DIHEDRAL-LIKE CONSTRUCTIONS OF AUTOMORPHIC LOOPS

Mouna Aboras

Department of Mathematics University of Denver

Third Mile High Conference On NonAssociative Mathematics University of Denver, 16 August 2013

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review facts about dihedral groups and automorphic loops.

Definition(Dihedral groups)

The **dihedral group** of degree *n* and order 2n, denoted as Dih_n is the group generated by two elements *a* and *b* with multiplication determined by $b^n = a^2 = 1$ and $a \cdot b = b^{n-1} \cdot a$.

Review facts about dihedral groups and automorphic loops.

Definition(Dihedral groups)

The **dihedral group** of degree *n* and order 2n, denoted as Dih_n is the group generated by two elements *a* and *b* with multiplication determined by $b^n = a^2 = 1$ and $a \cdot b = b^{n-1} \cdot a$.

Definitions

For a loop Q define Left and right translations of y by x Multiplication group of Q Inner mapping group of Q Automorphism group of Q

$$\begin{split} L_x(y) &= xy \text{ and } R_x(y) = yx \\ Mlt(Q) &= < L_x, R_x : x \in Q > . \\ Inn(Q) &= (Mlt(Q))_1. \\ Aut(Q) &= \text{ the automorphism} \\ \text{group of } G. \end{split}$$

Definition(Automorphic loops)

A loop is automorphic (or an **A-loop**) if every inner mapping is an automorphism, that is, if $Inn(Q) \leq Aut(Q)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition(Automorphic loops)

A loop is automorphic (or an **A-loop**) if every inner mapping is an automorphism, that is, if $Inn(Q) \leq Aut(Q)$.

Proposition (Bruck and Paige)

A loop Q is an automorphic loop if and only if , for all $x, y, u, v \in Q$

$$(uv)R_{x,y} = uR_{x,y} \cdot vR_{x,y}, \qquad (A_r)$$

$$(uv)L_{x,y} = uL_{x,y} \cdot vL_{x,y}, \qquad (A_l)$$

$$(uv)T_x = uT_x \cdot vT_x. \tag{A_m}$$

Remark

To check that a particular loop is automorphic, it is not necessary to verify all of the conditions $(A_r), (A_\ell)$ and (A_m) .

Proposition(Johnson, Kinyon, Nagy and Vojtěchovský.)

Let Q be a loop satisfying (A_m) and (A_l) . Then Q is automorphic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition(Johnson, Kinyon, Nagy and Vojtěchovský.)

Let Q be a loop satisfying (A_m) and (A_l) . Then Q is automorphic.

Definitions

 $\begin{array}{ll} \textit{Commutator} & \textit{xy} = (yx) \cdot [x,y], \mbox{ for } x,y \in Q. \\ \textit{Associator} & (xy)z = x(yz) \cdot [x,y,z], \mbox{ for } x,y,z \in Q. \\ \textit{Commutant} & \textit{C}(Q) = \{x \in Q : xy = yx \mbox{ for every } y \in Q\} \end{array}$

Definitions

For a loop Q define Left nucleus of Q Right nucleus of Q Middle nucleus of Q Nucleus of Q

$$\begin{split} & \mathsf{N}_{\lambda} = \{ a \in Q | ax \cdot y = a \cdot xy, \forall x, y \in Q \} . \\ & \mathsf{N}_{\rho} = \{ a \in Q | xy \cdot a = x \cdot ya, \forall x, y \in Q \} . \\ & \mathsf{N}_{\mu} = \{ a \in Q | xa \cdot y = x \cdot ay, \forall x, y \in Q \} . \\ & \mathsf{N}(Q) = \mathsf{N}_{\lambda}(Q) \cap \mathsf{N}_{\rho}(Q) \cap \mathsf{N}_{\mu}(Q) . \end{split}$$

Generalization

Generalized dihedral loop

For an integer $m \ge 1$, an abelian group (G, +) and an automorphism α of G, define $Dih(m, G, \alpha)$ on $\mathbb{Z}_m \times G$ by

$$(i, u) \cdot (j, v) = (i + j, (s_j u + v)\alpha^{ij}), \qquad (1)$$

where $s_i = (-1)^i \mod m$, and we interpreted α^{ij} as

- Interpret α^{ij} as $\alpha^{ij \mod m}$, is called the dihedral reducing modulo m, and it is denoted by $Dih_{red}(m, G, \alpha)$. In these calculations we no more have $\alpha^i \alpha^j = \alpha^{i+j}$.
- interpret α^{ij} as ordinary integral exponent, is called the dihedral not reducing modulo m, and it is denoted by $Dih(m, G, \alpha)$. We demand that $i, j \in \{0, ..., m-1\}$ and we have $\alpha^i \alpha^j = \alpha^{i+j}$, so the multiplication formula is unambiguous.

Generalized dihedral loop

Remark

- Note that when m = 2 the two interpretations coincide. This is because α^{ij} = α^{ij mod m} for every i, j ∈ {0,1}. But for m > 2 the two interpretations do not coincide in general. For instance, if m = 3 and |α| > 3 then α²α² = α⁴ ≠ α = α^{2·2 mod 3}.
- Dih(m, G, α) is not necessarily isomorphic to Dih_{red}(m, G, α). There are examples of order 20. It turns out that Dih(m, G, α) is an automorphic loop if and only if Dih_{red}(m, G, α) is an automorphic loop, in which case Dih(m, G, α) ≅ Dih_{red}(m, G, α). In such case the two constructions coincide. So it suffices to work with only one of the constructions.

Main result

Question

Which choices of parameters m, G, α make the loop $Dih(m, G, \alpha)$ an automorphic loop, particularly a nonassociative automorphic loop?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Main result

Question

Which choices of parameters m, G, α make the loop $Dih(m, G, \alpha)$ an automorphic loop, particularly a nonassociative automorphic loop?

