Mutually Orthogonal Latin Squares: Covering and Packing Analogues

Charles J. Colbourn ${ }^{1}$

${ }^{1}$ School of Computing, Informatics, and Decision Systems Engineering Arizona State University

Mile High Conference, 15 August 2013

Latin Squares

Definition

A latin square of side n (or order n) is an $n \times n$ array in which each cell contains a single symbol from an n-set S, such that each symbol occurs exactly once in each row and exactly once in each column.

Latin Squares

Definition

A latin square of side n (or order n) is an $n \times n$ array in which each cell contains a single symbol from an n-set S, such that each symbol occurs exactly once in each row and exactly once in each column.

1	0	3	4	5	6	7	2
2	3	5	0	6	7	4	1
0	1	2	3	4	5	6	7
3	4	0	7	1	2	5	6
4	5	6	1	7	0	2	3
5	6	7	2	0	3	1	4
6	7	4	5	2	1	3	0
7	2	1	6	3	4	0	5

Latin Squares

Mutually
Orthogonal Latin Squares: Covering and Packing
Analogues
Charles J.
Colbourn

MOLS

- Applying any permutation to the rows yields a latin square.
- The same for columns, and for symbols.

Mutually Orthogonal Latin Squares

Definition
Two latin squares L and L^{\prime} of the same order are orthogonal if $L(a, b)=L(c, d)$ and $L^{\prime}(a, b)=L^{\prime}(c, d)$, implies $a=c$ and $b=d$.
An equivalent definition for orthogonality: Two latin squares of side $n, L=\left(a_{i, j}\right)$ (on symbol set S) and $L^{\prime}=\left(b_{i, j}\right)$ (on symbol set S^{\prime}), are orthogonal if every element in $S \times S^{\prime}$ occurs exactly once among the n^{2} pairs $\left(a_{i, j}, b_{i, j}\right), 1 \leq i, j \leq n$.

A set of latin squares L_{1}, \ldots, L_{m} is mutually orthogonal, or a set of $M O L S$, if for every $1 \leq i<j \leq m, L_{i}$ and L_{j} are orthogonal. These are also referred to as POLS, pairwise orthogonal latin squares.

Mutually Orthogonal Latin Squares

Definition

Two latin squares L and L^{\prime} of the same order are orthogonal if $L(a, b)=L(c, d)$ and $L^{\prime}(a, b)=L^{\prime}(c, d)$, implies $a=c$ and $b=d$.
An equivalent definition for orthogonality: Two latin squares of side $n, L=\left(a_{i, j}\right)$ (on symbol set S) and $L^{\prime}=\left(b_{i, j}\right)$ (on symbol set S^{\prime}), are orthogonal if every element in $S \times S^{\prime}$ occurs exactly once among the n^{2} pairs $\left(a_{i, j}, b_{i, j}\right), 1 \leq i, j \leq n$.
Definition
A set of latin squares L_{1}, \ldots, L_{m} is mutually orthogonal, or a set of $M O L S$, if for every $1 \leq i<j \leq m, L_{i}$ and L_{j} are orthogonal. These are also referred to as POLS, pairwise orthogonal latin squares.

Mutually Orthogonal Latin Squares

Mutually
Orthogonal Latin Squares: Covering and Packing
Analogues
Charles J.
Colbourn

MOLS
IMOLS
Relaxing
Covering Arrays

Orthogonal Arrays

Definition

An orthogonal array $\mathrm{OA}(k, s)$ is a $k \times s^{2}$ array with entries from an s-set S having the property that in any two rows, each (ordered) pair of symbols from S occurs exactly once.

Orthogonal Arrays

Definition

An orthogonal array $\mathrm{OA}(k, s)$ is a $k \times s^{2}$ array with entries from an s-set S having the property that in any two rows, each (ordered) pair of symbols from S occurs exactly once.

