q.

lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$. Then $A(Q)=0 \times(1-\alpha) G$.

Commutators and Associators in Dihedral A-loop

lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$. Then $Q^{\prime}=(1-\alpha) G \cup 2 G$.

Commutators and Associators in Dihedral A-loop

lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d$. Then $Q^{\prime}=(1-\alpha) G \cup 2 G$.

lemma

Let $Q=\operatorname{Dih}(m, G, \alpha), m$ is even and $\alpha^{2}=i d . A(Q)$ and Q^{\prime} are normal subloop of $N_{\mu}(Q)$.

Isomorphism

Conjecture

Fixing m, G. Given $\alpha, \beta \in \operatorname{Aut}(G),(\forall m>2$, also assume that $|\alpha|,|\beta| \leq 2)$, then $\operatorname{Dih}(m, G, \alpha) \cong \operatorname{Dih}(m, G, \beta)$ iff α and β are conjugated (that is there is γ such that $\alpha=\gamma \beta \gamma^{-1}$).

Isomorphism

Conjecture

Fixing m, G. Given $\alpha, \beta \in \operatorname{Aut}(G),(\forall m>2$, also assume that $|\alpha|,|\beta| \leq 2)$, then $\operatorname{Dih}(m, G, \alpha) \cong \operatorname{Dih}(m, G, \beta)$ iff α and β are conjugated (that is there is γ such that $\alpha=\gamma \beta \gamma^{-1}$).

proof

We want to show that if α and β are conjugated then $\operatorname{Dih}(m, G, \alpha) \cong \operatorname{Dih}(m, G, \beta)$. Supposing α and β are conjugated. Then there exist an isomorphism $\gamma: G \longrightarrow G$ such that $\alpha=\gamma \beta \gamma^{-1}$.
Define $\phi: \operatorname{Dih}(m, G, \alpha) \longrightarrow \operatorname{Dih}(m, G, \beta)$ by $\phi(i, u)=(i, u \gamma)$. It is easily to check that ϕ is a bijection and a homomorphism.
Next let's assume that $\operatorname{Dih}(m, G, \alpha) \cong \operatorname{Dih}(m, G, \beta)$. We would like to show that α and β are conjugated ...

Thank You For Your Attention!

