Triality

Georgia Benkart
University of Wisconsin-Madison

(joint with S. Madariaga and J. Pérez-Izquierdo)
Third Mile High Conference on Nonassociative Mathematics
August 12, 2013

The Main Actor

symmetric group S_{3}

The Main Actor

symmetric group S_{3}
generators: $\quad \sigma=(12) \quad \rho=(123)$

The Main Actor

symmetric group $\quad S_{3}$
generators: $\quad \sigma=(12) \quad \rho=(123)$
relations:

The Main Actor

symmetric group $\quad S_{3}$
generators: $\quad \sigma=(12) \quad \rho=(123)$
relations:
$\sigma^{2}=1, \quad \rho^{3}=1, \quad \sigma \rho \sigma=\rho^{-1}=\rho^{2}$

The Main Actor

symmetric group S_{3}
generators: $\quad \sigma=(12) \quad \rho=(123)$
relations:
$\sigma^{2}=1, \quad \rho^{3}=1, \quad \sigma \rho \sigma=\rho^{-1}=\rho^{2}$
triality: There is an S_{3}-action and ...

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Equivalently:

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Equivalently:

$$
(*) \quad\left(x^{\sigma}-x\right)+\left(x^{\sigma}-x\right)^{\rho}+\left(x^{\sigma}-x\right)^{\rho^{2}}=0 \quad \forall x \in \mathfrak{g}
$$

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Equivalently:

$$
(*) \quad\left(x^{\sigma}-x\right)+\left(x^{\sigma}-x\right)^{\rho}+\left(x^{\sigma}-x\right)^{\rho^{2}}=0 \quad \forall x \in \mathfrak{g}
$$

Ex: $\quad \mathfrak{g}=\mathfrak{o}(\mathbb{O}, n) \quad$ type D_{4}

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Equivalently:

$$
(*) \quad\left(x^{\sigma}-x\right)+\left(x^{\sigma}-x\right)^{\rho}+\left(x^{\sigma}-x\right)^{\rho^{2}}=0 \quad \forall x \in \mathfrak{g}
$$

$\mathrm{Ex}: \quad \mathfrak{g}=\mathfrak{o}(\mathbb{O}, n) \quad$ type D_{4}
$\mathfrak{o}(\mathbb{O}, n)=\operatorname{Der}(\mathbb{O}) \oplus\left\{\mathrm{L}_{a} \mid a \in \mathbb{O}_{0}\right\} \oplus\left\{\mathrm{R}_{a} \mid a \in \mathbb{O}_{0}\right\}$.

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Equivalently:

$$
(*) \quad\left(x^{\sigma}-x\right)+\left(x^{\sigma}-x\right)^{\rho}+\left(x^{\sigma}-x\right)^{\rho^{2}}=0 \quad \forall x \in \mathfrak{g}
$$

$\mathrm{Ex}: \quad \mathfrak{g}=\mathfrak{o}(\mathbb{O}, n) \quad$ type D_{4}
$\mathfrak{o}(\mathbb{O}, n)=\operatorname{Der}(\mathbb{O}) \oplus\left\{\mathrm{L}_{a} \mid a \in \mathbb{O}_{0}\right\} \oplus\left\{\mathrm{R}_{a} \mid a \in \mathbb{O}_{0}\right\}$.

$$
\begin{array}{lcc}
d^{\sigma}=d, & \mathrm{~L}_{a}^{\sigma}=-\mathrm{R}_{a}, & \mathrm{R}_{a}^{\sigma}=-\mathrm{L}_{a} \\
d^{\rho}=d, & \mathrm{~L}_{a}^{\rho}=\mathrm{R}_{a}, & \mathrm{R}_{a}^{\rho}=-\mathrm{L}_{a}-\mathrm{R}_{a}
\end{array}
$$

Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\operatorname{Aut}(\mathfrak{g}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\sum_{\tau \in \mathrm{S}} \operatorname{sgn}(\tau) x^{\tau}=0 \quad$ for all $x \in \mathfrak{g}$

Equivalently:

$$
(*) \quad\left(x^{\sigma}-x\right)+\left(x^{\sigma}-x\right)^{\rho}+\left(x^{\sigma}-x\right)^{\rho^{2}}=0 \quad \forall x \in \mathfrak{g}
$$

Ex: $\quad \mathfrak{g}=\mathfrak{o}(\mathbb{O}, n) \quad$ type D_{4}

$$
\mathfrak{o}(\mathbb{O}, n)=\operatorname{Der}(\mathbb{O}) \oplus\left\{\mathrm{L}_{a} \mid a \in \mathbb{O}_{0}\right\} \oplus\left\{\mathrm{R}_{a} \mid a \in \mathbb{O}_{0}\right\}
$$

$$
\begin{array}{lcc}
d^{\sigma}=d, & \mathrm{~L}_{a}^{\sigma}=-\mathrm{R}_{a}, & \mathrm{R}_{a}^{\sigma}=-\mathrm{L}_{a} \\
d^{\rho}=d, & \mathrm{~L}_{a}^{\rho}=\mathrm{R}_{a}, & \mathrm{R}_{a}^{\rho}=-\mathrm{L}_{a}-\mathrm{R}_{a}
\end{array}
$$

Then $\mathrm{L}_{a}^{\sigma}-\mathrm{L}_{a}=-\mathrm{R}_{a}-\mathrm{L}_{a}, \quad\left(\mathrm{~L}_{a}^{\sigma}-\mathrm{L}_{a}\right)^{\rho}=\mathrm{L}_{a}, \quad\left(\mathrm{~L}_{a}^{\sigma}-\mathrm{L}_{a}\right)^{\rho^{2}}=\mathrm{R}_{a}$ so sum $=0$.