Construction Let $\left\{L_{i}: 1 \leq i \leq k\right\}$ be a set of k MOLS on symbols $\{1, \ldots, n\}$. Form $a(k+2) \times n^{2}$ array $A=\left(a_{i j}\right)$ whose columns are $\left(i, j, L_{1}(i, j), L_{2}(i, j), \ldots, L_{k}(i, j)\right)^{T}$ for $1 \leq i, j \leq k$. Then A is an orthogonal array, $O A(k+2, n)$. This process can be reversed to recover k MOLS of side n from an $O A(k+2, n)$, by choosing any two rows of the OA to index the rows and columns of the k squares.

Orthogonal Arrays

Mutually
Orthogonal Latin Squares: Covering and Packing
Analogues
Charles J.
Colbourn

$$
\begin{array}{|llll|}
\hline 1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
\hline
\end{array}
$$

1	2	3	4
3	4	1	2
4	3	2	1
2	1	4	3

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

$$
\left(\begin{array}{l}
1111222233334444 \\
1234123412341234 \\
1234432121433412 \\
1234341243212143 \\
1234214334124321
\end{array}\right)
$$

Transversal Designs

Definition

A transversal design of order or groupsize n, blocksize k, and index λ, denoted $\mathrm{TD}_{\lambda}(k, n)$, is a triple $(V, \mathcal{G}, \mathcal{B})$, where

1. V is a set of $k n$ elements;
2. \mathcal{G} is a partition of V into k classes (the groups), each of size n;
3. \mathcal{B} is a collection of k-subsets of V (the blocks);
4. every unordered pair of elements from V is contained either in exactly one group or in exactly λ blocks, but not both.
When $\lambda=1$, one writes simply $\operatorname{TD}(k, n)$.

Transversal Designs

- Given a TD $(n+1, n)$, delete a group and treat both blocks and groups as lines to get an affine plane of order n. This can be reversed to get a $\operatorname{TD}(n+1, n)$ from an affine plane.
- Given a TD $(n+1, n)$, add a point ∞, treat blocks as lines, and add ∞ to each group to form $n+1$ further lines, to get a projective plane of order n. This can be reversed to get a $\operatorname{TD}(n+1, n)$ from a projective plane.

Transversal Designs

Construction

Let A be an $O A(k, n)$ on the n symbols in X. On
$V=X \times\{1, \ldots, k\}$ (a set of size kn), form a set \mathcal{B} of
k-sets as follows. For $1 \leq j \leq n^{2}$, include
$\left\{\left(a_{i, j}, i\right): 1 \leq i \leq k\right\}$ in \mathcal{B}. Then let \mathcal{G} be the partition of V whose classes are $\{X \times\{i\}: 1 \leq i \leq k\}$. Then $(V, \mathcal{G}, \mathcal{B})$ is a $T D(k, n)$. This process can be reversed to recover an $O A(k, n)$ from a $T D(k, n)$.

Transversal Designs

Mutually
Orthogonal Latin Squares: Covering and Packing
Analogues
Charles J.
Colbourn

1234123412341234
1234432121433412
1234341243212143 1234214334124321
)

MOLS

A TD $(5,4)$ derived from the $\mathrm{OA}(5,4)$. On the element set $\{1,2,3,4\} \times\{1,2,3,4,5\}$, the blocks are

$\{11,12,13,14,15\}$	$\{11,22,23,24,25\}$	$\{11,32,33,34,35\}$	$\{11,42,43,44,45\}$
$\{21,12,43,34,25\}$	$\{21,22,33,44,15\}$	$\{21,32,23,14,45\}$	$\{21,42,13,24,35\}$
$\{31,12,23,44,35\}$	$\{31,22,13,34,45\}$	$\{31,32,43,24,15\}$	$\{31,42,33,14,25\}$
$\{41,12,33,24,45\}$	$\{41,22,43,14,35\}$	$\{41,32,13,44,25\}$	$\{41,42,23,34,15\}$

Mutually Orthogonal Latin Squares

- MOLS are central objects in combinatorics.
- Starting with Euler in 1782, who considered for which sides there exist two MOLS of that side.
- But after hundreds of papers (and hundreds of years), determining $N(n)$, the largest number of MOLS of side n is very far from complete.
- (The smallest unknown value is still $N(10)$.)

