Irreductible Representation of Jordan Superlgebras Kan(n)

Olmer Folleco Solarte

Third Mile High Conference on Nonassociative Mathematics
Denver, USA

Jordan Superalgebra

Jordan algebras appear in 1934:
On an Algebraic Generalization of the Quantum Mechanical Formalism, de P. Jordan, J. V. Neumann e E. Wigner [Ann. of Math. (2)35(1934), no. 1, 29-64].

A Jordan algebra is a vector space J over a field F with a binary bilinear operation $(x, y) \rightarrow x y$ satisfying the folowing identities:

Jordan Superalgebra

Jordan algebras appear in 1934:

On an Algebraic Generalization of the Quantum Mechanical Formalism, de P. Jordan, J. V. Neumann e E. Wigner [Ann. of Math. (2)35(1934), no. 1, 29-64].

A Jordan algebra is a vector space J over a field F with a binary bilinear operation $(x, y) \rightarrow x y$ satisfying the folowing identities:
$x y=y x$
$\left(x^{2} y\right) x=x^{2}(y x)$

Jordan Superalgebra

Jordan algebras appear in 1934:

On an Algebraic Generalization of the Quantum Mechanical Formalism, de P. Jordan, J. V. Neumann e E. Wigner [Ann. of Math. (2)35(1934), no. 1, 29-64].

A Jordan algebra is a vector space J over a field F with a binary bilinear operation $(x, y) \rightarrow x y$ satisfying the folowing identities:
$x y=y x$
$\left(x^{2} y\right) x=x^{2}(y x)$

Jordan Superalgebra

Jordan superalgebras (1972):
I. Kaplansky, Superalgebras [Pacific J. Math. 86(1980), no. 1, 93-98], and
V. G Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras [Comm. Algebra 5 (1977), no. 13, 1375-1400]

A Jordan superalgebra is a \mathbb{Z}_{2}-graded algebra $J=J_{\overline{0}}+J_{\overline{1}}$ satisfiying the graded identities:

Jordan Superalgebra

Jordan superalgebras (1972):
I. Kaplansky, Superalgebras [Pacific J. Math. 86(1980), no. 1, 93-98], and
V. G Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras [Comm. Algebra 5 (1977), no. 13, 1375-1400]

A Jordan superalgebra is a \mathbb{Z}_{2}-graded algebra $J=J_{\overline{0}}+J_{\overline{1}}$ satisfiying the graded identities:
$x y=(-1)^{|x||y|} y x$
$((x y) z) t+(-1)^{|y||z|+|y||t|+|z||t|}((x t) z) y+(-1)^{|x||y|+|x||z|+|x||t|+|z||t|}((y t) z) x=$
$(x y)(z t)+(-1)^{|y||z|}(x z)(y t)+(-1)^{|t|(|y|+|z|)}(x t)(y z)$.
where $|x|=i$ if $x \in J_{i}$

Jordan Superalgebra

Jordan superalgebras (1972):
I. Kaplansky, Superalgebras [Pacific J. Math. 86(1980), no. 1, 93-98], and
V. G Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras [Comm. Algebra 5 (1977), no. 13, 1375-1400]

A Jordan superalgebra is a \mathbb{Z}_{2}-graded algebra $J=J_{\overline{0}}+J_{\overline{1}}$ satisfiying the graded identities:
$x y=(-1)^{|x||y|} y x$
$((x y) z) t+(-1)^{|y||z|+|y||t|+|z||t|}((x t) z) y+(-1)^{|x||y|+|x||z|+|x||t|+|z||t|}((y t) z) x=$
$(x y)(z t)+(-1)^{|y||z|}(x z)(y t)+(-1)^{|t|(|y|+|z|)}(x t)(y z)$.
where $|x|=i$ if $x \in J_{i}$

Jordan Superalgebras examples

- $A=M_{m+n}(F), A_{\overline{0}}=\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right), A_{\overline{1}}=\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)$, and
- $\left.A=Q(n)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in M_{n}(F)$

Are associative superalgebras,

Jordan Superalgebras examples

- $A=M_{m+n}(F), A_{\overline{0}}=\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right), A_{\overline{1}}=\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$, and
- $\left.A=Q(n)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in M_{n}(F)$

Are associative superalgebras,
in the article: C. T. C. Wall, Graded Braver Groups, J. Reine Angew Math. $213(1964) 187-199$, proved that every associative simple finite-dimentional superalgebra over an algebraically closed field is isomorphic to one of them.