Groups with triality

G is a group with triality if

Groups with triality

G is a group with triality if

- $\operatorname{Aut}(\mathrm{G}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$

Groups with triality

G is a group with triality if

- $\operatorname{Aut}(\mathrm{G}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\left(g^{-1} g^{\sigma}\right)\left(g^{-1} g^{\sigma}\right)^{\rho}\left(g^{-1} g^{\sigma}\right)^{\rho^{2}}=1 \quad \forall g \in G$

Groups with triality

G is a group with triality if

- $\operatorname{Aut}(\mathrm{G}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\left(g^{-1} g^{\sigma}\right)\left(g^{-1} g^{\sigma}\right)^{\rho}\left(g^{-1} g^{\sigma}\right)^{\rho^{2}}=1 \quad \forall g \in G$

Results on groups with triality via connections with loops:

Groups with triality

G is a group with triality if

- $\operatorname{Aut}(\mathrm{G}) \supseteq \mathrm{S}=\langle\sigma, \rho\rangle \cong \mathrm{S}_{3}$
- $\left(g^{-1} g^{\sigma}\right)\left(g^{-1} g^{\sigma}\right)^{\rho}\left(g^{-1} g^{\sigma}\right)^{\rho^{2}}=1 \quad \forall g \in G$

Results on groups with triality via connections with loops:

- Glauberman ('68)
- Doro ('78)
- Grishkov-Zavarnitsine ('06)
- Hall ('10)
- B,M,P-I ('13)

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

Moufang Loops (Moufang '35)

loop: A set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $e a=a=a e$

Moufang Loops (Moufang '35)

loop: A set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in \mathrm{M}$ so \quad ea $=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang Loops (Moufang '35)

loop: A set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Examples of Moufang loops:

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Examples of Moufang loops:

1. any group

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under "."

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under "."
3. octonions of norm 1 (7 -sphere S^{7}) under "."

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under "."
3. octonions of norm 1 (7 -sphere S^{7}) under "."
4. set of invertible elements in any alternative ring

Moufang Loops (Moufang '35)

loop: $\quad \mathrm{A}$ set M with a product $(a, b) \mapsto a b$ such that

- $\exists e \in M$ so $\quad e a=a=a e$
- $\mathrm{L}_{a}: b \rightarrow a b, \mathrm{R}_{b}: a \rightarrow a b$ are bijective.

Moufang: $\quad a(x(a y))=((a x) a) y \quad \forall \quad a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under "."
3. octonions of norm 1 (7 -sphere S^{7}) under "."
4. set of invertible elements in any alternative ring

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\mathcal{M}(\mathrm{G}):=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. }
$$

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{N}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{M}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

- M a Moufang loop \Longrightarrow

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{N}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

- M a Moufang loop \Longrightarrow

$$
\mathcal{D}(\mathrm{M}):=\left\langle\mathrm{L}_{m}, \mathrm{R}_{m}, \mathrm{P}_{m}:=\mathrm{R}_{m}^{-1} \mathrm{~L}_{m}^{-1} \mid m \in \mathrm{M}\right\rangle
$$

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{N}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

- M a Moufang loop \Longrightarrow
$\mathcal{D}(\mathrm{M}):=\left\langle\mathrm{L}_{m}, \mathrm{R}_{m}, \mathrm{P}_{m}:=\mathrm{R}_{m}^{-1} \mathrm{~L}_{m}^{-1} \mid m \in \mathrm{M}\right\rangle$
is a group with triality w.r.t.

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{M}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \quad \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

- M a Moufang loop \Longrightarrow

$$
\mathcal{D}(\mathrm{M}):=\left\langle\mathrm{L}_{m}, \mathrm{R}_{m}, \mathrm{P}_{m}:=\mathrm{R}_{m}^{-1} \mathrm{~L}_{m}^{-1} \mid m \in \mathrm{M}\right\rangle
$$

is a group with triality w.r.t.

$$
\mathrm{L}_{m} \xrightarrow{\rho} \mathrm{R}_{m} \xrightarrow{\rho} \mathrm{P}_{m} \xrightarrow{\rho} \mathrm{~L}_{m}
$$

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{M}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \quad \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

- M a Moufang loop \Longrightarrow

$$
\mathcal{D}(\mathrm{M}):=\left\langle\mathrm{L}_{m}, \mathrm{R}_{m}, \mathrm{P}_{m}:=\mathrm{R}_{m}^{-1} \mathrm{~L}_{m}^{-1} \mid m \in \mathrm{M}\right\rangle
$$

is a group with triality w.r.t.

$$
\begin{aligned}
\mathrm{L}_{m} \\
\mathrm{P}_{m}^{\sigma}=\mathrm{P}_{m}^{-1}, \quad \mathrm{~L}_{m}^{\sigma}=\mathrm{R}_{m}^{-1}, \quad \mathrm{R}_{m}^{\sigma}=\mathrm{L}_{m}^{-1}
\end{aligned}
$$

Groups with Triality and Moufang Loops

- G a group with triality \Longrightarrow

$$
\begin{aligned}
\mathcal{N}(\mathrm{G}) & :=\left\{g^{-1} g^{\sigma} \mid g \in \mathrm{G}\right\} \quad \text { is a Moufang loop w.r.t. } \\
& m \cdot n=m^{-\rho} n m^{-\rho^{2}}=n^{-\rho^{2}} m n^{-\rho} \forall m, n \in \mathcal{N}(\mathrm{G})
\end{aligned}
$$

- M a Moufang loop \Longrightarrow
$\mathcal{D}(\mathrm{M}):=\left\langle\mathrm{L}_{m}, \mathrm{R}_{m}, \mathrm{P}_{m}:=\mathrm{R}_{m}^{-1} \mathrm{~L}_{m}^{-1} \mid m \in \mathrm{M}\right\rangle$
is a group with triality w.r.t.