Mutually Orthogonal Latin Squares

- $N(n) \leq n-1$; a simple counting argument.
- $N(n)=n-1$ whenever n is a power of a prime; for example, over the finite field \mathbb{F}_{q}, consider the q^{2} linear polynomials evaluated at the $q+1$ points from $\mathbb{F}_{q} \cup\{\infty\}$.
- $N(n m) \geq \min (N(n), N(m))$; a simple direct product.
- Recursive constructions: PBD closure, Wilson's constructions.
- Direct constructions: assume symmetries to limit computational search.

Mutually Orthogonal Latin Squares

Current Bounds on $N(n)$ for $n<100$:

	0	1	2	3	4	5	6	7	8	9
0			1	2	3	4	1	6	7	8
10	2	10	5	12	3	4	15	16	3	18
20	4	5	3	22	7	24	4	26	5	28
30	4	30	31	5	4	5	8	36	4	5
40	7	40	5	42	5	6	4	46	8	48
50	6	5	5	52	5	6	7	7	5	58
60	4	60	5	6	63	7	5	66	5	6
70	6	70	7	72	5	7	6	6	6	78
80	9	80	8	82	6	6	6	6	7	88
90	6	7	6	6	6	6	7	96	6	8

Difference Matrices

Definition

Let (G, \odot) be a group of order g. A $(g, k ; \lambda)$-difference matrix is a $k \times g \lambda$ matrix $D=\left(d_{i j}\right)$ with entries from G, so that for each $1 \leq i<j \leq k$, the multiset

$$
\left\{d_{i \ell} \odot d_{j \ell}^{-1}: 1 \leq \ell \leq g \lambda\right\}
$$

(the difference list) contains every element of $G \lambda$ times. When G is abelian, typically additive notation is used, so that differences $d_{i \ell}-d_{j \ell}$ are employed.

Difference Matrices

Mutually
Orthogonal Latin Squares: Covering and Packing Analogues

Charles J. Colbourn

MOLS

$$
B=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 7 & 9 & 12 & 4 & 1 \\
6 & 3 & 14 & 10 & 7 & 13 & 4 \\
10 & 6 & 1 & 11 & 2 & 7 & 12
\end{array}\right) .
$$

Append a column of zeroes to $(B \mid-B)$ to get a (15,$5 ; 1$)-difference matrix.

Difference Matrices and MOLS

- Develop the columns of the difference matrix under the action of G.
- This gives g translates of the difference matrix.
- Add a new row placing the index of the translate in this row, to get a set of $k-1$ MOLS of side g (actually, an $\mathrm{OA}(k+1, g)$).
- So our example gives four MOLS(15).

Incomplete Latin Squares

Definition

An incomplete latin square ILS $\left(n ; b_{1}, b_{2}, \ldots, b_{k}\right)$ is an $n \times n$ array A with entries from an n-set B, together with $B_{i} \subseteq B$ for $1 \leq i \leq k$ where $\left|B_{i}\right|=b_{i}$ and $B_{i} \cap B_{j}=\emptyset$ for $1 \leq i, j \leq k$. Moreover, each cell of A is empty or contains an element of B; the subarrays indexed by $B_{i} \times B_{i}$ are empty (these subarrays are holes); and the elements in row or column b are exactly those of $B \backslash B_{i}$ if $b \in B_{i}$, and of B otherwise.

