Pattern Avoidance in Latin Squares

Dan Daly
Southeast Missouri State University
Joint with M. Earnest, A. Godbole, S. Gutekunst

August 15, 2013
Third Mile High Conference on Nonassociative Mathematics
University of Denver Denver, CO

Outline

- Pattern Avoidance in Permutations
- Pattern Avoidance in Latin Squares
- Future Work and Open Questions

Notation: $\pi=6371254$.

Notation: $\pi=6371254$.

Definition

A permutation $\pi \in S_{n}$ contains a permutation $\sigma \in S_{m}$ if there is a subsequence of π order-isomorphic to σ. If π does not contain σ, then π avoids σ.

Notation: $\pi=6371254$.

Definition

A permutation $\pi \in S_{n}$ contains a permutation $\sigma \in S_{m}$ if there is a subsequence of π order-isomorphic to σ. If π does not contain σ, then π avoids σ.

Note: σ is normally referred to as the pattern.

Notation: $\pi=6371254$.

Definition

A permutation $\pi \in S_{n}$ contains a permutation $\sigma \in S_{m}$ if there is a subsequence of π order-isomorphic to σ. If π does not contain σ, then π avoids σ.

Note: σ is normally referred to as the pattern.
Example: $\pi=6371254$

Notation: $\pi=6371254$.

Definition

A permutation $\pi \in S_{n}$ contains a permutation $\sigma \in S_{m}$ if there is a subsequence of π order-isomorphic to σ. If π does not contain σ, then π avoids σ.

Note: σ is normally referred to as the pattern.
Example: $\pi=6371254$ contains 321,

Notation: $\pi=6371254$.

Definition

A permutation $\pi \in S_{n}$ contains a permutation $\sigma \in S_{m}$ if there is a subsequence of π order-isomorphic to σ. If π does not contain σ, then π avoids σ.

Note: σ is normally referred to as the pattern.
Example: $\pi=6371254$ contains 321,

Notation: $\pi=6371254$.

Definition

A permutation $\pi \in S_{n}$ contains a permutation $\sigma \in S_{m}$ if there is a subsequence of π order-isomorphic to σ. If π does not contain σ, then π avoids σ.

Note: σ is normally referred to as the pattern.
Example: $\pi=6371254$ contains 321, but avoids 1234 .

Definition

$A v_{n}(\pi)=\left\{\sigma \in S_{n} \mid \sigma\right.$ avoids $\left.\pi\right\}$

Definition
 $A v_{n}(\pi)=\left\{\sigma \in S_{n} \mid \sigma\right.$ avoids $\left.\pi\right\}$

$A v_{4}(123)=\{1432,2143,2413,2431,3142,3214,3241,3412,3421$, 4132, 4213, 4231, 4312, 4321\}

Definition

$A v_{n}(\pi)=\left\{\sigma \in S_{n} \mid \sigma\right.$ avoids $\left.\pi\right\}$

$$
\begin{aligned}
A v_{4}(123)= & \{1432,2143,2413,2431,3142,3214,3241,3412,3421, \\
& 4132,4213,4231,4312,4321\}
\end{aligned}
$$

Definition

Two patterns π and σ are Wilf-equivalent if $\left|A v_{n}(\pi)\right|=\left|A v_{n}(\sigma)\right|$ for all n.

Definition

$A v_{n}(\pi)=\left\{\sigma \in S_{n} \mid \sigma\right.$ avoids $\left.\pi\right\}$

$$
\begin{aligned}
A v_{4}(123)= & \{1432,2143,2413,2431,3142,3214,3241,3412,3421, \\
& 4132,4213,4231,4312,4321\}
\end{aligned}
$$

Definition

Two patterns π and σ are Wilf-equivalent if $\left|A v_{n}(\pi)\right|=\left|A v_{n}(\sigma)\right|$ for all n.

Wilf-equivalence is an equivalence relation.

Theorem (Simion, Schmidt - 1985)

All permutations of length three are Wilf-equivalent.

Theorem (Simion, Schmidt - 1985)

All permutations of length three are Wilf-equivalent.

Theorem (Simion, Schmidt - 1985)
$\left|A v_{n}(\pi)\right|=\frac{1}{n+1}\binom{2 n}{n}$ for all $\pi \in S_{3}$.

Theorem (Many people)
There are three Wilf-equivalence classes in S_{4}.

Theorem (Many people)
 There are three Wilf-equivalence classes in S_{4}.

Representatives: 1234, 1342 and 1324.

Theorem (Many people)

There are three Wilf-equivalence classes in S_{4}.

Representatives: 1234, 1342 and 1324.
Bona enumerated $A v_{n}(1342)$ in 1997. Gessel enumerated $A v_{n}(1234)$ in 1990.