$$
\begin{gathered}
\mathrm{L}_{m} \xrightarrow{\rho} \mathrm{R}_{m} \xrightarrow{\rho} \mathrm{P}_{m} \xrightarrow{\rho} \mathrm{~L}_{m} \\
\mathrm{P}_{m}^{\sigma}=\mathrm{P}_{m}^{-1}, \quad \mathrm{~L}_{m}^{\sigma}=\mathrm{R}_{m}^{-1}, \quad \mathrm{R}_{m}^{\sigma}=\mathrm{L}_{m}^{-1}
\end{gathered}
$$

J. Hall, Moufang Loops and Groups with Triality are Essentially the Same Thing

Map I

Lie algebras with triality

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with
a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.
- $[x, y]=-[y, x]$,
- $[\mathrm{J}(x, y, z), x]=\mathrm{J}(x, y,[x, z])$

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.
- $[x, y]=-[y, x]$,
- $[\mathrm{J}(x, y, z), x]=\mathrm{J}(x, y,[x, z])$
where $\mathrm{J}(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y]$

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.
- $[x, y]=-[y, x]$,
- $[\mathrm{J}(x, y, z), x]=\mathrm{J}(x, y,[x, z])$
where $\mathrm{J}(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y]$
- Examples:

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.
- $[x, y]=-[y, x]$,
- $[\mathrm{J}(x, y, z), x]=\mathrm{J}(x, y,[x, z])$
where $J(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y]$
- Examples:
(1) any Lie algebra

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.
- $[x, y]=-[y, x]$,
- $[\mathrm{J}(x, y, z), x]=\mathrm{J}(x, y,[x, z])$
where $J(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y]$
- Examples:
(1) any Lie algebra
(2) any alternative algebra under $[x, y]=x y-y x$

Malcev Algebras (Malcev '55)

- A Malcev algebra is a vector space \mathfrak{m} with a bilinear map $[\cdot, \cdot]: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ s.t.
- $[x, y]=-[y, x]$,
- $[\mathrm{J}(x, y, z), x]=\mathrm{J}(x, y,[x, z])$
where $\mathrm{J}(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y]$
- Examples:
(1) any Lie algebra
(2) any alternative algebra under $[x, y]=x y-y x$
(3) imaginary octonions under $[x, y]=x y-y x$

Lie Algebras with Triality and Malcev Algebras

\mathfrak{m} : a Malcev algebra of characteristic $\neq 2,3$

Lie Algebras with Triality and Malcev Algebras

\mathfrak{m} : a Malcev algebra of characteristic $\neq 2,3$
(Pérez-Izquierdo, Shestakov '04)

Lie Algebras with Triality and Malcev Algebras

\mathfrak{m} : a Malcev algebra of characteristic $\neq 2,3$
(Pérez-Izquierdo, Shestakov '04)
$\mathcal{L}(\mathfrak{m})$: Lie algebra generated by symbols ℓ_{x}, r_{x}, for $x \in \mathfrak{m}$ s.t. $x \mapsto \ell_{x}, \quad x \mapsto r_{x} \quad$ are bilinear and

Lie Algebras with Triality and Malcev Algebras

\mathfrak{m} : a Malcev algebra of characteristic $\neq 2,3$

(Pérez-Izquierdo, Shestakov '04)

$\mathcal{L}(\mathfrak{m})$: Lie algebra generated by symbols ℓ_{x}, r_{x}, for $x \in \mathfrak{m}$ s.t. $x \mapsto \ell_{x}, \quad x \mapsto r_{x} \quad$ are bilinear and
(a) $\left[\ell_{x}, \ell_{y}\right]=\ell_{[x, y]}-2\left[\ell_{x}, r_{y}\right]$,
(b) $\left[r_{x}, r_{y}\right]=-r_{[x, y]}-2\left[\ell_{x}, r_{y}\right]$,
(c) $\left[\ell_{x}, r_{y}\right]=\left[r_{x}, \ell_{y}\right]$.

Lie Algebras with Triality and Malcev Algebras

\mathfrak{m} : a Malcev algebra of characteristic $\neq 2,3$

(Pérez-Izquierdo, Shestakov '04)

$\mathcal{L}(\mathfrak{m})$: Lie algebra generated by symbols ℓ_{x}, r_{x}, for $x \in \mathfrak{m}$ s.t. $x \mapsto \ell_{x}, \quad x \mapsto r_{x} \quad$ are bilinear and
(a) $\left[\ell_{x}, \ell_{y}\right]=\ell_{[x, y]}-2\left[\ell_{x}, r_{y}\right]$,
(b) $\left[r_{x}, r_{y}\right]=-r_{[x, y]}-2\left[\ell_{x}, r_{y}\right]$,
(c) $\left[\ell_{x}, r_{y}\right]=\left[r_{x}, \ell_{y}\right]$.

Thm. $\quad \mathcal{L}(\mathfrak{m})$ is a Lie algebra with triality w.r.t

- $\ell_{x}^{\sigma}=-r_{x}, \quad r_{x}^{\sigma}=-\ell_{x}$
- $\ell_{x}^{\rho}=r_{x}, \quad r_{x}^{\rho}=-\ell_{x}-r_{x}$.

Lie Algebras with Triality and Malcev Algebras

\mathfrak{m} : a Malcev algebra of characteristic $\neq 2,3$

(Pérez-Izquierdo, Shestakov '04)

$\mathcal{L}(\mathfrak{m})$: Lie algebra generated by symbols ℓ_{x}, r_{x}, for $x \in \mathfrak{m}$ s.t. $x \mapsto \ell_{x}, \quad x \mapsto r_{x} \quad$ are bilinear and
(a) $\left[\ell_{x}, \ell_{y}\right]=\ell_{[x, y]}-2\left[\ell_{x}, r_{y}\right]$,
(b) $\left[r_{x}, r_{y}\right]=-r_{[x, y]}-2\left[\ell_{x}, r_{y}\right]$,
(c) $\left[\ell_{x}, r_{y}\right]=\left[r_{x}, \ell_{y}\right]$.

