Pattern Avoidance in Latin Squares

Dan Daly

Southeast Missouri State University Joint with M. Earnest, A. Godbole, S. Gutekunst

August 15, 2013 Third Mile High Conference on Nonassociative Mathematics University of Denver Denver, CO

Outline

- Pattern Avoidance in Permutations
- Pattern Avoidance in Latin Squares
- Future Work and Open Questions

Pattern Avoidance in Permutations Pattern Avoidance in Latin Squares Future Work

Notation: $\pi = 6371254$.

Definition

A permutation $\pi \in S_n$ contains a permutation $\sigma \in S_m$ if there is a subsequence of π order-isomorphic to σ . If π does not contain σ , then π avoids σ .

Definition

A permutation $\pi \in S_n$ contains a permutation $\sigma \in S_m$ if there is a subsequence of π order-isomorphic to σ . If π does not contain σ , then π avoids σ .

Note: σ is normally referred to as the pattern.

Definition

A permutation $\pi \in S_n$ contains a permutation $\sigma \in S_m$ if there is a subsequence of π order-isomorphic to σ . If π does not contain σ , then π avoids σ .

Note: σ is normally referred to as the pattern. Example: $\pi = 6371254$

Definition

A permutation $\pi \in S_n$ contains a permutation $\sigma \in S_m$ if there is a subsequence of π order-isomorphic to σ . If π does not contain σ , then π avoids σ .

Note: σ is normally referred to as the pattern. Example: $\pi = 6371254$ contains 321,

Definition

A permutation $\pi \in S_n$ contains a permutation $\sigma \in S_m$ if there is a subsequence of π order-isomorphic to σ . If π does not contain σ , then π avoids σ .

Note: σ is normally referred to as the pattern. Example: $\pi = 6371254$ contains 321,

Definition

A permutation $\pi \in S_n$ contains a permutation $\sigma \in S_m$ if there is a subsequence of π order-isomorphic to σ . If π does not contain σ , then π avoids σ .

Note: σ is normally referred to as the pattern. Example: $\pi = 6371254$ contains 321, but avoids 1234. Pattern Avoidance in Permutations Pattern Avoidance in Latin Squares Future Work

Definition

$$Av_n(\pi) = \{\sigma \in S_n \mid \sigma \text{ avoids } \pi\}$$

 $Av_n(\pi) = \{\sigma \in S_n \mid \sigma \text{ avoids } \pi\}$

 $Av_4(123) = \{1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, \\4132, 4213, 4231, 4312, 4321\}$

 $Av_n(\pi) = \{\sigma \in S_n \mid \sigma \text{ avoids } \pi\}$

 $\begin{array}{l} Av_4(123) = \{1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, \\ & 4132, 4213, 4231, 4312, 4321 \} \end{array}$

Definition

Two patterns π and σ are *Wilf-equivalent* if $|Av_n(\pi)| = |Av_n(\sigma)|$ for all n.

 $Av_n(\pi) = \{\sigma \in S_n \mid \sigma \text{ avoids } \pi\}$

 $\begin{array}{l} Av_4(123) = \{1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, \\ & 4132, 4213, 4231, 4312, 4321 \} \end{array}$

Definition

Two patterns π and σ are *Wilf-equivalent* if $|Av_n(\pi)| = |Av_n(\sigma)|$ for all n.

Wilf-equivalence is an equivalence relation.

Theorem (Simion, Schmidt - 1985)

All permutations of length three are Wilf-equivalent.

Theorem (Simion, Schmidt - 1985)

All permutations of length three are Wilf-equivalent.

Theorem (Simion, Schmidt - 1985)

$$|Av_n(\pi)| = rac{1}{n+1} {2n \choose n}$$
 for all $\pi \in S_3$.

There are three Wilf-equivalence classes in S_4 .

There are three Wilf-equivalence classes in S_4 .

Representatives: 1234, 1342 and 1324.

There are three Wilf-equivalence classes in S_4 .

Representatives: 1234, 1342 and 1324.