Incomplete MOLS

Definition

Two incomplete latin squares (ILS $\left(n ; b_{1}, b_{2}, \ldots, b_{s}\right)$) are orthogonal if upon superimposition all ordered pairs in denotes a set of $r \operatorname{ILS}\left(n ; b_{1}, b_{2}, \ldots, b_{s}\right)$ that are pairwise orthogonal.
$r-\operatorname{IMOLS}\left(n ; b_{1}, \ldots, b_{s}\right)$ is equivalent to

1. an incomplete transversal design
$\operatorname{ITD}\left(r+2, n ; b_{1}, \ldots, b_{s}\right) ;$
2. an incomplete orthogonal array

$$
\operatorname{IOA}\left(r+2, n ; b_{1}, \ldots, b_{s}\right)
$$

Quasi-Difference Matrices

Definition

Let G be an abelian group of order n. A
($n, k ; \lambda, \mu ; u$)-quasi-difference matrix (QDM) is a matrix
$Q=\left(q_{i j}\right)$ with k rows and $\lambda(n-1+2 u)+\mu$ columns, with each entry either empty (usually denoted by -) or containing a single element of G. Each row contains exactly λu empty entries, and each column contains at most one empty entry. Furthermore, for each $1 \leq i<j \leq k$, the multiset $\left\{q_{i \ell}-q_{j \ell}: 1 \leq \ell \leq\right.$ $\lambda(n-1+2 u)+\mu$, with $q_{i \ell}$ and $q_{j \ell}$ not empty\} contains every nonzero element of $G \lambda$ times and contains 0μ times.

QDMs and Incomplete OAs

Construction

If a $(n, k ; \lambda, \mu ; u)$-QDM exists and $\mu \leq \lambda$, then an
$I T D_{\lambda}(k, n+u ; u)$ exists. Start with a $(n, k ; \lambda, \mu ; u)$-QDM A over the group G. Append $\lambda-\mu$ columns of zeroes. Then select u elements $\infty_{1}, \ldots, \infty_{u}$ not in G, and replace the empty entries (-), each by one of these infinite symbols, so that ∞_{i} appears exactly once in each row, for $1 \leq i \leq u$. Develop the resulting matrix over the group G (leaving infinite symbols fixed), to obtain a $k \times \lambda\left(n^{2}+2 n u\right)$ matrix T. Then T is an incomplete orthogonal array with k rows and index λ, having $n+u$ symbols and one hole of size u.

A QDM Example

Consider the matrix:

$$
\left(\begin{array}{rrrrrrrrrrrrr}
- & 10 & 1 & 2 & 6 & 3 & 22 & 5 & 7 & 9 & 14 & 18 & 28 \\
0 & 1 & 10 & 20 & 23 & 30 & 35 & 13 & 33 & 16 & 29 & 32 & 21 \\
0 & 26 & 26 & 15 & 8 & 4 & 17 & 19 & 34 & 12 & 31 & 24 & 25 \\
10 & - & 10 & 6 & 2 & 22 & 3 & 7 & 5 & 14 & 9 & 28 & 18 \\
1 & 0 & 26 & 23 & 20 & 35 & 30 & 33 & 13 & 29 & 16 & 21 & 32 \\
26 & 0 & 1 & 8 & 15 & 17 & 4 & 34 & 19 & 31 & 12 & 25 & 24
\end{array}\right) .
$$

Each column $(a, b, c, d, e, f)^{T}$ is replaced by columns $(a, b, c, d, e, f)^{T},(b, c, a, f, d, e)^{T}$, and $(c, a, b, e, f, d)^{T}$ to obtain a $(37,6 ; 1,1 ; 1)$ quasi-difference matrix (QDM). Fill the hole of size 1 in the incomplete OA to establish that $N(38) \geq 4$.

$\mathrm{V}(m, t)$ Vectors

Definition

Let q be a prime power and let $q=m t+1$ for m, t integer.
Let ω be a primitive element of \mathbb{F}_{q}. $\mathrm{A} V(m, t)$ vector is a vector $\left(a_{1}, \ldots, a_{m+1}\right)$ for which, for each $1 \leq k<m$, the differences $\left\{a_{i+k}-a_{i}: 1 \leq i \leq m+1, i+k \neq m+2\right\}$ represent the m cyclotomic classes of $\mathbb{F}_{m t+1}$ (compute subscripts modulo $m+2$).
$V(2,3)$ example: (014)

$\mathrm{V}(m, t)$ Vectors

Construction

A quasi-difference matrix from a $V(m, t)$ vector. Starting with a $V(m, t)$ vector $\left(a_{1}, \ldots, a_{m+1}\right)$, form a single column of length $m+2$ whose first entry is empty, and whose remaining entries are (a_{1}, \ldots, a_{m+1}). Form t columns by multiplying this column by the powers of ω^{m}. From each of these t columns, form $m+2$ columns by taking the $m+2$ cyclic shifts of the column. The result is a $(q, m+2 ; 1,0 ; t)-Q D M$.