Thm. $\quad \mathcal{L}(\mathfrak{m})$ is a Lie algebra with triality w.r.t

- $\ell_{x}^{\sigma}=-r_{x}, \quad r_{x}^{\sigma}=-\ell_{x}$
- $\ell_{x}^{\rho}=r_{x}, \quad r_{x}^{\rho}=-\ell_{x}-r_{x}$.

The Map II

$$
\mathcal{L}(\mathfrak{m}) \hookrightarrow \mathfrak{m}
$$

Lie algebras with triality Malcev algebras

Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra

Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$

Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$
(Sweedler notation)

Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$
(Sweedler notation)
$(\Delta \otimes \mathrm{id}) \Delta(u)=(\mathrm{id} \otimes \Delta) \Delta(u)=\sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}$

Cocommutative Hopf Algebras

- $(\mathrm{H}, \Delta, \epsilon, S)$: a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$
(Sweedler notation)
$(\Delta \otimes \mathrm{id}) \Delta(u)=(\mathrm{id} \otimes \Delta) \Delta(u)=\sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}$
- Ex: $\mathrm{U}=\mathrm{U}(\mathfrak{g})$ (universal enveloping algebra of \mathfrak{g}):

Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$
(Sweedler notation)
$(\Delta \otimes \mathrm{id}) \Delta(u)=(\mathrm{id} \otimes \Delta) \Delta(u)=\sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}$
- Ex: $\mathrm{U}=\mathrm{U}(\mathfrak{g})$ (universal enveloping algebra of \mathfrak{g}):
(a) $\Delta: \mathrm{U} \rightarrow \mathrm{U} \otimes \mathrm{U}, \quad \Delta(x)=x \otimes 1+1 \otimes x$

Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$
(Sweedler notation)
$(\Delta \otimes \mathrm{id}) \Delta(u)=(\mathrm{id} \otimes \Delta) \Delta(u)=\sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}$
- Ex: $\mathrm{U}=\mathrm{U}(\mathfrak{g})$ (universal enveloping algebra of \mathfrak{g}):
(a) $\Delta: \mathrm{U} \rightarrow \mathrm{U} \otimes \mathrm{U}, \quad \Delta(x)=x \otimes 1+1 \otimes x$
(b) $\epsilon: U \rightarrow \mathbb{F}, \quad \epsilon(x)=0$,

Cocommutative Hopf Algebras

- $(\mathrm{H}, \Delta, \epsilon, S)$: a unital (cocommutative) Hopf algebra
- $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}=\sum u_{(2)} \otimes u_{(1)} \quad \forall u \in \mathrm{H}$
(Sweedler notation)
$(\Delta \otimes \mathrm{id}) \Delta(u)=(\mathrm{id} \otimes \Delta) \Delta(u)=\sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}$
- Ex: $\mathrm{U}=\mathrm{U}(\mathfrak{g})$ (universal enveloping algebra of \mathfrak{g}):
(a) $\Delta: \mathrm{U} \rightarrow \mathrm{U} \otimes \mathrm{U}, \quad \Delta(x)=x \otimes 1+1 \otimes x$
(b) $\epsilon: U \rightarrow \mathbb{F}, \quad \epsilon(x)=0$,
(c) $S: U \rightarrow \mathrm{U}, \quad S(x)=-x$,
for all $x \in \mathfrak{g}$

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

$$
\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1
$$

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

$$
\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1
$$

where $\quad T(v)=\sum v_{(1)}{ }^{\sigma} S\left(v_{(2)}\right)$.

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

$$
\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1
$$

where $\quad T(v)=\sum v_{(1)}{ }^{\sigma} S\left(v_{(2)}\right)$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \operatorname{Aut}(\mathrm{G})$

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

$$
\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1
$$

where $\quad T(v)=\sum v_{(1)}{ }^{\sigma} S\left(v_{(2)}\right)$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \operatorname{Aut}(\mathrm{G})$
$\mathbb{F G}$: group algebra with

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

$$
\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1
$$

where $\quad T(v)=\sum v_{(1)}{ }^{\sigma} S\left(v_{(2)}\right)$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \operatorname{Aut}(\mathrm{G})$
$\mathbb{F G}$: group algebra with

$$
\Delta(g)=g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}
$$

Hopf Algebras with Triality (B,M,P-I) (Trans. AMS 2013)

Defn. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) A cocommutative Hopf algebra H is a
Hopf algebra with triality if there exist $\mathrm{S}_{3} \cong\langle\sigma, \rho\rangle \subseteq \operatorname{Aut}(\mathrm{H})$ s.t.

$$
\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1
$$

where

$$
T(v)=\sum v_{(1)}{ }^{\sigma} S\left(v_{(2)}\right)
$$

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \operatorname{Aut}(\mathrm{G})$
$\mathbb{F G}$: group algebra with

$$
\Delta(g)=g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}
$$

$\mathbb{F G}$ is a Hopf algebra with triality with $\quad T(g)=g^{\sigma} g^{-1}$.

* Replace T with $T^{\prime}(g)=T\left(\sigma\left(g^{-1}\right)\right)=g^{-1} g^{\sigma}$ to get earlier defn.

The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \Longrightarrow$ $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

$$
\text { Proof. } \quad T(v)=\sum v_{(1)}^{\sigma} S\left(v_{(2)}\right) \text { where } \Delta(v)=\sum v_{(1)} \otimes v_{(2)}
$$

The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \Longrightarrow$ $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v)=\sum v_{(1)}^{\sigma} S\left(v_{(2)}\right)$ where $\Delta(v)=\sum v_{(1)} \otimes v_{(2)}$.
Now $\Delta(x)=x \otimes 1+1 \otimes x, \epsilon(x)=0, S(x)=-x$ for all $x \in \mathfrak{g}$, and $\Delta(1)=1 \otimes 1, \epsilon(1)=1, S(1)=1$.