Jordan Superalgebras examples

- $A=M_{m+n}(F), A_{\overline{0}}=\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right), A_{\overline{1}}=\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)$, and
- $\left.A=Q(n)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in M_{n}(F)$

Are associative superalgebras,
in the article: C. T. C. Wall, Graded Braver Groups, J. Reine Angew Math. $213(1964) 187-199$, proved that every associative simple finite-dimentional superalgebra over an algebraically closed field is isomorphic to one of them.

- Let A be an associative superalgebra. the new operation $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)$ defines a structure of Jordan superalgebra on A, $A^{(+)}=(A,+, \cdot)$. The Jordan superalgebras that can be obtained as subalgebras of these superalgebras, are called Special and Exceptional otherwise.

Jordan Superalgebras examples

- $A=M_{m+n}(F), A_{\overline{0}}=\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right), A_{\overline{1}}=\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$, and
- $\left.A=Q(n)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in M_{n}(F)$

Are associative superalgebras,
in the article: C. T. C. Wall, Graded Braver Groups, J. Reine Angew Math. $213(1964) 187-199$, proved that every associative simple finite-dimentional superalgebra over an algebraically closed field is isomorphic to one of them.

- Let A be an associative superalgebra. the new operation $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)$ defines a structure of Jordan superalgebra on A, $A^{(+)}=(A,+, \cdot)$. The Jordan superalgebras that can be obtained as subalgebras of these superalgebras, are called Special and Exceptional otherwise.
- If A is an associative superalgebra and $*: A \rightarrow A$ is a superinvolution, $\left(\left(a^{*}\right)^{*}=a,(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*}\right)$, then the set of symetric elements $H(A, *)$ is a subsuperalgebra of $A^{(+)}$.

Jordan Superalgebras examples

- $A=M_{m+n}(F), A_{\overline{0}}=\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right), A_{\overline{1}}=\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)$, and
- $\left.A=Q(n)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in M_{n}(F)$

Are associative superalgebras,
in the article: C. T. C. Wall, Graded Braver Groups, J. Reine Angew Math. $213(1964) 187-199$, proved that every associative simple finite-dimentional superalgebra over an algebraically closed field is isomorphic to one of them.

- Let A be an associative superalgebra. the new operation $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)$ defines a structure of Jordan superalgebra on A, $A^{(+)}=(A,+, \cdot)$. The Jordan superalgebras that can be obtained as subalgebras of these superalgebras, are called Special and Exceptional otherwise.
- If A is an associative superalgebra and $*: A \rightarrow A$ is a superinvolution, $\left(\left(a^{*}\right)^{*}=a,(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*}\right)$, then the set of symetric elements $H(A, *)$ is a subsuperalgebra of $A^{(+)}$.

Jordan Superalgebras examples

- $M_{m+n}^{(+)}, m \geq 1, n \geq 1$.
- $Q(n)^{(+)}, n \geq 2$.

Jordan Superalgebras examples

- $M_{m+n}^{(+)}, m \geq 1, n \geq 1$.
- $Q(n)^{(+)}, n \geq 2$.
- Let I_{n}, I_{m} be the identity matrices, $U=-U^{t}=-U^{-1}=\left(\begin{array}{cc}0 & -I_{m} \\ I_{m} & 0\end{array}\right)$, them:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U
\end{array}\right)\left(\begin{array}{cc}
a^{t} & -c^{t} \\
b^{t} & d^{t}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U^{-1}
\end{array}\right)
$$

is a superinvolution, we will refer to $\operatorname{Josp}_{n, 2 m}(F)=H\left(M_{n+2 m}(F), *\right)$ as the Jordan orthosymplectic superalgebra.