Relaxing(?) the Requirements

- Beyond 'incomplete' objects, there are numerous relaxations of MOLS. For example,
- Two latin squares of side n are r-orthogonal ($n \leq r \leq n^{2}$) if their superposition has exactly r distinct ordered pairs.
- Two $n \times m$ latin rectangles are orthogonal if no pair occurs twice in their superposition. (And so to MOLR.)
- etc. etc.
- But we will look here at packing and covering analogues, which can be treated most naturally in the orthogonal array vernacular.

Orthogonal, Packing, and Covering Arrays

Definition

A $k \times N$ array on a set of v symbols is a packing or orthogonal or covering array when in every two rows, each (ordered) pair of symbols occurs at most once or exactly once or at least once.
Then $N \leq v^{2}$ or $N=v^{2}$ or $N \geq v^{2}$.
In the interests of time, we focus on covering arrays, first giving the more standard (and more general) definition.

Covering Array. Definition

- Let N, k, t, and v be positive integers.
- Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma=\{0, \ldots, v-1\}$.
 $\left(c_{i} \in\{1, \ldots, k\}\right)$, and $c_{i} \neq c_{j}$ whenever $\nu_{i} \neq \nu_{j}$, the t-tuple $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ is a t-way interaction.
- The array covers the t-way interaction $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ if, in at least one row ρ of C , the entry in row ρ and column c_{i} is ν_{i} for $1 \leq i \leq t$.
- Array C is a covering array $\mathrm{CA}(N ; t, k, v)$ of strength t when every t-way interaction is covered.

Covering Array. Definition

- Let N, k, t, and v be positive integers.
- Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma=\{0, \ldots, v-1\}$.
- When $\left(\nu_{1}, \ldots, \nu_{t}\right)$ is a t-tuple with $\nu_{i} \in \Sigma$ for $1 \leq i \leq t$, $\left(c_{1}, \ldots, c_{t}\right)$ is a tuple of t column indices
($c_{i} \in\{1, \ldots, k\}$), and $c_{i} \neq c_{j}$ whenever $\nu_{i} \neq \nu_{j}$, the t-tuple $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ is a t-way interaction.

Covering Array. Definition

- Let N, k, t, and v be positive integers.
- Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma=\{0, \ldots, v-1\}$.
- When $\left(\nu_{1}, \ldots, \nu_{t}\right)$ is a t-tuple with $\nu_{i} \in \Sigma$ for $1 \leq i \leq t$, $\left(c_{1}, \ldots, c_{t}\right)$ is a tuple of t column indices $\left(c_{i} \in\{1, \ldots, k\}\right)$, and $c_{i} \neq c_{j}$ whenever $\nu_{i} \neq \nu_{j}$, the t-tuple $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ is a t-way interaction.
- The array covers the t-way interaction $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ if, in at least one row ρ of C , the entry in row ρ and column c_{i} is ν_{i} for $1 \leq i \leq t$.
- Array C is a covering array $\mathrm{CA}(N ; t, k, v)$ of strength t when every t-way interaction is covered.

