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Abstract

We consider latin squares obtained by extending the Cayley tables of finite
abelian groups, and give preliminary results on the existence/nonexistence
of latin squares orthogonal to these.
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Extending the Cayley table of Z6.

The Cayley table of Z6 = {0, 1, 2, 3, 4, 5}.

Extend the symbol set to {0, 1, 2, 3, 4, 5, a}.

0 1 2 3 4 5 a

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
a
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The general construction.

G = {g0, . . . , gm−1}, g0 = 0, an abelian group.

θ : {g1, . . . , gm−1} → {g1, . . . , gm−1} a bijection.

Form a latin square, Extθ(G ; a).

Extθ(G ; a) =


g0 g1 . . . gm−1 a

g1
... A B

gm−1

a C w


The gigj th entry of A is

{ a if θ(gi ) = gj ,
gi + gj if θ(gi ) 6= gj .

The ith entry of B is gi + θ(gi ).

The jth entry of C is gj + θ−1(gj).
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Characterizing θ and w .

Define η by η(gi ) = θ(gi ) + gi .

Lemma

If G has a unique involution δ, then

I w = δ, and

I θ is a near complete mapping of G , i.e., η is a bijection
{g1, . . . , gm−1} → {g0, . . . , gm−1} \ {δ}.

Otherwise
I w = 0, and

I θ is a “complete mapping” of G , i.e., η is a bijection
{g1, . . . , gm−1} → {g1, . . . , gm−1}.
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A transversal in Ext(Z6; a)



0 1 2 3 4 5 a
1 2 3 a 5 0 4
2 3 4 5 a 1 0
3 4 5 0 1 a 2
4 a 0 1 2 3 5
5 0 a 2 3 4 1
a 5 1 4 0 2 3



a) Each row contains one cell of
the transversal.

b) Each column contains one cell of
the transversal.

c) Each symbol appears exactly once
in the transversal.
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Deviations and the ∆- lemma.
Let L be a latin square with rows and columns indexed by the elements
{g0, . . . , gm−1} of an abelian group G .

If cell C is in row gi and column gj , and its entry is gk , then

dev(C ) = gk − (gi + gj).

The ∆-lemma

Let C1, . . . ,Cm be the cells of a transversal of L.

If G has a unique involution δ, then

m∑
i=1

dev(Ci ) = δ.

Otherwise
m∑

i=1

dev(Ci ) = 0.
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Orthogonal latin squares.

A pair of orthogonal latin squares of order 5.
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

 and


0 2 4 1 3
1 3 0 2 4
2 4 1 3 0
3 0 2 4 1
4 1 3 0 2


↘ superimposed ↙

0, 0 1, 2 2, 4 3, 1 4, 3
1, 1 2, 3 3, 0 4, 2 0, 4
2, 2 3, 4 4, 1 0, 3 1, 0
3, 3 4, 0 0, 2 1, 4 2, 1
4, 4 0, 1 1, 3 2, 0 3, 2


Each ordered pair of symbols appears exactly once.
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Orthogonality and transversals.

A pair of orthogonal latin squares of order 5.
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

 and


0 2 4 1 3
1 3 0 2 4
2 4 1 3 0
3 0 2 4 1
4 1 3 0 2


The red entries in the second square are all 0.

The corresponding entries in the first square form a transversal.

Lemma
A latin square has an orthogonal mate if and only its set of cells can be
partitioned by some set of transversals.
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Some new classes of confirmed bachelor squares.

Definition

A bachelor square is a latin square without an orthogonal mate.

It is a confirmed bachelor square if at least one cell is not contained in any
transversal.

Theorem

If G does not have a unique involution, then Ext(G ; a) is a confirmed
bachelor square.

Examples

If m ≡ 0 (mod 4) and G = Z2 × Zm/2, then Ext(G ; a) is a confirmed
bachelor square of order m + 1.

If m is odd and G = Zm, then Ext(G ; a) is a confirmed bachelor
square of order m + 1.
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Proof by example.

Ext(Z7; a) =



0 1 2 3 4 5 6 a
1 a 3 4 5 6 0 2
2 3 a 5 6 0 1 4
3 4 5 a 0 1 2 6
4 5 6 0 a 2 3 1
5 6 0 1 2 a 4 3
6 0 1 2 3 4 a 5
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 19 / 38



Proof by example.