The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \Longrightarrow$ $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v)=\sum v_{(1)}^{\sigma} S\left(v_{(2)}\right)$ where $\Delta(v)=\sum v_{(1)} \otimes v_{(2)}$.
Now $\Delta(x)=x \otimes 1+1 \otimes x, \epsilon(x)=0, S(x)=-x$ for all $x \in \mathfrak{g}$, and $\Delta(1)=1 \otimes 1, \epsilon(1)=1, S(1)=1$.

$$
\begin{aligned}
& T(x)=x^{\sigma} S(1)+1^{\sigma} S(x)=x^{\sigma}-x \\
& T(1)=1
\end{aligned}
$$

The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \Longrightarrow$ $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v)=\sum v_{(1)}^{\sigma} S\left(v_{(2)}\right)$ where $\Delta(v)=\sum v_{(1)} \otimes v_{(2)}$.
Now $\Delta(x)=x \otimes 1+1 \otimes x, \epsilon(x)=0, S(x)=-x$ for all $x \in \mathfrak{g}$, and $\Delta(1)=1 \otimes 1, \epsilon(1)=1, S(1)=1$.

$$
\begin{aligned}
& T(x)=x^{\sigma} S(1)+1^{\sigma} S(x)=x^{\sigma}-x \\
& T(1)=1
\end{aligned}
$$

Relation we want is $\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1$.

The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \Longrightarrow$ $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $\quad T(v)=\sum v_{(1)}^{\sigma} S\left(v_{(2)}\right)$ where $\Delta(v)=\sum v_{(1)} \otimes v_{(2)}$.
Now $\Delta(x)=x \otimes 1+1 \otimes x, \epsilon(x)=0, S(x)=-x$ for all $x \in \mathfrak{g}$, and $\Delta(1)=1 \otimes 1, \epsilon(1)=1, S(1)=1$.

$$
\begin{aligned}
& T(x)=x^{\sigma} S(1)+1^{\sigma} S(x)=x^{\sigma}-x \\
& T(1)=1
\end{aligned}
$$

Relation we want is $\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1$. Now

$$
\begin{aligned}
(\Delta \otimes \mathrm{id})(\Delta(x)) & =(\Delta \otimes \mathrm{id})(x \otimes 1+1 \otimes x) \\
& =x \otimes 1 \otimes 1+1 \otimes x \otimes 1+1 \otimes 1 \otimes x
\end{aligned}
$$

The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \Longrightarrow$ $\mathrm{U}(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v)=\sum v_{(1)}^{\sigma} S\left(v_{(2)}\right)$ where $\Delta(v)=\sum v_{(1)} \otimes v_{(2)}$.
Now $\Delta(x)=x \otimes 1+1 \otimes x, \epsilon(x)=0, S(x)=-x$ for all $x \in \mathfrak{g}$, and $\Delta(1)=1 \otimes 1, \epsilon(1)=1, S(1)=1$.

$$
\begin{aligned}
& T(x)=x^{\sigma} S(1)+1^{\sigma} S(x)=x^{\sigma}-x \\
& T(1)=1
\end{aligned}
$$

Relation we want is $\sum T\left(u_{(1)}\right) T\left(u_{(2)}\right)^{\rho} T\left(u_{(3)}\right)^{\rho^{2}}=\epsilon(u) 1$. Now

$$
\begin{aligned}
&(\Delta \otimes \mathrm{id})(\Delta(x))=(\Delta \otimes \mathrm{id})(x \otimes 1+1 \otimes x) \\
&=x \otimes 1 \otimes 1+1 \otimes x \otimes 1+1 \otimes 1 \otimes x \\
&\left(x^{\sigma}-x\right)+\left(x^{\sigma}-x\right)^{\rho}+\left(x^{\sigma}-x\right)^{\rho^{2}}=0=\epsilon(x) 1
\end{aligned}
$$

Getting Some Arrows

Thm. H a Hopf algebra with triality w.r.t. $\quad \sigma, \rho \Longrightarrow$

Getting Some Arrows

Thm. H a Hopf algebra with triality w.r.t. $\quad \sigma, \rho \Longrightarrow$
(a) the primitive elements of H form a Lie algebra with triality w.r.t. σ, ρ.

Getting Some Arrows

Thm. H a Hopf algebra with triality w.r.t. $\quad \sigma, \rho \Longrightarrow$
(a) the primitive elements of H form a Lie algebra with triality w.r.t. σ, ρ.

$$
\text { (Recall } y \text { is primitive if } \Delta(y)=y \otimes 1+1 \otimes y .)
$$

Getting Some Arrows

Thm. H a Hopf algebra with triality w.r.t. $\quad \sigma, \rho \Longrightarrow$
(a) the primitive elements of H form a Lie algebra with triality w.r.t. σ, ρ.

$$
\text { (Recall } y \text { is primitive if } \Delta(y)=y \otimes 1+1 \otimes y .)
$$

(b) the group-like elements of H form a group with triality w.r.t. σ, ρ.

$$
\text { (Recall } g \text { is group-like if } \Delta(g)=g \otimes g . \text {) }
$$

Getting Some Arrows

Thm. H a Hopf algebra with triality w.r.t. $\quad \sigma, \rho \Longrightarrow$
(a) the primitive elements of H form a Lie algebra with triality w.r.t. σ, ρ.

$$
\text { (Recall } y \text { is primitive if } \Delta(y)=y \otimes 1+1 \otimes y .)
$$

(b) the group-like elements of H form a group with triality w.r.t. σ, ρ.

$$
\text { (Recall } g \text { is group-like if } \Delta(g)=g \otimes g . \text {) }
$$

The Map III

$$
\mathcal{L}(\mathfrak{m}) \hookleftarrow \mathfrak{m}
$$

Moufang-Hopf Algebras

- (U, $\Delta, \epsilon)$: a (cocommutive) coassociative unital bialgebra s.t. for all $u, v, w \in \mathrm{U}$,

Moufang-Hopf Algebras

- (U, $\Delta, \epsilon)$: a (cocommutive) coassociative unital bialgebra s.t. for all $u, v, w \in \mathrm{U}$,

$$
\sum u_{(1)}\left(v\left(u_{(2)} w\right)\right)=\sum\left(\left(u_{(1)} v\right) u_{(2)}\right) w
$$

Moufang-Hopf Algebras

- (U, $\Delta, \epsilon)$: a (cocommutive) coassociative unital bialgebra s.t. for all $u, v, w \in \mathrm{U}$,

$$
\sum u_{(1)}\left(v\left(u_{(2)} w\right)\right)=\sum\left(\left(u_{(1)} v\right) u_{(2)}\right) w
$$

and there exists a linear map $S: \mathrm{U} \rightarrow \mathrm{U}$ s.t.

