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Gradings

F algebraically closed field of characteristic 0.

G abelian group, A algebra over F.
(Only finite-dimensional algebras will be considered here.)

G -grading on A:

Γ : A =
⊕
g∈G

Ag ,

AgAh ⊆ Ag+h ∀g , h ∈ G .
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Universal group

I Support:
Supp Γ := {g ∈ G : Ag 6= 0}.

I Universal group: This is the group (U(Γ),�) generated by
Supp Γ subject to the relations g � h = g + h for any
g , h ∈ Supp Γ such that g + h ∈ Supp Γ:

U(Γ) := 〈Supp Γ〉/〈g�h�
(
−(g +h)

)
: g , h, g +h ∈ Supp Γ〉.

Γ can then be realized as a grading by U(Γ).
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Example

L = sl2(F) = span
{

e = ( 0 1
0 0 ) , h =

(
1 0
0 −1

)
, f = ( 0 0

1 0 )
}
.

Γ : L = Fe ⊕ Fh ⊕ Ff Z3-grading
↑ ↑ ↑
1̄ 0̄ 2̄

U(Γ) = Z, because [e, e] = [f , f ] = 0.
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Fine gradings

Γ : A =
⊕

g∈G Ag , Γ′ : A =
⊕

g ′∈G ′ A′g ′ , gradings on A.

I Γ is a refinement of Γ′ if for any g ∈ G there is a g ′ ∈ G ′ such
that Ag ⊆ Ag ′ .

Then Γ′ is a coarsening of Γ.

I Γ is fine if it admits no proper refinement.

Remark

Any grading is a coarsening of a fine grading.
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Example: Cartan grading

g = h⊕
(⊕
α∈Φ

gα
)

(root space decomposition of a semisimple complex Lie algebra).

This is a fine grading by ZΦ ' Zn, n = rank g.
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Example: Pauli matrices

A = Matn(F)

X =


1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
...

...
...

. . .
...

0 0 0 . . . εn−1

 Y =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


(ε a primitive nth root of 1)

X n = 1 = Y n, YX = εXY

A =
⊕

(ı̄,̄)∈Zn×Zn

A(ı̄,̄), A(ı̄,̄) = FX iY j .

A becomes a graded division algebra.

This grading induces a fine grading on sln(F):

sln(F) =
⊕

06=(ı̄,̄)∈Zn×Zn

FX iY j .
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Example: Octonions

The Cayley algebra O is obtained from the ground field F by
means of the Cayley-Dickson doubling process:

I K = F⊕ Fi, Z2-graded;

I H = K⊕Kj, Z2
2-graded;

I O = H⊕Hl, Z3
2-graded.

All these are fine gradings.
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Gradings by root systems

Definition (Berman-Moody)

A Lie algebra L over F is graded by the reduced root system Φ, or
Φ-graded, if:

1. L contains as a subalgebra a finite-dimensional semisimple Lie
algebra g = h⊕

(⊕
α∈Φ gα

)
whose root system is Φ relative

to a Cartan subalgebra h = g0;

2. L =
⊕

α∈Φ∪{0} L(α), where
L(α) = {x ∈ L : [h, x ] = α(h)x for all H ∈ h}; and

3. L(0) =
∑

α∈Φ[L(α),L(−α)].

The subalgebra g is said to be a grading subalgebra of L.
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Gradings by root systems

For irreducible Φ, view L as a module for g. As such it is a direct
sum of copies of the adjoint, the little adjoint and the trivial
modules. We may collect isomorphic irreducible g-submodules in L:

L = (g⊗A)⊕ (W ⊗B)⊕D,

where

I the grading subalgebra g is identified with g⊗ 1 for a
distinguished element 1 ∈ A,

I W is 0 if Φ is simply laced, while W is the little adjoint
module (the irreducible g-module whose highest weight is the
highest short root) otherwise,

I D is the centralizer of g ' g⊗ 1, and hence it is a subalgebra
of L.
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Coordinate algebra

The Lie bracket in L induces a multiplication on the sum

a = A⊕ B.

a becomes a unital nonassociative algebra: the coordinate algebra.

Associative, alternative, Jordan and structurable algebras appear as
coordinate algebras.

The elements of the Lie subalgebra D act as derivations on a.
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Example

Let O be the Cayley algebra over F, and let J be a central simple
degree 3 Jordan algebra.

Consider Tits’ construction:

T (O,J ) = derO⊕ (O0 ⊗ J0)⊕ derJ .

Here g = derO is the simple Lie algebra of type G2, W = O0 is its
little adjoint module.