Ext(Z7; a) =



0 1 2 3 4 5 6 a
1 a 3 4 5 6 0 2
2 3 a 5 6 0 1 4
3 4 5 a 0 1 2 6
4 5 6 0 a 2 3 1
5 6 0 1 2 a 4 3
6 0 1 2 3 4 a 5
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 20 / 38



Proof by example.

Ext(Z7; a) =



0 1 2 3 4 5 6 a
1 a 3 4 5 6 0 2
2 3 a 5 6 0 1 4
3 4 5 a 0 1 2 6
4 5 6 0 a 2 3 1
5 6 0 1 2 a 4 3
6 0 1 2 3 4 a 5
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 21 / 38



Proof by example.

Ext(Z7; a) =



0 1 2 3 4 5 6 a
1 a 3 4 5 6 0 2
2 3 a 5 6 0 1 4
3 4 5 a 0 1 2 6
4 5 6 0 a 2 3 1
5 6 0 1 2 a 4 3
6 0 1 2 3 4 a 5
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 22 / 38



Proof by example.

Ext(Z7; a) =



0 a 1 2 3 4 5 6
1 2 a 3 4 5 6 0
2 4 3 a 5 6 0 1
3 6 4 5 a 0 1 2
4 1 5 6 0 a 2 3
5 3 6 0 1 2 a 4
6 5 0 1 2 3 4 a
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.

Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 23 / 38



Proof by example.

Ext(Z7; a) =



0 a 1 2 3 4 5 6
1 2 a 3 4 5 6 0
2 4 3 a 5 6 0 1
3 6 4 5 a 0 1 2
4 1 5 6 0 a 2 3
5 3 6 0 1 2 a 4
6 5 0 1 2 3 4 a
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 23 / 38



Proof by example.

Ext(Z7; a) =



0 a 0 0 0 0 0 0
1 1 a 0 0 0 0 0
2 2 0 a 0 0 0 0
3 3 0 0 a 0 0 0
4 4 0 0 0 a 0 0
5 5 0 0 0 0 a 0
6 6 0 0 0 0 0 a
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.

The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 24 / 38



Proof by example.

Ext(Z7; a) =



0 a 0 0 0 0 0 0
1 1 a 0 0 0 0 0
2 2 0 a 0 0 0 0
3 3 0 0 a 0 0 0
4 4 0 0 0 a 0 0
5 5 0 0 0 0 a 0
6 6 0 0 0 0 0 a
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.

This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 24 / 38



Proof by example.

Ext(Z7; a) =



0 a 0 0 0 0 0 0
1 1 a 0 0 0 0 0
2 2 0 a 0 0 0 0
3 3 0 0 a 0 0 0
4 4 0 0 0 a 0 0
5 5 0 0 0 0 a 0
6 6 0 0 0 0 0 a
a 2 4 6 1 3 5 0


Suppose there is a transversal through the “a” in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.
Compute deviations.
The transversal must contain exactly one cell from each column and the
deviations must add to 0.
This is impossible: a contradiction.

Anthony B. Evans (Wright State University) Latin squares 24 / 38



Some bachelor/monogamous squares?

Definition

A monogamous square is a latin square that has an orthogonal mate, but
is not contained in a set of three pairwise orthogonal latin squares.

Theorem

If G has a unique involution, then Extθ(G ; a) is a either a bachelor square
or a monogamous square.

Question

For which θ is Extθ(G ; a) a bachelor square; for which a monogamous
square?
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Some partial transversals.



0 . . . θ(δ) . . . δ . . . . . . a
...

...
...

...
θ−1(δ) . . . . . . a . . . . . . δ + θ−1(δ)

...
...

...
δ . . . a
...

...
...

... a . . . 0
...

...
...

a δ + θ(δ) 0 δ


Any transversal through the red a must pass through the red δ + θ−1(δ).
Any transversal through the blue a must pass through the blue δ + θ(δ).
Any transversal through the green δ must pass through the green a.
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...

...
...

...
θ−1(δ) . . . . . . a . . . . . . δ + θ−1(δ)

...
...

...
δ . . . a
...

...
...

... a . . . 0
...

...
...

a δ + θ(δ) 0 δ


Any transversal through the red a must pass through the red δ + θ−1(δ).
Any transversal through the blue a must pass through the blue δ + θ(δ).
Any transversal through the green δ must pass through the green a.