Moufang-Hopf Algebras

- (U, $\Delta, \epsilon)$: a (cocommutive) coassociative unital bialgebra s.t. for all $u, v, w \in \mathrm{U}$,

$$
\sum u_{(1)}\left(v\left(u_{(2)} w\right)\right)=\sum\left(\left(u_{(1)} v\right) u_{(2)}\right) w
$$

and there exists a linear map $S: U \rightarrow \mathrm{U}$ s.t.

$$
\begin{aligned}
& \sum S\left(u_{(1)}\right)\left(u_{(2)} v\right)=\epsilon(u) v=\sum u_{(1)}\left(S\left(u_{(2)}\right) v\right) \\
& \sum\left(v u_{(1)}\right) S\left(u_{(2)}\right)=\epsilon(u) v=\sum\left(v S\left(u_{(1)}\right)\right) u_{(2)}
\end{aligned}
$$

Moufang-Hopf Algebras

- (U, $\Delta, \epsilon)$: a (cocommutive) coassociative unital bialgebra s.t. for all $u, v, w \in \mathrm{U}$,

$$
\sum u_{(1)}\left(v\left(u_{(2)} w\right)\right)=\sum\left(\left(u_{(1)} v\right) u_{(2)}\right) w
$$

and there exists a linear map $S: U \rightarrow \mathrm{U}$ s.t.

$$
\begin{aligned}
& \sum S\left(u_{(1)}\right)\left(u_{(2)} v\right)=\epsilon(u) v=\sum u_{(1)}\left(S\left(u_{(2)}\right) v\right) \\
& \sum\left(v u_{(1)}\right) S\left(u_{(2)}\right)=\epsilon(u) v=\sum\left(v S\left(u_{(1)}\right)\right) u_{(2)}
\end{aligned}
$$

- In this case, say $(\mathrm{U}, \Delta, \epsilon)$ is a Moufang-Hopf algebra.

Hopf Algebras With Triality \& Moufang Hopf Algebras, the Map $\mathrm{U} \mapsto \mathfrak{D}(\mathrm{U})$

U: cocommutative Moufang-Hopf algebra

Hopf Algebras With Triality \& Moufang Hopf Algebras, the Map $\mathrm{U} \mapsto \mathfrak{D}(\mathrm{U})$

U: cocommutative Moufang-Hopf algebra
$\mathfrak{D}(\mathrm{U})$: unital associative algebra generated by $\left\{\mathrm{L}_{u}, \mathrm{R}_{u}, \mathrm{P}_{u} \mid u \in \mathrm{U}\right\}$

Hopf Algebras With Triality \& Moufang Hopf Algebras, the Map $\mathrm{U} \mapsto \mathfrak{D}(\mathrm{U})$

U: cocommutative Moufang-Hopf algebra
$\mathfrak{D}(\mathrm{U})$: unital associative algebra generated by $\left\{\mathrm{L}_{u}, \mathrm{R}_{u}, \mathrm{P}_{u} \mid u \in \mathrm{U}\right\}$ where $\mathrm{P}_{1}=1, \quad \mathrm{P}_{\alpha u+\beta v}=\alpha \mathrm{P}_{u}+\beta \mathrm{P}_{v}$ and

Hopf Algebras With Triality \& Moufang Hopf Algebras, the Map $\mathrm{U} \mapsto \mathfrak{D}(\mathrm{U})$

U: cocommutative Moufang-Hopf algebra
$\mathfrak{D}(\mathrm{U})$: unital associative algebra generated by $\left\{\mathrm{L}_{u}, \mathrm{R}_{u}, \mathrm{P}_{u} \mid u \in \mathrm{U}\right\}$ where $\mathrm{P}_{1}=1, \quad \mathrm{P}_{\alpha u+\beta v}=\alpha \mathrm{P}_{u}+\beta \mathrm{P}_{v}$ and

$$
\begin{aligned}
& \sum \mathrm{P}_{u_{(1)}} \mathrm{L}_{u_{(2)}} \mathrm{R}_{u_{(3)}}=\epsilon(u) 1, \quad \sum \mathrm{R}_{u_{(1)}} \mathrm{P}_{v} \mathrm{~L}_{u_{(2)}}=\mathrm{P}_{S(u) v} \\
& \sum \mathrm{~L}_{u_{(1)}} \mathrm{P}_{v} \mathrm{R}_{u_{(2)}}=\mathrm{P}_{v S(u)}, \quad \sum \mathrm{P}_{u_{(1)}} \mathrm{P}_{v} \mathrm{P}_{u_{(2)}}=\sum \mathrm{P}_{u_{(1)} v u_{(2)}}
\end{aligned}
$$

\& cyclic permutations of them $\mathrm{P}_{u} \xrightarrow{\rho} \mathrm{~L}_{u} \xrightarrow{\rho} \mathrm{R}_{u} \xrightarrow{\rho} \mathrm{P}_{u}$

Hopf Algebras With Triality \& Moufang Hopf Algebras, the Map $\mathrm{U} \mapsto \mathscr{D}(\mathrm{U})$