Bona enumerated $Av_n(1342)$ in 1997. Gessel enumerated $Av_n(1234)$ in 1990.

There are three Wilf-equivalence classes in S_4 .

Representatives: 1234, 1342 and 1324.

Bona enumerated $Av_n(1342)$ in 1997. Gessel enumerated $Av_n(1234)$ in 1990.

 $Av_n(1324)$ is open!!

Convention: Latin squares of order n are filled with the numbers $1, \ldots, n$.

Convention: Latin squares of order n are filled with the numbers $1, \ldots, n$.

Definition

A Latin square *L* of order *n* contains the permutation π if any row or column of *L* contains π when read left-to-right or top-to-bottom. *L* avoids π if *L* does not contain π . Pattern Avoidance in Permutations Pattern Avoidance in Latin Squares Future Work

Examples:

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

Dan Daly Pattern Avoidance in Latin Squares

Pattern Avoidance in Permutations Pattern Avoidance in Latin Squares Future Work

Examples:

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

4	3	2	1
3	2	1	4
2	1	4	3
1	4	3	2

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

Define L_n to be the set of all latin squares of order n. Define $AvL_n(\pi) = \{L \in L_n \mid L \text{ avoids } \pi\}.$

Define L_n to be the set of all latin squares of order n. Define $AvL_n(\pi) = \{L \in L_n \mid L \text{ avoids } \pi\}.$

How do we determine $AvL_n(\pi)$? Start with an easier problem!

How do we determine $AvL_n(\pi)$? Start with an easier problem!

Definition

L row (column)-avoids π if L avoids π in every row (column).

How do we determine $AvL_n(\pi)$? Start with an easier problem!

Definition

L row (column)-avoids π if L avoids π in every row (column).

Theorem

The number of Latin squares of order n row (column) avoiding $\pi \in S_3$ is n!.

3	2	4	1

3	2	4	1
			4
			3
			2

3	2	4	1
	1		4
	4		3
	3		2

3	2	4	1
2	1		4
1	4		3
4	3		2

3	2	4	1
2	1	3	4
1	4	2	3
4	3	1	2

For any permutation $\pi \in S_n$, there is exactly one Latin square avoiding 123 in the columns with π as its first row.

3	2	4	1
2	1	3	4
1	4	2	3
4	3	1	2

Column-avoids 123.

Theorem

For $\pi \in S_3$, $|AvL_n(\pi)| = n$.

Theorem

For
$$\pi \in S_3$$
, $|AvL_n(\pi)| = n$.

Theorem

$$AvL_n(123) = AvL_n(231) = AvL_n(312)$$
 and
 $AvL_n(132) = AvL_n(213) = AvL_n(321).$

What about larger patterns?

What about larger patterns?

Theorem

For a fixed n and any $\pi, \sigma \in S_n$, $|AvL_n(\pi)| = |AvL_n(\sigma)|$.

• Characterize $AvL_n(\pi)$ for $\pi \in S_4$ or S_m for m > 4?

- Characterize $AvL_n(\pi)$ for $\pi \in S_4$ or S_m for m > 4?
- Enumerate or determine the asymptotics for $|AvL_n(\pi)|$.

- Characterize $AvL_n(\pi)$ for $\pi \in S_4$ or S_m for m > 4?
- Enumerate or determine the asymptotics for $|AvL_n(\pi)|$.
- Avoidance of one set of permutations in rows and a different set of permutations in the columns.

- Characterize $AvL_n(\pi)$ for $\pi \in S_4$ or S_m for m > 4?
- Enumerate or determine the asymptotics for $|AvL_n(\pi)|$.
- Avoidance of one set of permutations in rows and a different set of permutations in the columns.
- Other definitions of avoidance.

- Characterize $AvL_n(\pi)$ for $\pi \in S_4$ or S_m for m > 4?
- Enumerate or determine the asymptotics for $|AvL_n(\pi)|$.
- Avoidance of one set of permutations in rows and a different set of permutations in the columns.
- Other definitions of avoidance.

Pattern Avoidance in Permutations Pattern Avoidance in Latin Squares Future Work

Thank You!