Covering Array. Example

2	0	1	1	0
0	2	0	1	1
1	0	2	0	1
1	1	0	2	0
0	1	1	0	2
2	1	0	0	1
1	2	1	0	0
0	1	2	1	0
0	0	1	2	1
1	0	0	1	2
2	2	2	2	2
	$C A(11 ; 2,5,3)$			

Mutually
Orthogonal Latin Squares: Covering and Packing Analogues

Charles J.
Colbourn

MOLS

IMOIS
Relaxing
Covering Arrays

Differences, Similarities

- Of course, orthogonal arrays are covering arrays, so they provide useful examples.
- Nevertheless the connections seem relatively weak:
- Orthogonal arrays concerned with "large" v but $k \leq v+1$; indeed typically for very small k
- Covering arrays concerned with "small" v and all k
- Our CA $(11 ; 2,5,3)$ has too many columns to be an orthogonal array!

Differences, Similarities

- Recursive constructions for orthogonal arrays essentially all use arrays with small v to make ones with large v, but
- Recursive constructions for covering arrays essentially all use arrays with small k to make ones with large k.

Differences, Similarities

- IMOLS can lead to the best known covering arrays
- 4-IMOLS(10,2) and CA(6;2,6,2) \Rightarrow CA(102;2,6,10).
- 4 -IMOLS(22,3) and CA(13;2,6,3) $\Rightarrow \mathrm{CA}(488 ; 2,6,22)$.
- 5 -IMOLS $\left(14,2^{7}\right)$ and $C A(6 ; 2,7,2) \Rightarrow C A(210 ; 2,7,14)$.
- 5 -IMOLS $\left(18,2^{9}\right)$ and $\mathrm{CA}(6 ; 2,7,2) \Rightarrow \mathrm{CA}(342 ; 2,7,18)$.
- 5-IMOLS $\left(22,2^{11}\right)$ and $\mathrm{CA}(6 ; 2,7,2) \Rightarrow \mathrm{CA}(506 ; 2,7,22)$.

Differences, Similarities

- "Fusion": We can sacrifice symbols: $\mathrm{CA}\left(q^{2} ; 2, k, q\right)$ $\Rightarrow \mathrm{CA}\left(q^{2}-1-2 x ; 2, k, q-x\right)$ for $1 \leq x<q$.
- "Augmentation": We can adjoin symbols: $\mathrm{CA}\left(q^{2} ; 2, k, q\right)$ and $\mathrm{CA}(M ; 2, k, 2) \Rightarrow$ $\mathrm{CA}\left(q^{2}+(q-1)(M-1) ; 2, k, q+1\right)$.
- "Projection": We can turn symbols into columns: $\mathrm{CA}\left(q^{2} ; 2, k, q\right) \Rightarrow \mathrm{CA}\left(q^{2}-x ; 2, k+x, q-x\right)$ for $1 \leq x<q$ when $k \geq q$.
- These lead to many of the best known constructions for covering arrays with "small" k when v is not a powr of a prime.

Mutually
Orthogonal Latin Squares: Covering and Packing Analogues

Charles J.
Colbourn

Differences, Similarities

- "Fusion": We can sacrifice symbols: CA($\left.q^{2} ; 2, k, q\right)$ $\Rightarrow \mathrm{CA}\left(q^{2}-1-2 x ; 2, k, q-x\right)$ for $1 \leq x<q$.
- "Augmentation": We can adjoin symbols:
$\mathrm{CA}\left(q^{2} ; 2, k, q\right)$ and $\mathrm{CA}(M ; 2, k, 2) \Rightarrow$ $\mathrm{CA}\left(q^{2}+(q-1)(M-1) ; 2, k, q+1\right)$.
- These lead to many of the best known constructions for covering arrays with "small" k when v is not a powr of a prime.

Differences, Similarities

- "Fusion": We can sacrifice symbols: $\mathrm{CA}\left(q^{2} ; 2, k, q\right)$ $\Rightarrow \mathrm{CA}\left(q^{2}-1-2 x ; 2, k, q-x\right)$ for $1 \leq x<q$.
- "Augmentation": We can adjoin symbols:
$\mathrm{CA}\left(q^{2} ; 2, k, q\right)$ and $\mathrm{CA}(M ; 2, k, 2) \Rightarrow$
$\mathrm{CA}\left(q^{2}+(q-1)(M-1) ; 2, k, q+1\right)$.
- "Projection": We can turn symbols into columns: $\mathrm{CA}\left(q^{2} ; 2, k, q\right) \Rightarrow \mathrm{CA}\left(q^{2}-x ; 2, k+x, q-x\right)$ for $1 \leq x<q$ when $k \geq q$.
- These lead to many of the best known constructions for covering arrays with "small" k when v is not a powr of a prime.

