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different algebraic structures.
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Cayley Set

Definition
Let M be a magma (a set with a binary operation). Let S ⊂ M. S
is called a Cayley Set if it satisfies the following properties:

I a /∈ aS ∀a ∈ M

I a ∈ (as)S ∀a ∈ M,∀s ∈ S
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is called a Cayley Set if it satisfies the following properties:

I a /∈ aS ∀a ∈ M
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Cayley Graph

Definition
Let M be a magma, and let S ⊂ M be a Cayley set. The Cayley
graph of M with respect to S is Cay(M, S) = (V ,E ) where
V = M and E = {{x , xs} : x ∈ M, s ∈ S}.

The condition a /∈ aS ∀a ∈ M of the Cayley set implies that
there are no loop-edges in the Cayley graph.
The condition a ∈ (as)S ∀a ∈ M,∀s ∈ S of the Cayley set
implies that the Cayley graph is undirected.
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Definition
Let M be a magma. A subset S ⊂ M is called quasi-associative if
(ab)S = a(bS) for all a, b ∈ M.



Definition
A left loop is a left quasi-group with a right identity. That is, a set
L with a binary operation · : L× L→ L that satisfies:

I The equation ax = b has a unique solution x = a\b.

I There exists e ∈ L such that ae = a for all a ∈ L.
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Definition
A left loop is a left quasi-group with a right identity. That is, a set
L with a binary operation · : L× L→ L that satisfies:

I The equation ax = b has a unique solution x = a\b.

I There exists e ∈ L such that ae = a for all a ∈ L.



Definition
A graph X = (V ,E ) is vertex-transitive if for every x , y ∈ V there
exists a graph automorphism σ such that σ(x) = y.



Theorem
[Mwambené] Let L be a left loop, and let S ⊂ L be a
quasi-associative Cayley set. Then the Cayley graph Cay(L,S) is
vertex-transitive.

One can ask the following question: If L is a left loop, S ⊂ L is a
Cayley set, and Cay(L,S) is vertex-transitive, does that mean that
S is quasi-associative?
The answer is NO, as the following counter-example shows.
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Counterexample

[KB] Let L = {0, 1, 2, 3, 4, 5}. Define in L the binary operation ∗

given by the following table:

∗ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 4 5 3 0
2 2 3 5 4 0 1
3 3 4 0 1 5 2
4 4 5 1 0 2 3
5 5 0 3 2 1 4

Note that L is a left loop, moreover, is a loop (the identity being
0). One can verify that th set S = {1, 5} is a Cayley set, and that
the graph Cay(L,S) is the cycle C6, which is vertex transitive.

0 1

2

3

5

4 Nevertheless, (2 ∗ 3) ∗ S = {5, 3} while
2 ∗ (3 ∗ S) = {0, 5}, so S is not quasi-associative.



Characterization of Vertex-transitive Graphs

Theorem
[Mwambené] Let X = (V ,E ) be a vertex-transitive graph. Then
there exists a left loop L and a quasi-associative Cayley set S ⊂ L
such that Cay(L,S) ∼= X .

This theorem together with the previous one, give a
characterization of vertex-transitive graphs as Cayley graphs of left
loops with respect to quasi-associative Cayley sets.
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Mwambené’s Method

I We fix a vertex u ∈ V .

I We take the stabilizer Au := {σ ∈ Aut(X ) : σ(u) = u}.
I We take a transversal T , that is, a set which contains extactly

one element of each left coset of Au.

I We define a binary operation ∗ on T as follows:
σ ∗ τ is the representative of the coset στAu, that is, the only
element of that coset that is in T .

It can be proved that (T , ∗) is a left loop. NOTE Mwambené’s
proof only works in the finite case. But it can be modified to
include the infinite case as well.

I We define ST := {σ ∈ T : {u, σ(u)} ∈ E}.
It turns out that ST is a quasi-associative Cayley set, and that
Cay(T ,ST ) ∼= X .
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proof only works in the finite case. But it can be modified to
include the infinite case as well.

