Enumeration of nilpotent loops of order $2 q$, up to isotopy

Lucien Clavier

August 15, 2013

Statement of results

$q \geq 3$ a prime throughout.
Theorem (Daly-Vojtěchovský 09)
$\mathcal{N}(2 q)=\sum_{d \text { divides } q-1} \frac{1}{d}\left(2^{(q-2) d}+\sum_{D \subset \operatorname{Pred}(d)}(-1)^{|D|} 2^{(q-2) \operatorname{gcd}(D)}\right)$

Statement of results

$q \geq 3$ a prime throughout.
Theorem (Daly-Vojtěchovský 09)
$\mathcal{N}(2 q)=\sum_{d \text { divides } q-1} \frac{1}{d}\left(2^{(q-2) d}+\sum_{D \subset \operatorname{Pred}(d)}(-1)^{|D|} 2^{(q-2) \operatorname{gcd}(D)}\right)$
In particular $\mathcal{N}(2 q) \sim \frac{2^{(q-2)(q-1)}}{q-1}$

Statement of results

$q \geq 3$ a prime throughout.
Theorem (Daly-Vojtěchovský 09)
$\mathcal{N}(2 q)=\sum_{d \text { divides } q-1} \frac{1}{d}\left(2^{(q-2) d}+\sum_{D \subset \operatorname{Pred}(d)}(-1)^{|D|} 2^{(q-2) \operatorname{gcd}(D)}\right)$
In particular $\mathcal{N}(2 q) \sim \frac{2^{(q-2)(q-1)}}{q-1}$
Theorem (Clavier 12)
$\widetilde{\mathcal{N}}(2 q)=\mathcal{N}(2 q)+\frac{1}{q^{2}}\left(-(q+1) 2^{(q-2)(q-1)}+(q-2) 2^{q-1}+3\right)$

Statement of results

$q \geq 3$ a prime throughout.
Theorem (Daly-Vojtěchovský 09)
$\mathcal{N}(2 q)=\sum_{d \text { divides } q-1} \frac{1}{d}\left(2^{(q-2) d}+\sum_{D \subset \operatorname{Pred}(d)}(-1)^{|D|} 2^{(q-2) \operatorname{gcd}(D)}\right)$
In particular $\mathcal{N}(2 q) \sim \frac{2^{(q-2)(q-1)}}{q-1}$
Theorem (Clavier 12)
$\widetilde{\mathcal{N}}(2 q)=\mathcal{N}(2 q)+\frac{1}{q^{2}}\left(-(q+1) 2^{(q-2)(q-1)}+(q-2) 2^{q-1}+3\right)$
In particular $\widetilde{\mathcal{N}}(2 q) \sim \frac{2^{(q-2)(q-1)}}{q^{2}(q-1)}$

Definitions

- Nilpotent loops

Definitions

- Nilpotent loops
- Isomorphy and isotopy

Definitions

- Nilpotent loops
- Isomorphy and isotopy
- Central extension of A by F

Definitions

- Nilpotent loops
- Isomorphy and isotopy
- Central extension of A by F
- Every nilpotent loop is isomorphic to some $Q_{\theta}=F \times A$ equipped with

$$
(x, a)(y, b)=(x y, a+b+\theta(x, y))
$$

for some normalized cocycle θ

Definitions

- Nilpotent loops
- Isomorphy and isotopy
- Central extension of A by F
- Every nilpotent loop is isomorphic to some $Q_{\theta}=F \times A$ equipped with

$$
(x, a)(y, b)=(x y, a+b+\theta(x, y))
$$

for some normalized cocycle θ

- If order $2 q$, take $F=\mathbb{Z} / q, A=\mathbb{Z} / 2$.

Action of Map_{0}

For all $\tau \in \operatorname{Map}(F, A)$ s.t. $\tau(1)=0$, form

$$
\widehat{\tau}(x, y)=\tau(x y)-\tau(x)-\tau(y)
$$

$\widehat{\tau}(x, y)$ is a normalized cocycle

Action of Map_{0}

For all $\tau \in \operatorname{Map}(F, A)$ s.t. $\tau(1)=0$, form

$$
\widehat{\tau}(x, y)=\tau(x y)-\tau(x)-\tau(y)
$$

$\widehat{\tau}(x, y)$ is a normalized cocycle

Fact 1:
$Q_{\theta} \simeq Q_{\theta+\widehat{\tau}} \operatorname{via}(x, a) \mapsto(x, a+\tau(x))$.