Differences, Similarities

- "Fusion": We can sacrifice symbols: CA($\left.q^{2} ; 2, k, q\right)$ $\Rightarrow \mathrm{CA}\left(q^{2}-1-2 x ; 2, k, q-x\right)$ for $1 \leq x<q$.
- "Augmentation": We can adjoin symbols:
$\mathrm{CA}\left(q^{2} ; 2, k, q\right)$ and $\mathrm{CA}(M ; 2, k, 2) \Rightarrow$ $\mathrm{CA}\left(q^{2}+(q-1)(M-1) ; 2, k, q+1\right)$.
- "Projection": We can turn symbols into columns: $\mathrm{CA}\left(q^{2} ; 2, k, q\right) \Rightarrow \mathrm{CA}\left(q^{2}-x ; 2, k+x, q-x\right)$ for $1 \leq x<q$ when $k \geq q$.
- These lead to many of the best known constructions for covering arrays with "small" k when v is not a powr of a prime.

Differences, Similarities

-	0	1	1	0	cyclically permute columns
0	-	0	1	1	
1	0	-	0	1	
1	1	0	-	0	
0	1	1	0	-	
-	1	0	0	1	apply permutation $(01)(-)$
1	-	1	0	0	
0	1	-	1	0	
0	0	1	-	1	
1	0	0	1	-	
-	-	-	-	-	add constant row on symbol -
			$C A(11 ; 2,5,3)-(-011$	$0)$	

Cover Starters

- CA(11;2,5,3) - (- 0110): 1-apart differences are 1, 0,1 ; 2-apart differences are 1, 1, 0.
- In general, for a group Γ, a vector $\left(a_{0}, \ldots, a_{k-1}\right)$ with $a_{i} \in \Gamma \cup\left\{\infty_{1}, \ldots, \infty_{c}\right\}$ so that
- the i-apart differences (for $1 \leq i \leq k / 2$) cover all elements of Γ, and
- for each ∞_{j} and each $1 \leq i<k$ there is an ℓ with $a_{\ell}=\infty_{j}$ and $a_{\ell+i \bmod k} \in \Gamma$,
is a cover starter that produces a covering array on k columns with $|\Gamma|+c$ symbols.
- This leads to many of the best examples of covering arrays for small values of k, but sadly the examples are all found by computer.

CA(N;2,20,10)

- At most 180 is claimed in 1996 by the authors of the commercial software AETG. But the online AETG does 198. So starts a long story ...
- Calvagna and Gargantini (2009) report results from 10 publicly available programs: 193, 197, 201, 210, 210, 212, 220, 231, 267.
- Simulated annealing does better: 183.
- A cover starter over \mathbb{Z}_{9} found by Meagher and Stevens does 181.

CA(N;2,20,10)

- A variant of projection from a projective plane of order 13 does 178.
- From the CA(178;2,20,10), a computational postoptimization method produces 162.
- A cover starter over \mathbb{Z}_{7} found by Lobb, Colbourn, Danziger, Stevens, and Torres does 155.
- But the "truth" might be much lower yet. We just don't know.

What is needed?

- For MOLS, work has slowed: We know that $N(99) \geq 8$. This has been known since 1922. It is plausible that $N(99)$ is 10 , or 50 , or 90 . Indeed what we know arises almost entirely from the finite field case and recursive methods.
- Perhaps we can make more progress on relaxations to covering arrays. MOLS (orthogonal arrays) yield a number of useful directions, but again we are handicapped by having to resort to computation - no reasonable theory for cases with few columns exists.
- What I am hoping is that people will look at other algebraic settings, not necessarily to find more MOLS, but to find reasonable approximations such as covering arrays.