T (O,J ) is graded by the root system G2,
with coordinate algebra J .

Remark

An extension of Tits construction gives, up to isomorphisms, all
G2-graded Lie algebras (Benkart-Zelmanov).
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Nonreduced root systems

Berman-Moody’s definition can be extended to cover nonreduced
root systems, thus considering, in the irreducible case, BCr -graded
Lie algebras (Benkart-Smirnov, Allison-Benkart-Gao).

An extra summand appears in the decomposition into isotypical
components:

L = (g⊗A)⊕ (W ⊗B)⊕ (V ⊗ C)⊕D,

The coordinate algebra is then a = A⊕ B ⊕ C.
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Some properties of fine gradings

Proposition

Let Γ : L =
⊕

g∈G Lg be a fine grading on the simple Lie algebra
L with universal group G . Then:

I The neutral homogeneous component L0 is a toral subalgebra
of L (i.e., adL0 consists of commuting diagonalizable
operators in L).

I The dimension of L0 coincides with the free rank of G .
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Some properties of fine gradings

Proposition (continued)

I Let tor(G ) be the torsion subgroup of G . The coarsening

Γ̄ : L =
⊕

ḡ∈G/ tor(G) L̄ḡ ,

where L̄ḡ =
⊕

h∈tor(G) Lg+h, is the weight space
decomposition of L relative to L0.

That is, for any ḡ ∈ Supp Γ̄, there is a linear form α ∈ L∗0
such that Lḡ equals

L(α) = {x ∈ L : [h, x ] = α(h)x ∀h ∈ L0}.
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where L̄ḡ =
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Root system

Moreover,

Proposition

I The set
Φ = {α ∈ L∗0 \ {0} : L(α) 6= 0}

is a (possibly nonreduced) irreducible root system.

I The map

π : G −→ ZΦ

g 7→ α such that Lg ⊆ L(α),

is a surjective group homomorphism, with ker π = tor(G ).
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Fine gradings and gradings by root systems

Let Γ : L =
⊕

g∈G Lg be a fine grading on the simple Lie algebra
L with universal group G .

Let Φ be the associated root system.

Let G̃ be a complement of tor(G ): G = G̃ ⊕ tor(G ), and
consider the subalgebra

g =
⊕
g∈G̃

Lg .

Theorem

L is graded by the root system Φ with grading subalgebra g.
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Grading on the coordinate algebra

Let Γ : L =
⊕

g∈G Lg be a fine grading on the simple Lie algebra
L with universal group G .

Then Γ induces:

(i) a grading by the irreducible root system Φ,

(ii) a fine grading by tor(G ) on the coordinate algebra a, which
satisfies a0 = F1.
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Examples

The fine gradings on the exceptional simple Lie algebras such that
the free rank of its universal group is ≥ 3 are the following:

I The Cartan gradings on F4, E6, E7 and E8.

I A fine grading on E7 by Z3 × Z3
2 related to a grading by the

root system C3:

e7 = T (O,H3(H)) = derO⊕ (O0 ⊗H3(H)0)⊕ derH3(H).

Here derH3(H) is the simple Lie algebra of type C3, and
H3(H)0 is its little adjoint module.
The coordinate algebra is O, endowed with its Z3

2-grading.
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Examples

I Gradings by Z4 × Zr−5
2 on Er (r = 6, 7, 8) related to gradings

by the root system F4:

er = T (C,H3(O)) = der C ⊕ (C0 ⊗H3(O)0)⊕ derH3(O).

Here derH3(O) is the simple Lie algebra of type F4, and
H3(O)0 is its little adjoint module.
The coordinate algebra is C = K, H or O endowed,
respectively, with its fine grading by Z2, Z2

2 or Z3
2.



Classification of fine gradings

I The fine gradings on simple Lie algebras with infinite universal
groups are thus obtained by combining a grading by a root
system and a ‘special grading’ on the coordinate algebra.

I The classification of the fine gradings on the classical simple
Lie algebras was completed in 2010,

on G2 in 2006 (Draper–Mart́ın-González, and independently
Bahturin–Tvalavadze),

on F4 in 2009 (Draper–Mart́ın-González), and

on E6 in 2012 (Draper–Viruel, preprint).

I A whole bunch of fine gradings has been obtained, using the
relationship of fine gradings and gradings by root systems, for
the exceptional simple Lie algebras E7 and E8, but the
classification of the fine gradings for these Lie algebras is not
yet complete.
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That’s all.
Thanks


	Gradings
	Gradings by root systems
	Fine gradings and gradings by root systems

