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> | present the general definition of a Cayley graph.

> | present some characterization theorems for Cayley graphs for
different algebraic structures.

> | introduce the idea of a Geometric Left Loop Theory.
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Cayley Graph

Definition

Let M be a magma, and let S C M be a Cayley set. The Cayley
graph of M with respect to S is Cay(M,S) = (V, E) where
V=Mand E={{x,xs}: xe M,seS}.

The condition a ¢ aS  Va € M of the Cayley set implies that
there are no loop-edges in the Cayley graph.

The condition a € (as)S Va e M,Vs € S of the Cayley set
implies that the Cayley graph is undirected.
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Definition
Let M be a magma. A subset S C M is called quasi-associative if
(ab)S = a(bS) for all a,b € M.
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Definition
A left loop is a left quasi-group with a right identity. That is, a set
L with a binary operation - : L x L — L that satisfies:

» The equation ax = b has a unique solution x = a\b.

» There exists e € L such that ae = a for all a € L.



Definition
A graph X = (V, E) is vertex-transitive if for every x,y € V there
exists a graph automorphism o such that o(x) = y.
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Theorem

[Mwambené] Let L be a left loop, and let S C L be a
quasi-associative Cayley set. Then the Cayley graph Cay(L,S) is
vertex-transitive.

One can ask the following question: If L is a left loop, S C L is a
Cayley set, and Cay(L, S) is vertex-transitive, does that mean that
S is quasi-associative?

The answer is NO, as the following counter-example shows.



Counterexample
[KB] Let L ={0,1,2,3,4,5}. Define in L the binary operation x

x| 0 1 2 3 4 5
0|0 1 2 3 4 5
111 2 4 5 3 0
given by the following table: 2|2 3 5 4 0 1
313 4 01 5 2
414 5 1 0 2 3
55 0 3 2 1 4

Note that L is a left loop, moreover, is a loop (the identity being
0). One can verify that th set S = {1,5} is a Cayley set, and that
the graph Cay(L,S) is the cycle Cs, which is vertex transitive.

0 1

4 3 Nevertheless, (2 +3) xS = {5,3} while
2% (3%5)=1{0,5}, so S is not quasi-associative.



Characterization of Vertex-transitive Graphs

Theorem

[Mwambené] Let X = (V, E) be a vertex-transitive graph. Then

there exists a left loop L and a quasi-associative Cayley set S C L
such that Cay(L,S) = X.



Characterization of Vertex-transitive Graphs

Theorem

[Mwambené] Let X = (V, E) be a vertex-transitive graph. Then
there exists a left loop L and a quasi-associative Cayley set S C L
such that Cay(L,S) = X.

This theorem together with the previous one, give a
characterization of vertex-transitive graphs as Cayley graphs of left
loops with respect to quasi-associative Cayley sets.
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graph X, he constructs a left loop L and a quasi-associative Cayley
set S such that Cay(L, S) is isomorphic to X.
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graph X, he constructs a left loop L and a quasi-associative Cayley
set S such that Cay(L, S) is isomorphic to X.

The construction is the following:
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Mwambené's Method

> We fix a vertex u € V.

» We take the stabilizer A, := {0 € Aut(X): o(u) = u}.

» We take a transversal T, that is, a set which contains extactly
one element of each left coset of A,,.

> We define a binary operation * on T as follows:

o * T is the representative of the coset o7A,, that is, the only
element of that coset that is in T.

It can be proved that (T, x) is a left loop. NOTE Mwambené’s
proof only works in the finite case. But it can be modified to
include the infinite case as well.

» We define St :={o € T: {u,0(u)} € E}.

It turns out that St is a quasi-associative Cayley set, and that
Cay( T, ST) = X.
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With Mwambené’'s method one can reconstruct many left loops
(one for each transversal T) and their corresponding
quasi-associative Cayley sets St such that Cay(T,S7) = X.

A valid question is: Are these all the left loops with a
quasi-associative Cayley such that the Cayley graph is isomorphic
to the given vertex-transitive graph?

The answer is YES.



Theorem

[KB] Let L be a left loop and let S C L be a quasi-associative
Cayley set. Let X = Cay(L,S). Then, there exists a left loop T
constructed by Mwambené's method starting from the graph X,
which is isomorphic to L. Moreover, there exists an isomorphism
w:L— T, such that ¢(S) = St.



Theorem

[KB] Let L be a left loop and let S C L be a quasi-associative
Cayley set. Let X = Cay(L,S). Then, there exists a left loop T
constructed by Mwambené's method starting from the graph X,
which is isomorphic to L. Moreover, there exists an isomorphism
w:L— T, such that ¢(S) = St.

This means that given the graph Cay(L, S), one can reconstruct
the left loop L with Mwambené's method, and moreover, the
Cayley set constructed by Mwambené's method coincides with the
original quasi-associative Cayley set.