Main Theorem

- Let $Q = Dih(m, G, \alpha)$,
 - (i) If m = 2 then Q is automorphic.
- (ii) If m > 2 is even then Q is automorphic iff $\alpha^2 = id$.
- (iii) If m > 2 is odd then Q is automorphic iff $\alpha = id$ and 2G = 0, in which case Q is a group.

Middle Nucleus and Commutant

Propositon

Let $Q = Dih(m, G, \alpha)$. If *m* is even and $\alpha^2 = id$ then $N_{\mu} = \langle 2 \rangle \times G$. In particular when m = 2 then $N_{\mu} = \{0\} \times G \cong G$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Middle Nucleus and Commutant

Propositon

Let $Q = Dih(m, G, \alpha)$. If *m* is even and $\alpha^2 = id$ then $N_{\mu} = \langle 2 \rangle \times G$. In particular when m = 2 then $N_{\mu} = \{0\} \times G \cong G$.

Corollary

Let $Q = Dih(m, G, \alpha)$, m is even and $\alpha^2 = id$. Then $N_{\mu}(Q)$ is an abelian group.

Corollary

Let $Q = Dih(m, G, \alpha)$, m is even and $\alpha^2 = id$, with middle nucleus $N_{\mu}(Q)$. Then $[Q : N_{\mu}(Q)] = 2$.

Middle Nucleus and Commutant

Lemma

Let $Q = Dih(m, G, \alpha)$, m is even and $\alpha^2 = id$.

(i) If
$$\exp G \leq 2$$
 then $C(Q) = Q$.

(ii) If $\exp G > 2$ then $(i, u) \in C(Q)$ iff i is even and $|u| \le 2$.

(iii) C(Q) is a normal subloop of Q.

Left commutator

• The left commutator [(i, u), (j, v)] is

$$(0, ((s_j-1)u+(1-s_i)v)\alpha^{ij})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•
$$[(i, u), (j, v)] \in 0 \times 2G.$$

Left commutator

• The left commutator [(i, u), (j, v)] is

$$(0, \left((s_j-1)u+(1-s_i)v\right)\alpha^{ij})$$

•
$$[(i, u), (j, v)] \in 0 \times 2G.$$

lemma

Let $Q = Dih(m, G, \alpha)$, *m* is even and $\alpha^2 = id$. Then $0 \times 2G$ is normal subloop of Q.

Left associator

• Left associator [(i, u), (j, v), (k, w)] is

$$(0,(s_{j+k}u(1-\alpha^{-jk})\alpha^{ij}+w(1-\alpha^{ij}))\alpha^{(i+j)k})$$

for all $i, j, k \in \mathbb{Z}_m, u, w \in G$.

• $[(i, u), (j, v), (k, w)] \in 0 \times (1 - \alpha)G.$

Left associator

• Left associator [(i, u), (j, v), (k, w)] is

$$(0,(s_{j+k}u(1-\alpha^{-jk})\alpha^{ij}+w(1-\alpha^{ij}))\alpha^{(i+j)k})$$

for all $i, j, k \in \mathbb{Z}_m, u, w \in G$.

• $[(i, u), (j, v), (k, w)] \in 0 \times (1 - \alpha)G.$

Lemma

Let $Q = Dih(m, G, \alpha)$, *m* is even and $\alpha^2 = id$. Then $0 \times (1 - \alpha)G$ is normal subloop of Q.

lemma

Let
$$Q = Dih(m, G, \alpha)$$
, m is even and $\alpha^2 = id$. Then $A(Q) = 0 \times (1 - \alpha)G$.

Commutators and Associators in Dihedral A-loop

lemma

Let $Q = Dih(m, G, \alpha)$, *m* is even and $\alpha^2 = id$. Then $Q' = (1 - \alpha)G \cup 2G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Commutators and Associators in Dihedral A-loop

lemma

Let
$$Q = Dih(m, G, \alpha)$$
, *m* is even and $\alpha^2 = id$. Then $Q' = (1 - \alpha)G \cup 2G$.

lemma

Let $Q = Dih(m, G, \alpha)$, *m* is even and $\alpha^2 = id$. A(Q) and Q' are normal subloop of $N_{\mu}(Q)$.

Isomorphism

Conjecture

Fixing m, G. Given $\alpha, \beta \in Aut(G)$, $(\forall m > 2$, also assume that $|\alpha|, |\beta| \leq 2$), then $Dih(m, G, \alpha) \cong Dih(m, G, \beta)$ iff α and β are conjugated (that is there is γ such that $\alpha = \gamma \beta \gamma^{-1}$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Isomorphism

Conjecture

Fixing m, G. Given $\alpha, \beta \in Aut(G)$, $(\forall m > 2$, also assume that $|\alpha|, |\beta| \leq 2$), then $Dih(m, G, \alpha) \cong Dih(m, G, \beta)$ iff α and β are conjugated (that is there is γ such that $\alpha = \gamma \beta \gamma^{-1}$).

proof

We want to show that if α and β are conjugated then $Dih(m, G, \alpha) \cong Dih(m, G, \beta)$. Supposing α and β are conjugated. Then there exist an isomorphism $\gamma : G \longrightarrow G$ such that $\alpha = \gamma \beta \gamma^{-1}$. Define $\phi : Dih(m, G, \alpha) \longrightarrow Dih(m, G, \beta)$ by $\phi(i, u) = (i, u\gamma)$. It is easily to check that ϕ is a bijection and a homomorphism. Next let's assume that $Dih(m, G, \alpha) \cong Dih(m, G, \beta)$. We would like to show that α and β are conjugated ... Thank You For Your Attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>