Theorem (Many people)

There are three Wilf-equivalence classes in S_{4}.

Representatives: 1234, 1342 and 1324.
Bona enumerated $A v_{n}(1342)$ in 1997. Gessel enumerated $A v_{n}(1234)$ in 1990.
$A v_{n}(1324)$ is open!!

Convention: Latin squares of order n are filled with the numbers $1, \ldots, n$.

Convention: Latin squares of order n are filled with the numbers $1, \ldots, n$.

Definition

A Latin square L of order n contains the permutation π if any row or column of L contains π when read left-to-right or top-to-bottom. L avoids π if L does not contain π.

Examples:

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

Examples:

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

4	3	2	1
3	2	1	4
2	1	4	3
1	4	3	2

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

Definition

Define L_{n} to be the set of all latin squares of order n. Define $\operatorname{Av} L_{n}(\pi)=\left\{L \in L_{n} \mid L\right.$ avoids $\left.\pi\right\}$.

Definition

Define L_{n} to be the set of all latin squares of order n. Define $\operatorname{Av} L_{n}(\pi)=\left\{L \in L_{n} \mid L\right.$ avoids $\left.\pi\right\}$.

$$
A v L_{3}(123)=\left\{\begin{array}{l|l|l|}
\hline 3 & 2 & 1 \\
\hline 2 & 1 & 3 \\
\hline 1 & 3 & 2 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 2 & 1 & 3 \\
\hline 1 & 3 & 2 \\
\hline 3 & 2 & 1 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 & 2 \\
\hline 2 & 1 & 3 \\
\hline 3 & 2 & 1 \\
\hline
\end{array}\right\}
$$

How do we determine $\operatorname{Av} L_{n}(\pi)$? Start with an easier problem!

How do we determine $\operatorname{Av} L_{n}(\pi)$? Start with an easier problem!

Definition

L row (column)-avoids π if L avoids π in every row (column).

How do we determine $\operatorname{Av} L_{n}(\pi)$? Start with an easier problem!

Definition

L row (column)-avoids π if L avoids π in every row (column).

Theorem

The number of Latin squares of order n row (column) avoiding $\pi \in S_{3}$ is $n!$.

Flavor of proof:

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

3	2	4	1
			4
			3
			2

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

3	2	4	1
	1		4
	4		3
	3		2

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

3	2	4	1
2	1		4
1	4		3
4	3		2

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

3	2	4	1
2	1	3	4
1	4	2	3
4	3	1	2

Flavor of proof:
For any permutation $\pi \in S_{n}$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

3	2	4	1
2	1	3	4
1	4	2	3
4	3	1	2

Column-avoids 123.

Theorem

For $\pi \in S_{3},\left|\operatorname{AvL} L_{n}(\pi)\right|=n$.

Theorem

For $\pi \in S_{3},\left|\operatorname{AvL_{n}}(\pi)\right|=n$.

Theorem

$$
\begin{aligned}
& A v L_{n}(123)=A v L_{n}(231)=A v L_{n}(312) \text { and } \\
& A v L_{n}(132)=A v L_{n}(213)=A v L_{n}(321) .
\end{aligned}
$$

What about larger patterns?

What about larger patterns?

Theorem

For a fixed n and any $\pi, \sigma \in S_{n},\left|A v L_{n}(\pi)\right|=\left|A v L_{n}(\sigma)\right|$.

Future Work

- Characterize $\operatorname{Av} L_{n}(\pi)$ for $\pi \in S_{4}$ or S_{m} for $m>4$?

Future Work

- Characterize $\operatorname{Av} L_{n}(\pi)$ for $\pi \in S_{4}$ or S_{m} for $m>4$?
- Enumerate or determine the asymptotics for $\left|A v L_{n}(\pi)\right|$.

Future Work

- Characterize $\operatorname{Av} L_{n}(\pi)$ for $\pi \in S_{4}$ or S_{m} for $m>4$?
- Enumerate or determine the asymptotics for $\left|A v L_{n}(\pi)\right|$.
- Avoidance of one set of permutations in rows and a different set of permutations in the columns.

Future Work

- Characterize $\operatorname{Av} L_{n}(\pi)$ for $\pi \in S_{4}$ or S_{m} for $m>4$?
- Enumerate or determine the asymptotics for $\left|A v L_{n}(\pi)\right|$.
- Avoidance of one set of permutations in rows and a different set of permutations in the columns.
- Other definitions of avoidance.

Future Work

- Characterize $\operatorname{Av} L_{n}(\pi)$ for $\pi \in S_{4}$ or S_{m} for $m>4$?
- Enumerate or determine the asymptotics for $\left|A v L_{n}(\pi)\right|$.
- Avoidance of one set of permutations in rows and a different set of permutations in the columns.
- Other definitions of avoidance.

Thank You!