Remark

According to the previous theorem, one can construct every left
loop with a quasi-associative Cayley set from it's Cayley graph.
But the theorem is useless when the Cayley set is not
quasi-associative (like in the previous counterexample).
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characterization theorems for Cayley graphs.



Mwambené's method can be used to prove some other
characterization theorems for Cayley graphs.

Recall
If X is any set and Q C Sym(X), we say that Q acts regularly in X
if for every x,y € X there’s a unique o € Q such that o(x) = y.



Theorem
[Gauyacq] A graph X = (V, E) is isomorphic to the Cayley graph
of a quasi-group Q with respect to a quasi-associative Cayley set

S if and only if Aut(X) contains a subset T that acts regularly on
V.



Theorem

A graph X = (V, E) is isomorphic to the Cayley graph of a loop L
with respect to a quasi-associative Cayley set S if and only if
Aut(X) contains a subset T that acts regularly on V and Id € T.



Theorem

[Sabidoussi] A graph X = (V/, E) is isomorphic to the Cayley
graph of a group G with respect to a Cayley set S if and only if
Aut(X) contains a subgroup T that acts regularly on V.



In the next section | will try to introduce a Geometric Left Loop
Theory in analogy to Geometric Group Theory.



Quasi-isometry

Definition
Let (X,d) and (X', d") be metric spaces, and let f : X — X'. Let
A>0,k>0. fisa (A k)-quasi-isometry if for every x,y € X

1

1d0y) =k < d'(f(x), f(y)) < Ad(x,y) + k. (1)
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Quasi-isometry

Definition
Let (X,d) and (X', d") be metric spaces, and let f : X — X'. Let
A>0,k>0.fisa(\ k)-quasi-isometry if for every x,y € X

Yd(x.y) — k< d(F(x).F0) < Ad(oy) + k(1)

>|

Remarks

» A quasi-isometry is not necessarily inyective nor continous.

» If there's a quasi-isometry from X to X’, there's not
necessarily one from X’ to X.



Almost Surjective

Definition
Let (X,d) and (X', d") be metric spaces, and let f : X — X'. It is
said that f is almost surjective if there exists § > 0 such that

V' e X' Ixe X: d(f(x),x)<$ (2)



Quasi-isometric Spaces

Proposition

If there exists an almost surjective (A, k)-quasi-isometry from a
metric space X to a metric space X', then there's an almost
surjective (N, k')-quasi-isometry from X' to X.
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Quasi-isometric Spaces

Proposition

If there exists an almost surjective (A, k)-quasi-isometry from a
metric space X to a metric space X', then there's an almost
surjective (N, k')-quasi-isometry from X' to X.

Definition

Let (X,d) and (X', d") be metric spaces. If there exists an almost
surjective quasi-isometry between X and X', these spaces are
called quasi-isometric.

Proposition
Being quasi-isometric is an equivalence relation.
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Geometric Group Theory

In group theory the following results hold.

Proposition

Let G be a group and let S C G be a Cayley set. Then the
connected component of the identity on the graph Cay(G,S) is
the subgroup generated by S.

Corolary

Let G be a group and let S C G be a Cayley set. Then Cay(G,S)
is connected if and only if G =< § >.

Theorem

Let G be a finitely generated group, and let S and S’ be finite
Cayley sets that generate G. Then the graphs Cay(G,S) and
Cay(G,S') are quasi-isometric.



In general, if we have a magma M and a Cayley set S, the
connected component of a vertex a, are the elements of the form

x=(...(((as1)s2)s3) - - -)Sk; (3)

where s; € S. Therefore the previous results are false in the more
general case. In fact we have the following counterexample:



Counterexample
Let L be the left loop given by the following table:

% e a a2 a%a  aa® 2%
e e  aa’ a a’a> &% ala
a a >  aa® 2%a e &%
a2 a2 a%a a%a? a4 ad? e
aa® | aa® a%a® @ e a’a a
a%a | a%a  a e 2?2 a%a%  aal
a’a® | a’a® e a%a  ad’ a a?

One can verify that S = {a, a’a} is a Cayley set, and clearly, it
generates L (everything is in terms of a). Nevertheless, the Cayley
graph is the following:

a’a? aa® a’a az,



Next we want to prove that these results are true if we replace the
word “group” by “left loop” and we ask the Cayley set S to be
quasi-associative.



Products and Normed Products

Theorem
[KB] Let M be a magma and let S C M be a quasi-associative set.
Then every product of lenght k of elements of S,

X=35%..5 s€SVi=1...k (4)

with any parenthesis arrangement, can be written also as a left
normed product of the same length. That is,

x={(...((s15)s5) .- )s; si€SVi=1,...k (5)



Distance in the Cayley Graph of a Left Loop

Proposition

[KB] Let L be a left loop and let S C L be a quasi-associative
Cayley set. Let x,y € L. Then the distance from x to y in the
graph Cay(L,S) is the minimal length of a product expressing x\y.