I We define ST := {σ ∈ T : {u, σ(u)} ∈ E}.
It turns out that ST is a quasi-associative Cayley set, and that
Cay(T ,ST ) ∼= X .
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With Mwambené’s method one can reconstruct many left loops
(one for each transversal T ) and their corresponding
quasi-associative Cayley sets ST such that Cay(T ,ST ) ∼= X .

A valid question is: Are these all the left loops with a
quasi-associative Cayley such that the Cayley graph is isomorphic
to the given vertex-transitive graph?
The answer is YES.
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Theorem
[KB] Let L be a left loop and let S ⊂ L be a quasi-associative
Cayley set. Let X = Cay(L,S). Then, there exists a left loop T
constructed by Mwambené’s method starting from the graph X ,
which is isomorphic to L. Moreover, there exists an isomorphism
ϕ : L→ T , such that ϕ(S) = ST .

This means that given the graph Cay(L,S), one can reconstruct
the left loop L with Mwambené’s method, and moreover, the
Cayley set constructed by Mwambené’s method coincides with the
original quasi-associative Cayley set.
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Remark
According to the previous theorem, one can construct every left
loop with a quasi-associative Cayley set from it’s Cayley graph.
But the theorem is useless when the Cayley set is not
quasi-associative (like in the previous counterexample).



Mwambené’s method can be used to prove some other
characterization theorems for Cayley graphs.

Recall
If X is any set and Ω ⊂ Sym(X ), we say that Ω acts regularly in X
if for every x , y ∈ X there’s a unique σ ∈ Ω such that σ(x) = y.
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Theorem
[Gauyacq] A graph X = (V ,E ) is isomorphic to the Cayley graph
of a quasi-group Q with respect to a quasi-associative Cayley set
S if and only if Aut(X ) contains a subset T that acts regularly on
V .



Theorem
A graph X = (V ,E ) is isomorphic to the Cayley graph of a loop L
with respect to a quasi-associative Cayley set S if and only if
Aut(X ) contains a subset T that acts regularly on V and Id ∈ T .



Theorem
[Sabidoussi] A graph X = (V ,E ) is isomorphic to the Cayley
graph of a group G with respect to a Cayley set S if and only if
Aut(X ) contains a subgroup T that acts regularly on V .



In the next section I will try to introduce a Geometric Left Loop
Theory in analogy to Geometric Group Theory.



Quasi-isometry

Definition
Let (X , d) and (X ′, d ′) be metric spaces, and let f : X → X ′. Let
λ > 0, k ≥ 0. f is a (λ, k)-quasi-isometry if for every x , y ∈ X

1

λ
d(x , y)− k ≤ d ′(f (x), f (y)) ≤ λd(x , y) + k . (1)

Remarks

I A quasi-isometry is not necessarily inyective nor continous.

I If there’s a quasi-isometry from X to X ′, there’s not
necessarily one from X ′ to X .
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Almost Surjective

Definition
Let (X , d) and (X ′, d ′) be metric spaces, and let f : X → X ′. It is
said that f is almost surjective if there exists δ ≥ 0 such that

∀x ′ ∈ X ′ ∃x ∈ X : d ′(f (x), x ′) ≤ δ (2)



Quasi-isometric Spaces

Proposition

If there exists an almost surjective (λ, k)-quasi-isometry from a
metric space X to a metric space X ′, then there’s an almost
surjective (λ′, k ′)-quasi-isometry from X ′ to X .

Definition
Let (X , d) and (X ′, d ′) be metric spaces. If there exists an almost
surjective quasi-isometry between X and X ′, these spaces are
called quasi-isometric.

Proposition

Being quasi-isometric is an equivalence relation.
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Geometric Group Theory

In group theory the following results hold.

Proposition

Let G be a group and let S ⊂ G be a Cayley set. Then the
connected component of the identity on the graph Cay(G ,S) is
the subgroup generated by S.

Corolary

Let G be a group and let S ⊂ G be a Cayley set. Then Cay(G ,S)
is connected if and only if G =< S >.

