Enumeration of nilpotent loops of order 2q, up to isotopy

Lucien Clavier

August 15, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $q \geq 3$ a prime throughout.

Theorem (Daly-Vojtěchovský 09) $\mathcal{N}(2q) = \sum_{d \text{ divides } q-1} \frac{1}{d} \left(2^{(q-2)d} + \sum_{D \subset \operatorname{Pred}(d)} (-1)^{|D|} 2^{(q-2) \operatorname{gcd}(D)} \right)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

 $q \geq 3$ a prime throughout.

Theorem (Daly-Vojtěchovský 09) $\mathcal{N}(2q) = \sum_{d \text{ divides } q-1} \frac{1}{d} \left(2^{(q-2)d} + \sum_{D \subset \operatorname{Pred}(d)} (-1)^{|D|} 2^{(q-2) \operatorname{gcd}(D)} \right)$ In particular $\mathcal{N}(2q) \sim \frac{2^{(q-2)(q-1)}}{q-1}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

 $q \geq 3$ a prime throughout.

Theorem (Daly-Vojtěchovský 09) $\mathcal{N}(2q) = \sum_{d \text{ divides } q-1} \frac{1}{d} \left(2^{(q-2)d} + \sum_{D \subset \mathsf{Pred}(d)} (-1)^{|D|} 2^{(q-2)\gcd(D)} \right)$ In particular $\mathcal{N}(2q) \sim \frac{2^{(q-2)(q-1)}}{q-1}$

Theorem (Clavier 12) $\widetilde{\mathcal{N}}(2q) = \mathcal{N}(2q) + \frac{1}{q^2}(-(q+1)2^{(q-2)(q-1)} + (q-2)2^{q-1} + 3)$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 $q \geq 3$ a prime throughout.

Theorem (Daly-Vojtěchovský 09) $\mathcal{N}(2q) = \sum_{d \text{ divides } q-1} \frac{1}{d} \left(2^{(q-2)d} + \sum_{D \subset \mathsf{Pred}(d)} (-1)^{|D|} 2^{(q-2)\gcd(D)} \right)$ In particular $\mathcal{N}(2q) \sim \frac{2^{(q-2)(q-1)}}{q-1}$

Theorem (Clavier 12) $\widetilde{\mathcal{N}}(2q) = \mathcal{N}(2q) + \frac{1}{q^2}(-(q+1)2^{(q-2)(q-1)} + (q-2)2^{q-1} + 3)$ In particular $\widetilde{\mathcal{N}}(2q) \sim \frac{2^{(q-2)(q-1)}}{q^2(q-1)}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Nilpotent loops

- Nilpotent loops
- Isomorphy and isotopy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Nilpotent loops
- Isomorphy and isotopy
- Central extension of A by F

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Nilpotent loops
- Isomorphy and isotopy
- Central extension of A by F
- Every nilpotent loop is isomorphic to some Q_θ = F × A equipped with

$$(x,a)(y,b) = (xy, a+b+\theta(x,y))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for some normalized cocycle $\boldsymbol{\theta}$

- Nilpotent loops
- Isomorphy and isotopy
- Central extension of A by F
- Every nilpotent loop is isomorphic to some Q_θ = F × A equipped with

$$(x,a)(y,b) = (xy, a+b+\theta(x,y))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for some normalized cocycle $\boldsymbol{\theta}$

• If order 2q, take $F = \mathbb{Z}/q$, $A = \mathbb{Z}/2$.

Action of Map₀

For all
$$au \in \mathsf{Map}(F, A)$$
 s.t. $au(1) = 0$, form $\widehat{ au}(x, y) = au(xy) - au(x) - au(y)$

)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\widehat{\tau}(x, y)$ is a normalized cocycle

Action of Map₀

For all
$$au \in \mathsf{Map}(F, A)$$
 s.t. $au(1) = 0$, form $\widehat{ au}(x, y) = au(xy) - au(x) - au(y)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\hat{\tau}(x, y)$ is a normalized cocycle

$$egin{aligned} \mathsf{Fact} \ 1: \ \mathcal{Q}_{ heta} \simeq \mathcal{Q}_{ heta + \widehat{ au}} ext{ via } (x, a) \mapsto (x, a + au(x)). \end{aligned}$$

Action of Aut(F, A)

Fact 1: for all au, $Q_{ heta} \simeq Q_{ heta + \widehat{ au}}$.