U: cocommutative Moufang-Hopf algebra
$\mathfrak{D}(\mathrm{U})$: unital associative algebra generated by $\left\{\mathrm{L}_{u}, \mathrm{R}_{u}, \mathrm{P}_{u} \mid u \in \mathrm{U}\right\}$ where $\mathrm{P}_{1}=1, \quad \mathrm{P}_{\alpha u+\beta v}=\alpha \mathrm{P}_{u}+\beta \mathrm{P}_{v}$ and

$$
\begin{aligned}
& \sum \mathrm{P}_{u_{(1)}} \mathrm{L}_{u_{(2)}} \mathrm{R}_{u_{(3)}}=\epsilon(u) 1, \quad \sum \mathrm{R}_{u_{(1)}} \mathrm{P}_{v} \mathrm{~L}_{u_{(2)}}=\mathrm{P}_{S(u) v} \\
& \sum \mathrm{~L}_{u_{(1)}} \mathrm{P}_{v} \mathrm{R}_{u_{(2)}}=\mathrm{P}_{v S(u)}, \quad \sum \mathrm{P}_{u_{(1)}} \mathrm{P}_{v} \mathrm{P}_{u_{(2)}}=\sum \mathrm{P}_{u_{(1)} v u_{(2)}}
\end{aligned}
$$

\& cyclic permutations of them $\mathrm{P}_{u} \xrightarrow{\rho} \mathrm{~L}_{u} \xrightarrow{\rho} \mathrm{R}_{u} \xrightarrow{\rho} \mathrm{P}_{u}$

Thm. ($\mathrm{B}, \mathrm{M}, \mathrm{P}-\mathrm{I}$) $\mathfrak{D}(\mathrm{U})$ with ρ (above) and σ given by $\mathrm{P}_{u} \xrightarrow{\sigma} \mathrm{P}_{S(u)}, \quad \mathrm{L}_{u} \xrightarrow{\sigma} \mathrm{R}_{S(u)}, \quad \mathrm{R}_{u} \xrightarrow{\sigma} \mathrm{~L}_{S(u)}$ is a Hopf algebra with triality.

The Map IV

$$
\mathcal{L}(\mathfrak{m}) \longleftarrow \mathfrak{m}
$$

The Map $\mathrm{H} \mapsto \mathfrak{M}(\mathrm{H})$

Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

The Map $\mathrm{H} \mapsto \mathfrak{M}(\mathrm{H})$

Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

$$
T(x)=\sum x_{(1)}^{\sigma} S\left(x_{(2)}\right) \quad \text { for } \quad x \in \mathrm{H}
$$

The Map $\mathrm{H} \mapsto \mathfrak{M}(\mathrm{H})$

Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

$$
T(x)=\sum x_{(1)}^{\sigma} S\left(x_{(2)}\right) \quad \text { for } \quad x \in \mathrm{H}
$$

Then $\mathfrak{M}(\mathrm{H})=\{T(x) \mid x \in \mathrm{H}\}$ is a Moufang-Hopf algebra with the coproduct, counit, and antipode inherited from H and with product:

The Map $\mathrm{H} \mapsto \mathfrak{M}(\mathrm{H})$

Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

$$
T(x)=\sum x_{(1)}^{\sigma} S\left(x_{(2)}\right) \quad \text { for } \quad x \in \mathrm{H}
$$

Then $\mathfrak{M}(\mathrm{H})=\{T(x) \mid x \in \mathrm{H}\}$ is a Moufang-Hopf algebra with the coproduct, counit, and antipode inherited from H and with product:

$$
u * v=\sum S\left(u_{(1)}\right)^{\rho^{2}} v S\left(u_{(2)}\right)^{\rho}=\sum S\left(v_{(1)}\right)^{\rho} u S\left(v_{(2)}\right)^{\rho^{2}}
$$

for all $u, v \in \mathfrak{M}(\mathrm{H})$.

The Map V

$$
\mathcal{L}(\mathfrak{m}) \longleftarrow \mathfrak{m}
$$

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$
\imath: \mathrm{U} \rightarrow \mathfrak{M}(\mathfrak{D}(\mathrm{U})), \quad\left(\imath(u)=\mathrm{P}_{u}\right)
$$

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$
\imath: \mathrm{U} \rightarrow \mathfrak{M}(\mathfrak{D}(\mathrm{U})), \quad\left(\imath(u)=\mathrm{P}_{u}\right)
$$

is an isomorphism of Moufang-Hopf algebras.

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$
\imath: \mathrm{U} \rightarrow \mathfrak{M}(\mathfrak{D}(\mathrm{U})), \quad\left(\imath(u)=\mathrm{P}_{u}\right)
$$

is an isomorphism of Moufang-Hopf algebras.

- Thm. (B,M,P-I) Let \mathfrak{m} be a Malcev algebra of char. $\neq 2,3$ (so $\mathfrak{U}(\mathfrak{m})$ is a cocommutative Moufang-Hopf algebra). Then

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$
\imath: \mathrm{U} \rightarrow \mathfrak{M}(\mathfrak{D}(\mathrm{U})), \quad\left(\imath(u)=\mathrm{P}_{u}\right)
$$

is an isomorphism of Moufang-Hopf algebras.

- Thm. (B,M,P-I) Let \mathfrak{m} be a Malcev algebra of char. $\neq 2,3$ (so $\mathfrak{U}(\mathfrak{m})$ is a cocommutative Moufang-Hopf algebra). Then

$$
\mathfrak{D}(\mathfrak{U}(\mathfrak{m})) \cong U(\mathcal{L}(\mathfrak{m}))
$$

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$
\imath: \mathrm{U} \rightarrow \mathfrak{M}(\mathfrak{D}(\mathrm{U})), \quad\left(\imath(u)=\mathrm{P}_{u}\right)
$$

is an isomorphism of Moufang-Hopf algebras.