Distance in the Cayley Graph of a Left Loop

Proposition

[KB] Let L be a left loop and let S C L be a quasi-associative
Cayley set. Let x,y € L. Then the distance from x to y in the
graph Cay(L,S) is the minimal length of a product expressing x\y.

NOTE: This result, which is obvious in the case when L is a group,
is not true without the condition of S being quasi-associative.



In the previous counterexample:

e a

a’a? aa? a‘a a?

If we calculate a\(aa?) we get a° that has length 2. But
d(a, aa®) = oo # 2.
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Towards a Geometric Left Loop Theory

Using these results (and some aditional lemmas) we can prove the
following results in analogy of those obtained in Group Theory.

Proposition

[KB] Let L be a left loop and let S C L be a quasi-associative
Cayley set. Then the connected component of the right identity in
the Cayley graph Cay(L,S) is the left subloop generated by S.

Corolary

[KB] Let L be a left loop and let S C L be a quasi-associative
Cayley set. Then Cay(L,S) is connected if and only if L =< 'S >.

Theorem

[KB] Let L be a left loop and let S and S’ be two finite
quasi-associative Cayley sets that generate L. Then the Cayley
graphs Cay(L,S) and Cay(L,S’) are quasi-isometric.



This last result is the most important, since it says that every
geometric property of the Cayley graph, that is a quasi-isometric
invariant (i.e. that if it holds for some space, it holds also for every
quasi-isometric space to that one), is an intrinsic property of the
left loop L and does not depend on the quasi-associative Cayley set

S.
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geometric property of the Cayley graph, that is a quasi-isometric
invariant (i.e. that if it holds for some space, it holds also for every
quasi-isometric space to that one), is an intrinsic property of the
left loop L and does not depend on the quasi-associative Cayley set
S. An example of such a property is the hyperbolicity.



Hyperbolicity

Definition

(informal)

A metric space is called hyperbolic if there exists § > 0 such that
for any triangle ABC, and for every point x in the segment AC,
there exists a point y either on the segment AB or in the segment
BC, such that the distance between x and y is less than §.
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Hyperbolicity

Definition

(informal)

A metric space is called hyperbolic if there exists 6 > 0 such that
for any triangle ABC, and for every point x in the segment AC,
there exists a point y either on the segment AB or in the segment
BC, such that the distance between x and y is less than §.

Proposition

Given two quasi-isometric metric spaces X and X', if one of them
is hyperbolic, then the other is hyperbolic too (maybe with a
different ¢ ). That is, hyperbolicity is a quasi-isometric invariant.

Then, a hyperbolic left loop would be defined as follows:

Definition

[KB] Let L be a left loop and let S C L be a finite
quasi-associative Cayley set that generates L. L is called a
hyperbolic left loop if the Cayley graph Cay(L,S) is hyperbolic.



Remark

By a previous theorem, given a hyperbolic vertex-transitive graph,
we can use Mwambené's method to obtain all the hyperbolic left
loops with the given graph as a Cayley graph.
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fixed vertex. The growth function of X is the function v: N — N
defined as follows:

v(n) =|{x € V: d(x,u) < n}|. (6)
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Note that since X is vertex-transitive, v does not depend on the
choice of u.



Growth
Another example of a quasi-isometric invariant is the rate of
growth.
Definition
Let X = (V, E) be a vertex-transitive graph and let u € V be a
fixed vertex. The growth function of X is the function v: N — N
defined as follows:

v(n) =[x e V: d(x,u) < nj. (6)
Note that since X is vertex-transitive, v does not depend on the
choice of u.
Definition

Let f,g : N = N be two non-decreasing functions. We define an
equivalence relation ~ given by:

f~ge3C>0: g(%n)gf(n)ﬁg(Cn). (7)



Proposition
If X and X' are two quasi-isometric vertex-transitive graphs with
growth functions v and +' respectively, then v ~ +'.
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Now we can define the rate of growth of a left loop.

Definition

[KB] Let L be a left loop and let S C L be a finite
quasi-associative Cayley set that generates L. The rate of growth
of L is defined as the equivalence class of the growth function of
the Cayley graph Cay(L,S).



Proposition
If X and X' are two quasi-isometric vertex-transitive graphs with
growth functions v and +' respectively, then v ~ +'.

Now we can define the rate of growth of a left loop.

Definition

[KB] Let L be a left loop and let S C L be a finite
quasi-associative Cayley set that generates L. The rate of growth
of L is defined as the equivalence class of the growth function of
the Cayley graph Cay(L,S).

Note that if one changes the choice of S, one gets a quasi-isometric
Cayley graph, and, by the previous proposition, the rate of growth
is the same. That means that the rate of growth does not depend
on the choice of S, but only on the left loop L itself.



Thank you!
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