For all $\alpha \in Aut(F)$, $h \in Aut(A)$, consider

$$(x,y)\mapsto h\left(\theta(\alpha^{-1}(x),\alpha^{-1}(y))\right)$$

Then $Q_{ heta} \simeq Q_{h \, heta(lpha^{-1}, lpha^{-1})}$

Action of Aut(F, A)

Fact 1: for all au, $Q_{ heta} \simeq Q_{ heta + \widehat{ au}}$.

For all $\alpha \in Aut(F)$, $h \in Aut(A)$, consider

$$(x,y)\mapsto h\left(heta(lpha^{-1}(x),lpha^{-1}(y))
ight)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Then $Q_{\theta} \simeq Q_{h\theta(\alpha^{-1},\alpha^{-1})}$ This defines an action of $Aut(F) \times Aut(A)$ compatible with the previous one.

Action of Aut(F, A)

Fact 1: for all au, $Q_{ heta} \simeq Q_{ heta + \widehat{ au}}$.

For all $\alpha \in Aut(F)$, $h \in Aut(A)$, consider

$$(x,y)\mapsto h\left(heta(lpha^{-1}(x),lpha^{-1}(y))
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then $Q_{\theta} \simeq Q_{h\theta(\alpha^{-1},\alpha^{-1})}$ This defines an action of $\operatorname{Aut}(F) \times \operatorname{Aut}(A)$ compatible with the previous one.

Similar action of $Atp(F) \times Aut(A)$?

Action of Atp(F, A)

Fact 1: for all
$$\tau$$
, $Q_{\theta} \simeq Q_{\theta+\hat{\tau}}$.
Fact 2: For $\alpha \in \operatorname{Aut}(F)$, $h \in \operatorname{Aut}(A)$, $Q_{\theta} \simeq Q_{h\theta(\alpha^{-1},\alpha^{-1})}$
For $t = (\alpha, \beta, \gamma) \in \operatorname{Atp}(F)$, $h \in \operatorname{Aut}(A)$,
 $(x, y) \mapsto h\left(\theta(\alpha^{-1}(x), \beta^{-1}(y))\right)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is not normalized.

Action of Atp(F, A)

Fact 1: for all
$$au$$
, $Q_{ heta} \simeq Q_{ heta + \widehat{ au}}$.
Fact 2: For $lpha \in \operatorname{Aut}(F)$, $h \in \operatorname{Aut}(A)$, $Q_{ heta} \simeq Q_{h\theta(lpha^{-1}, lpha^{-1})}$

For
$$t = (\alpha, \beta, \gamma) \in Atp(F)$$
, $h \in Aut(A)$,

$$(x,y)\mapsto h\left(\theta(\alpha^{-1}(x),\beta^{-1}(y))\right)$$

is not normalized.

Compose with the normalizer map N.

Action of Atp(F, A)

Fact 1: for all τ , $Q_{\theta} \simeq Q_{\theta+\widehat{\tau}}$. Fact 2: For $\alpha \in \operatorname{Aut}(F)$, $h \in \operatorname{Aut}(A)$, $Q_{\theta} \simeq Q_{h\theta(\alpha^{-1},\alpha^{-1})}$

For
$$t = (\alpha, \beta, \gamma) \in Atp(F)$$
, $h \in Aut(A)$,

$$(x,y)\mapsto h\left(\theta(\alpha^{-1}(x),\beta^{-1}(y))\right)$$

is not normalized.

Compose with the normalizer map N.

This defines the desired action. It is compatible with the previous ones.

Moreover, θ , μ are in the same orbit $\Rightarrow Q_{\theta} \approx Q_{\mu}$.

Separability

 $heta, \mu$ are in the same orbit $\Rightarrow Q_{\theta} \approx Q_{\mu}$. What about the converse?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Separability

 $heta, \mu$ are in the same orbit $\Rightarrow Q_{ heta} \approx Q_{\mu}$. What about the converse?

Theorem If $Aut(Q_{\theta})$ acts transitively on

$$\{K \leq Z(Q_{\theta}); K \cong A, Q_{\theta}/K \simeq F\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

then θ is isotopy separable.

Separability

Thank you