- Thm. (B,M,P-I) Let \mathfrak{m} be a Malcev algebra of char. $\neq 2,3$ (so $\mathfrak{U}(\mathfrak{m})$ is a cocommutative Moufang-Hopf algebra). Then

$$
\begin{aligned}
\mathfrak{D}(\mathfrak{U}(\mathfrak{m})) & \cong U(\mathcal{L}(\mathfrak{m})) \\
\mathfrak{U}(\mathfrak{m}) & \cong \mathfrak{M}(\mathrm{U}(\mathcal{L}(\mathfrak{m})))
\end{aligned}
$$

Connections with Universal Enveloping Algebras

- Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$
\imath: \mathrm{U} \rightarrow \mathfrak{M}(\mathfrak{D}(\mathrm{U})), \quad\left(\imath(u)=\mathrm{P}_{u}\right)
$$

is an isomorphism of Moufang-Hopf algebras.

- Thm. (B,M,P-I) Let \mathfrak{m} be a Malcev algebra of char. $\neq 2,3$ (so $\mathfrak{U}(\mathfrak{m})$ is a cocommutative Moufang-Hopf algebra). Then

$$
\begin{aligned}
\mathfrak{D}(\mathfrak{U}(\mathfrak{m})) & \cong U(\mathcal{L}(\mathfrak{m})) \\
\mathfrak{U}(\mathfrak{m}) & \cong \mathfrak{M}(U(\mathcal{L}(\mathfrak{m})))
\end{aligned}
$$

- Remark. (Shestakov-Pérez-Izquierdo ('04)) \mathfrak{m} is a Lie algebra $\Longrightarrow \mathfrak{U}(\mathfrak{m})=U(\mathfrak{m})$.

Nichols Algebra N

generators: $\quad g, x_{i}(i=1, \ldots, n)$

Nichols Algebra N

generators: $g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

Nichols Algebra N

generators: $\quad g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\Delta(g)=g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g
$$

Nichols Algebra N

generators: $\quad g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\begin{aligned}
\Delta(g) & =g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g \\
\Delta\left(x_{i}\right) & =x_{i} \otimes g+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=-x_{i} g
\end{aligned}
$$

Nichols Algebra N

generators: $\quad g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\begin{aligned}
\Delta(g) & =g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g \\
\Delta\left(x_{i}\right) & =x_{i} \otimes g+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=-x_{i} g
\end{aligned}
$$

$\operatorname{Aut}(N)=G L_{n}(\mathbb{F}), \quad a=\left(a_{i, j}\right) \in G L_{n}(\mathbb{F})$ where

Nichols Algebra N

generators: $g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\begin{aligned}
\Delta(g) & =g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g \\
\Delta\left(x_{i}\right) & =x_{i} \otimes g+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=-x_{i} g
\end{aligned}
$$

$\operatorname{Aut}(N)=G L_{n}(\mathbb{F}), \quad a=\left(a_{i, j}\right) \in G L_{n}(\mathbb{F})$ where

$$
\phi_{\mathrm{a}}(g)=g, \quad \phi_{\mathrm{a}}\left(x_{i}\right)=\sum_{j} \mathrm{a}_{i, j} x_{j}
$$

Nichols Algebra N

generators: $g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\begin{aligned}
\Delta(g) & =g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g \\
\Delta\left(x_{i}\right) & =x_{i} \otimes g+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=-x_{i} g
\end{aligned}
$$

$\operatorname{Aut}(N)=G L_{n}(\mathbb{F}), \quad a=\left(a_{i, j}\right) \in G L_{n}(\mathbb{F})$ where

$$
\phi_{\mathrm{a}}(g)=g, \quad \phi_{\mathrm{a}}\left(x_{i}\right)=\sum_{j} \mathrm{a}_{i, j} x_{j}
$$

σ, ρ block diagonal w.r.t. $\left\{x_{i} \mid i=1, \ldots, n\right\}$ with blocks

Nichols Algebra N

generators: $g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\begin{aligned}
\Delta(g) & =g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g \\
\Delta\left(x_{i}\right) & =x_{i} \otimes g+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=-x_{i} g
\end{aligned}
$$

$\operatorname{Aut}(N)=G L_{n}(\mathbb{F}), \quad a=\left(a_{i, j}\right) \in G L_{n}(\mathbb{F})$ where

$$
\phi_{\mathrm{a}}(g)=g, \quad \phi_{\mathrm{a}}\left(x_{i}\right)=\sum_{j} \mathrm{a}_{i, j} x_{j}
$$

σ, ρ block diagonal w.r.t. $\left\{x_{i} \mid i=1, \ldots, n\right\}$ with blocks

$$
\begin{array}{llll}
\sigma: & (1) & (-1) & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\rho: & (1) & (1) & \left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right) \quad \omega^{3}=1
\end{array}
$$

Nichols Algebra N

generators: $g, x_{i}(i=1, \ldots, n)$
relations: $\quad g^{2}=1, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i}=x_{i} g$

$$
\begin{aligned}
\Delta(g) & =g \otimes g, \quad \epsilon(g)=1, \quad S(g)=g^{-1}=g \\
\Delta\left(x_{i}\right) & =x_{i} \otimes g+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=-x_{i} g
\end{aligned}
$$

$\operatorname{Aut}(N)=G L_{n}(\mathbb{F}), \quad a=\left(a_{i, j}\right) \in G L_{n}(\mathbb{F})$ where

$$
\phi_{\mathrm{a}}(g)=g, \quad \phi_{\mathrm{a}}\left(x_{i}\right)=\sum_{j} \mathrm{a}_{i, j} x_{j}
$$

σ, ρ block diagonal w.r.t. $\left\{x_{i} \mid i=1, \ldots, n\right\}$ with blocks

$$
\begin{array}{llll}
\sigma: & (1) & (-1) & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\rho: & (1) & (1) & \left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right) \quad \omega^{3}=1
\end{array}
$$

Chm. (Madariaga) N is a non-cocomm. Hopf alg. with triality.