Anthony B. Evans (Wright State University) Latin squares 30 / 38



Some partial transversals.



0 . . . θ(δ) . . . δ . . . . . . a
...

...
...

...
θ−1(δ) . . . . . . a . . . . . . δ + θ−1(δ)

...
...

...
δ . . . a
...

...
...

... a . . . 0
...

...
...

a δ + θ(δ) 0 δ


Any transversal through the red a must pass through the red δ + θ−1(δ).
Any transversal through the blue a must pass through the blue δ + θ(δ).
Any transversal through the green δ must pass through the green a.
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Some more partial transversals.

0 . . . θ(gs) . . . gj . . . a
...

...
...

...

gs . . . a
...

...
...

...
...

gi . . . . . . . . . . . . gi + θ(gi )
...

...
...

a . . . . . . . . . gj + θ−1(gj) . . . δ


If the three red entries are on the same transversal, then

θ(gi ) + θ−1(gj) = gs + θ(gs) + δ.

θ(gi ), θ
−1(gj), gs + θ(gs) + δ ∈ {g0, . . . , gm−1} \ {0, δ}.
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If the three red entries are on the same transversal, then

θ(gi ) + θ−1(gj) = gs + θ(gs) + δ.
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An example: Ext(Z4; a)


0 1 2 3 a

1 2 a 0 3
2 3 0 a 1
3 a 1 2 0

a 0 3 1 2



θ(gi ), θ
−1(gj), gs + θ(gs) + δ ∈ {1, 3}.

Hence
θ(gi ) + θ−1(gj) 6= gs + θ(gs) + δ.
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An example: Ext(Z6; a)



0 1 2 3 4 5 a

1 2 3 a 5 0 4
2 3 4 5 a 1 0
3 4 5 0 1 a 2
4 a 0 1 2 3 5
5 0 a 2 3 4 1

a 5 1 4 0 2 3


If this square has an orthogonal mate, then the red cells must be on the
same transversal, the blue cells must be on the same transversal, and the
green cells must be on the same transversal.

Further, the cyan cells must be on the same transversal, and the yellow
cells must be on the same transversal.

We cannot add more transversals: this is a bachelor square.
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An example: Ext(Z6; a)



0 1 2 3 4 5 a

1 2 3 a 5 0 4
2 3 4 5 a 1 0
3 4 5 0 1 a 2
4 a 0 1 2 3 5
5 0 a 2 3 4 1

a 5 1 4 0 2 3
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An example: Ext(Z6; a)



0 1 2 3 4 5 a

1 2 3 a 5 0 4
2 3 4 5 a 1 0
3 4 5 0 1 a 2
4 a 0 1 2 3 5
5 0 a 2 3 4 1

a 5 1 4 0 2 3


If this square has an orthogonal mate, then the red cells must be on the
same transversal, the blue cells must be on the same transversal, and the
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An example: Ext(Z8; a)



0 1 2 3 4 5 6 7 a

1 2 3 4 a 6 7 0 5
2 3 4 5 6 a 0 1 7
3 4 5 6 7 0 a 2 1
4 5 6 7 0 1 2 a 3
5 a 7 0 1 2 3 4 6
6 7 a 1 2 3 4 5 0
7 0 1 a 3 4 5 6 2

a 6 0 2 5 7 1 3 4


If this square has an orthogonal mate, then cells of the same color must be
on the same transversal.

Have not determined yet if these partial transversals all complete to
transversals.
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An example: Ext(Z8; a)



0 1 2 3 4 5 6 7 a

1 2 3 4 a 6 7 0 5
2 3 4 5 6 a 0 1 7
3 4 5 6 7 0 a 2 1
4 5 6 7 0 1 2 a 3
5 a 7 0 1 2 3 4 6
6 7 a 1 2 3 4 5 0
7 0 1 a 3 4 5 6 2

a 6 0 2 5 7 1 3 4


If this square has an orthogonal mate, then cells of the same color must be
on the same transversal.

Have not determined yet if these partial transversals all complete to
transversals.
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A generalization.

Ext(G ; a1, . . . , an) =



g0 g1 . . . gm−1 a1 . . . an

g1
... A B

gm−1

a1
... C D
an


The gigj th entry in A is either gi + gj or one of a1, . . . , an.

There are several choices for B, C , and D.
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