Action of $\operatorname{Aut}(F, A)$

Fact 1: for all $\tau, Q_{\theta} \simeq Q_{\theta+\hat{\tau}}$.
For all $\alpha \in \operatorname{Aut}(F), h \in \operatorname{Aut}(A)$, consider

$$
(x, y) \mapsto h\left(\theta\left(\alpha^{-1}(x), \alpha^{-1}(y)\right)\right)
$$

Then $Q_{\theta} \simeq Q_{h \theta\left(\alpha^{-1}, \alpha^{-1}\right)}$

Action of $\operatorname{Aut}(F, A)$

Fact 1: for all $\tau, Q_{\theta} \simeq Q_{\theta+\widehat{\tau}}$.
For all $\alpha \in \operatorname{Aut}(F), h \in \operatorname{Aut}(A)$, consider

$$
(x, y) \mapsto h\left(\theta\left(\alpha^{-1}(x), \alpha^{-1}(y)\right)\right)
$$

Then $Q_{\theta} \simeq Q_{h \theta\left(\alpha^{-1}, \alpha^{-1}\right)}$
This defines an action of $\operatorname{Aut}(F) \times \operatorname{Aut}(A)$ compatible with the previous one.

Action of $\operatorname{Aut}(F, A)$

Fact 1: for all $\tau, Q_{\theta} \simeq Q_{\theta+\hat{\tau}}$.
For all $\alpha \in \operatorname{Aut}(F), h \in \operatorname{Aut}(A)$, consider

$$
(x, y) \mapsto h\left(\theta\left(\alpha^{-1}(x), \alpha^{-1}(y)\right)\right)
$$

Then $Q_{\theta} \simeq Q_{h \theta\left(\alpha^{-1}, \alpha^{-1}\right)}$
This defines an action of $\operatorname{Aut}(F) \times \operatorname{Aut}(A)$ compatible with the previous one.

Similar action of $\operatorname{Atp}(F) \times \operatorname{Aut}(A)$?

Action of $\operatorname{Atp}(F, A)$

Fact 1: for all $\tau, Q_{\theta} \simeq Q_{\theta+\widehat{\tau}}$.
Fact 2: For $\alpha \in \operatorname{Aut}(F), h \in \operatorname{Aut}(A), Q_{\theta} \simeq Q_{h \theta\left(\alpha^{-1}, \alpha^{-1}\right)}$
For $t=(\alpha, \beta, \gamma) \in \operatorname{Atp}(F), h \in \operatorname{Aut}(A)$,

$$
(x, y) \mapsto h\left(\theta\left(\alpha^{-1}(x), \beta^{-1}(y)\right)\right)
$$

is not normalized.

Action of $\operatorname{Atp}(F, A)$

Fact 1: for all $\tau, Q_{\theta} \simeq Q_{\theta+\widehat{\tau}}$.
Fact 2: For $\alpha \in \operatorname{Aut}(F), h \in \operatorname{Aut}(A), Q_{\theta} \simeq Q_{h \theta\left(\alpha^{-1}, \alpha^{-1}\right)}$
For $t=(\alpha, \beta, \gamma) \in \operatorname{Atp}(F), h \in \operatorname{Aut}(A)$,

$$
(x, y) \mapsto h\left(\theta\left(\alpha^{-1}(x), \beta^{-1}(y)\right)\right)
$$

is not normalized.
Compose with the normalizer map N.

Action of $\operatorname{Atp}(F, A)$

Fact 1: for all $\tau, Q_{\theta} \simeq Q_{\theta+\widehat{\tau}}$.
Fact 2: For $\alpha \in \operatorname{Aut}(F), h \in \operatorname{Aut}(A), Q_{\theta} \simeq Q_{h \theta\left(\alpha^{-1}, \alpha^{-1}\right)}$
For $t=(\alpha, \beta, \gamma) \in \operatorname{Atp}(F), h \in \operatorname{Aut}(A)$,

$$
(x, y) \mapsto h\left(\theta\left(\alpha^{-1}(x), \beta^{-1}(y)\right)\right)
$$

is not normalized.
Compose with the normalizer map N.
This defines the desired action. It is compatible with the previous ones.
Moreover, θ, μ are in the same orbit $\Rightarrow Q_{\theta} \approx Q_{\mu}$.

Separability

θ, μ are in the same orbit $\Rightarrow Q_{\theta} \approx Q_{\mu}$.
What about the converse?

Separability

θ, μ are in the same orbit $\Rightarrow Q_{\theta} \approx Q_{\mu}$.
What about the converse?

Theorem
If Aut $\left(Q_{\theta}\right)$ acts transitively on

$$
\left\{K \leq Z\left(Q_{\theta}\right) ; K \cong A, Q_{\theta} / K \simeq F\right\}
$$

then θ is isotopy separable.

Separability

Thank you

