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Review facts about dihedral groups and automorphic loops.

Definition(Dihedral groups)

The dihedral group of degree n and order 2n, denoted as Dihn is the
group generated by two elements a and b with multiplication determined

by bn = a2 = 1 and a · b = bn−1 · a.

Definitions

For a loop Q define
Left and right translations of y by x Lx(y) = xy and Rx(y) = yx
Multiplication group of Q Mlt(Q) =< Lx ,Rx : x ∈ Q > .
Inner mapping group of Q Inn(Q) = (Mlt(Q))1.
Automorphism group of Q Aut(Q) = the automorphism

group of G .
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Automorphic loops

Definition(Automorphic loops)

A loop is automorphic (or an A-loop) if every inner mapping is an
automorphism, that is, if Inn(Q) ≤ Aut(Q).

Proposition (Bruck and Paige)

A loop Q is an automorphic loop if and only if , for all x , y , u, v ∈ Q

(uv)Rx,y = uRx,y · vRx,y , (Ar )

(uv)Lx,y = uLx,y · vLx,y , (Al)

(uv)Tx = uTx · vTx . (Am)

Remark
To check that a particular loop is automorphic, it is not necessary to verify all
of the conditions (Ar ), (A`) and (Am).
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Automorphic loops

Proposition(Johnson, Kinyon, Nagy and Vojtěchovský. )

Let Q be a loop satisfying (Am) and (Al). Then Q is automorphic.

Definitions

Commutator xy = (yx) · [x , y ], for x , y ∈ Q.
Associator (xy)z = x(yz) · [x , y , z ], for x , y , z ∈ Q.
Commutant C (Q) = {x ∈ Q : xy = yx for every y ∈ Q}

Definitions

For a loop Q define
Left nucleus of Q Nλ = {a ∈ Q|ax · y = a · xy ,∀x , y ∈ Q}.
Right nucleus of Q Nρ = {a ∈ Q|xy · a = x · ya,∀x , y ∈ Q}.
Middle nucleus of Q Nµ = {a ∈ Q|xa · y = x · ay ,∀x , y ∈ Q}.
Nucleus of Q N(Q) = Nλ(Q) ∩ Nρ(Q) ∩ Nµ(Q).
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Generalization

Generalized dihedral loop

For an integer m ≥ 1, an abelian group (G ,+) and an
automorphism α of G , define Dih(m,G , α) on Zm × G by

(i , u) · (j , v) = (i + j , (sju + v)αij), (1)

where si = (−1)i mod m, and we interpreted αij as

• Interpret αij as αij mod m, is called the dihedral reducing
modulo m, and it is denoted by Dihred(m,G , α). In these
calculations we no more have αiαj = αi+j .

• interpret αij as ordinary integral exponent, is called the
dihedral not reducing modulo m, and it is denoted by
Dih(m,G , α). We demand that i , j ∈ {0, ...,m − 1} and we
have αiαj = αi+j , so the multiplication formula is
unambiguous.



Generalized dihedral loop

Remark

• Note that when m = 2 the two interpretations coincide. This
is because αij = αij mod m for every i , j ∈ {0, 1}. But for
m > 2 the two interpretations do not coincide in general. For
instance, if m = 3 and |α| > 3 then
α2α2 = α4 6= α = α2·2 mod 3.

• Dih(m,G , α) is not necessarily isomorphic to Dihred(m,G , α).
There are examples of order 20. It turns out that Dih(m,G , α)
is an automorphic loop if and only if Dihred(m,G , α) is an
automorphic loop, in which case
Dih(m,G , α) ∼= Dihred(m,G , α).In such case the two
constructions coincide. So it suffices to work with only one of
the constructions.



Main result

Question

Which choices of parameters m,G , α make the loop Dih(m,G , α)
an automorphic loop, particularly a nonassociative automorphic
loop?.

Main Theorem

Let Q = Dih(m,G , α),

(i) If m = 2 then Q is automorphic.

(ii) If m > 2 is even then Q is automorphic iff α2 = id.

(iii) If m > 2 is odd then Q is automorphic iff α = id and 2G = 0,
in which case Q is a group.
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Middle Nucleus and Commutant

Propositon

Let Q = Dih(m,G , α). If m is even and α2 = id then Nµ =< 2 > ×G . In
particular when m = 2 then Nµ = {0} × G ∼= G .

Corollary

Let Q = Dih(m,G , α),m is even and α2 = id . Then Nµ(Q) is an abelian
group.

Corollary

Let Q = Dih(m,G , α),m is even and α2 = id , with middle nucleus
Nµ(Q).Then [Q : Nµ(Q)] = 2.
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Middle Nucleus and Commutant

Lemma

Let Q = Dih(m,G , α),m is even and α2 = id .

(i) If expG ≤ 2 then C (Q) = Q.

(ii) If expG > 2 then (i , u) ∈ C (Q) iff i is even and |u| ≤ 2.

(iii) C (Q) is a normal subloop of Q.



Left Commutators and Associators

Left commutator

• The left commutator [(i , u), (j , v)] is

(0,
(

(sj − 1)u + (1− si )v
)
αij)

• [(i , u), (j , v)] ∈ 0× 2G .

lemma

Let Q = Dih(m,G , α),m is even and α2 = id . Then 0× 2G is
normal subloop of Q.
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Left Commutators and Associators

Left associator

• Left associator [(i , u), (j , v), (k ,w)] is

(0, (sj+ku(1− α−jk)αij + w(1− αij))α(i+j)k)

for all i , j , k ∈ Zm, u,w ∈ G .

• [(i , u), (j , v), (k,w)] ∈ 0× (1− α)G .

Lemma

Let Q = Dih(m,G , α),m is even and α2 = id . Then 0× (1− α)G
is normal subloop of Q.

lemma

Let Q = Dih(m,G , α),m is even and α2 = id . Then
A(Q) = 0× (1− α)G .
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Commutators and Associators in Dihedral A-loop

lemma

Let Q = Dih(m,G , α),m is even and α2 = id . Then
Q ′ = (1− α)G ∪ 2G .

lemma

Let Q = Dih(m,G , α),m is even and α2 = id . A(Q) and Q ′ are
normal subloop of Nµ(Q).



Commutators and Associators in Dihedral A-loop
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Isomorphism

Conjecture

Fixing m, G. Given α, β ∈ Aut(G ), (∀m > 2, also assume that
|α|, |β| ≤ 2), then Dih(m,G , α) ∼= Dih(m,G , β) iff α and β are
conjugated (that is there is γ such that α = γβγ−1).

proof

We want to show that if α and β are conjugated then
Dih(m,G , α) ∼= Dih(m,G , β). Supposing α and β are conjugated.
Then there exist an isomorphism γ : G −→ G such that
α = γβγ−1.
Define φ : Dih(m,G , α) −→ Dih(m,G , β) by φ(i , u) = (i , uγ). It is
easily to check that φ is a bijection and a homomorphism.
Next let’s assume that Dih(m,G , α) ∼= Dih(m,G , β). We would
like to show that α and β are conjugated ...
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Thank You For Your Attention!