Theorem
Let G be a finitely generated group, and let S and S ′ be finite
Cayley sets that generate G. Then the graphs Cay(G ,S) and
Cay(G , S ′) are quasi-isometric.
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Proposition

Let G be a group and let S ⊂ G be a Cayley set. Then the
connected component of the identity on the graph Cay(G , S) is
the subgroup generated by S.

Corolary
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Theorem
Let G be a finitely generated group, and let S and S ′ be finite
Cayley sets that generate G. Then the graphs Cay(G , S) and
Cay(G , S ′) are quasi-isometric.



In general, if we have a magma M and a Cayley set S , the
connected component of a vertex a, are the elements of the form

x = (. . . (((as1)s2)s3) . . .)sk , (3)

where si ∈ S . Therefore the previous results are false in the more
general case. In fact we have the following counterexample:



Counterexample

Let L be the left loop given by the following table:
∗ e a a2 a2a aa2 a2a2

e e aa2 a a2a2 a2 a2a
a a a2 aa2 a2a e a2a2

a2 a2 a2a a2a2 a aa2 e
aa2 aa2 a2a2 a2 e a2a a
a2a a2a a e a2 a2a2 aa2

a2a2 a2a2 e a2a aa2 a a2

One can verify that S = {a, a2a} is a Cayley set, and clearly, it
generates L (everything is in terms of a). Nevertheless, the Cayley
graph is the following:

e a

a²a² aa² a²a a² .



Next we want to prove that these results are true if we replace the
word “group” by “left loop” and we ask the Cayley set S to be
quasi-associative.



Products and Normed Products

Theorem
[KB] Let M be a magma and let S ⊂ M be a quasi-associative set.
Then every product of lenght k of elements of S,

x = s1s2...sk si ∈ S ∀i = 1, . . . k (4)

with any parenthesis arrangement, can be written also as a left
normed product of the same length. That is,

x = (. . . ((s ′1s ′2)s ′3) . . .)s ′k s ′i ∈ S ∀i = 1, . . . k. (5)



Distance in the Cayley Graph of a Left Loop

Proposition

[KB] Let L be a left loop and let S ⊂ L be a quasi-associative
Cayley set. Let x , y ∈ L. Then the distance from x to y in the
graph Cay(L, S) is the minimal length of a product expressing x\y.

NOTE: This result, which is obvious in the case when L is a group,
is not true without the condition of S being quasi-associative.



Distance in the Cayley Graph of a Left Loop

Proposition

[KB] Let L be a left loop and let S ⊂ L be a quasi-associative
Cayley set. Let x , y ∈ L. Then the distance from x to y in the
graph Cay(L, S) is the minimal length of a product expressing x\y.

NOTE: This result, which is obvious in the case when L is a group,
is not true without the condition of S being quasi-associative.



In the previous counterexample:

e a

a²a² aa² a²a a²

If we calculate a\(aa2) we get a2 that has length 2. But
d(a, aa2) =∞ 6= 2.



Towards a Geometric Left Loop Theory

Using these results (and some aditional lemmas) we can prove the
following results in analogy of those obtained in Group Theory.

Proposition

[KB] Let L be a left loop and let S ⊂ L be a quasi-associative
Cayley set. Then the connected component of the right identity in
the Cayley graph Cay(L,S) is the left subloop generated by S.

Corolary

[KB] Let L be a left loop and let S ⊂ L be a quasi-associative
Cayley set. Then Cay(L,S) is connected if and only if L =< S >.

Theorem
[KB] Let L be a left loop and let S and S ′ be two finite
quasi-associative Cayley sets that generate L. Then the Cayley
graphs Cay(L,S) and Cay(L, S ′) are quasi-isometric.
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This last result is the most important, since it says that every
geometric property of the Cayley graph, that is a quasi-isometric
invariant (i.e. that if it holds for some space, it holds also for every
quasi-isometric space to that one), is an intrinsic property of the
left loop L and does not depend on the quasi-associative Cayley set
S .

An example of such a property is the hyperbolicity.
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Hyperbolicity

Definition
(informal)
A metric space is called hyperbolic if there exists δ > 0 such that
for any triangle ABC , and for every point x in the segment AC,
there exists a point y either on the segment AB or in the segment
BC , such that the distance between x and y is less than δ.

Proposition

Given two quasi-isometric metric spaces X and X ′, if one of them
is hyperbolic, then the other is hyperbolic too (maybe with a
different δ). That is, hyperbolicity is a quasi-isometric invariant.

Then, a hyperbolic left loop would be defined as follows:

Definition
[KB] Let L be a left loop and let S ⊂ L be a finite
quasi-associative Cayley set that generates L. L is called a
hyperbolic left loop if the Cayley graph Cay(L,S) is hyperbolic.
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Remark
By a previous theorem, given a hyperbolic vertex-transitive graph,
we can use Mwambené’s method to obtain all the hyperbolic left
loops with the given graph as a Cayley graph.



Growth
Another example of a quasi-isometric invariant is the rate of
growth.

Definition
Let X = (V ,E ) be a vertex-transitive graph and let u ∈ V be a
fixed vertex. The growth function of X is the function γ : N→ N
defined as follows:

γ(n) = |{x ∈ V : d(x , u) ≤ n}|. (6)

Note that since X is vertex-transitive, γ does not depend on the
choice of u.

Definition
Let f , g : N→ N be two non-decreasing functions. We define an
equivalence relation ∼ given by:

f ∼ g ⇔ ∃C > 0 : g(
1

C
n) ≤ f (n) ≤ g(Cn). (7)



Growth
Another example of a quasi-isometric invariant is the rate of
growth.

Definition
Let X = (V ,E ) be a vertex-transitive graph and let u ∈ V be a
fixed vertex. The growth function of X is the function γ : N→ N
defined as follows:

γ(n) = |{x ∈ V : d(x , u) ≤ n}|. (6)

Note that since X is vertex-transitive, γ does not depend on the
choice of u.

Definition
Let f , g : N→ N be two non-decreasing functions. We define an
equivalence relation ∼ given by:

f ∼ g ⇔ ∃C > 0 : g(
1

C
n) ≤ f (n) ≤ g(Cn). (7)



Growth
Another example of a quasi-isometric invariant is the rate of
growth.

Definition
Let X = (V ,E ) be a vertex-transitive graph and let u ∈ V be a
fixed vertex. The growth function of X is the function γ : N→ N
defined as follows:

γ(n) = |{x ∈ V : d(x , u) ≤ n}|. (6)

Note that since X is vertex-transitive, γ does not depend on the
choice of u.

Definition
Let f , g : N→ N be two non-decreasing functions. We define an
equivalence relation ∼ given by:

f ∼ g ⇔ ∃C > 0 : g(
1

C
n) ≤ f (n) ≤ g(Cn). (7)



Growth
Another example of a quasi-isometric invariant is the rate of
growth.

Definition
Let X = (V ,E ) be a vertex-transitive graph and let u ∈ V be a
fixed vertex. The growth function of X is the function γ : N→ N
defined as follows:

γ(n) = |{x ∈ V : d(x , u) ≤ n}|. (6)

Note that since X is vertex-transitive, γ does not depend on the
choice of u.

Definition
Let f , g : N→ N be two non-decreasing functions. We define an
equivalence relation ∼ given by:

f ∼ g ⇔ ∃C > 0 : g(
1

C
n) ≤ f (n) ≤ g(Cn). (7)



Proposition

If X and X ′ are two quasi-isometric vertex-transitive graphs with
growth functions γ and γ′ respectively, then γ ∼ γ′.

Now we can define the rate of growth of a left loop.

Definition
[KB] Let L be a left loop and let S ⊂ L be a finite
quasi-associative Cayley set that generates L. The rate of growth
of L is defined as the equivalence class of the growth function of
the Cayley graph Cay(L,S).

Note that if one changes the choice of S , one gets a quasi-isometric
Cayley graph, and, by the previous proposition, the rate of growth
is the same. That means that the rate of growth does not depend
on the choice of S , but only on the left loop L itself.
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Thank you!
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