Jordan Superalgebras examples

- $M_{m+n}^{(+)}, m \geq 1, n \geq 1$.
- $Q(n)^{(+)}, n \geq 2$.
- Let I_{n}, I_{m} be the identity matrices, $U=-U^{t}=-U^{-1}=\left(\begin{array}{cc}0 & -I_{m} \\ I_{m} & 0\end{array}\right)$, them:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U
\end{array}\right)\left(\begin{array}{cc}
a^{t} & -c^{t} \\
b^{t} & d^{t}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U^{-1}
\end{array}\right)
$$

is a superinvolution, we will refer to $\operatorname{Josp}_{n, 2 m}(F)=H\left(M_{n+2 m}(F), *\right)$ as the Jordan orthosymplectic superalgebra.

- The associative superalgebra $M_{n+n}(F)$ has another superinvolution:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\sigma}=\left(\begin{array}{cc}
d^{t} & -b^{t} \\
c^{t} & a^{t}
\end{array}\right)
$$

the Jordan superalgebra of symmetric elements are denoted by $J P_{n}(F)=H\left(M_{n+n}(F), \sigma\right)$.

Jordan Superalgebras examples

- $M_{m+n}^{(+)}, m \geq 1, n \geq 1$.
- $Q(n)^{(+)}, n \geq 2$.
- Let I_{n}, I_{m} be the identity matrices, $U=-U^{t}=-U^{-1}=\left(\begin{array}{cc}0 & -I_{m} \\ I_{m} & 0\end{array}\right)$, them:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U
\end{array}\right)\left(\begin{array}{cc}
a^{t} & -c^{t} \\
b^{t} & d^{t}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U^{-1}
\end{array}\right)
$$

is a superinvolution, we will refer to $\operatorname{Josp}_{n, 2 m}(F)=H\left(M_{n+2 m}(F), *\right)$ as the Jordan orthosymplectic superalgebra.

- The associative superalgebra $M_{n+n}(F)$ has another superinvolution:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\sigma}=\left(\begin{array}{cc}
d^{t} & -b^{t} \\
c^{t} & a^{t}
\end{array}\right)
$$

the Jordan superalgebra of symmetric elements are denoted by $J P_{n}(F)=H\left(M_{n+n}(F), \sigma\right)$.

Jordan Superalgebras examples

- The 3-dimentional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication: $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y,[x, y]=e$.
- The 1-parametric family of 4-dimensional superalgebras $D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$, with multiplication: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0$, $e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, i=1,2$.

Jordan Superalgebras examples

- The 3-dimentional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication: $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y,[x, y]=e$.
- The 1-parametric family of 4-dimensional superalgebras $D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$, with multiplication: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0$, $e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, i=1,2$.
- Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a \mathbb{Z}_{2}-graded vector space with a supersymmetric $\operatorname{superform}(\mid): V \times V: \rightarrow F$ and $\left(V_{\overline{0}} \mid V_{\overline{1}}\right)=\left(V_{\overline{1}} \mid V_{\overline{0}}\right)=(0)$. The superalgebra $J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}}$ is Jordan.

Jordan Superalgebras examples

- The 3-dimentional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication: $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y,[x, y]=e$.
- The 1-parametric family of 4-dimensional superalgebras $D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$, with multiplication: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0$, $e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, i=1,2$.
- Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a \mathbb{Z}_{2}-graded vector space with a supersymmetric superform (|):V×V: $\rightarrow F$ and $\left(V_{\overline{0}} \mid V_{\overline{1}}\right)=\left(V_{\overline{1}} \mid V_{\overline{0}}\right)=(0)$. The superalgebra $J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}}$ is Jordan.
- V. Kac introduced the 10-dimensional superalgebra K_{10} that is related (via the TKK construction) to the exceptional 40-dimensional Lie superalgebra.

Jordan Superalgebras examples

- The 3-dimentional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication: $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y,[x, y]=e$.
- The 1-parametric family of 4-dimensional superalgebras $D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$, with multiplication: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0$, $e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, i=1,2$.
- Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a \mathbb{Z}_{2}-graded vector space with a supersymmetric $\operatorname{superform}(\mid): V \times V: \rightarrow F$ and $\left(V_{\overline{0}} \mid V_{\overline{1}}\right)=\left(V_{\overline{1}} \mid V_{\overline{0}}\right)=(0)$. The superalgebra $J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}}$ is Jordan.
- V. Kac introduced the 10 -dimensional superalgebra K_{10} that is related (via the TKK construction) to the exceptional 40-dimensional Lie superalgebra.
- The Jordan superalgebra 2^{n+1}-dimensional $\operatorname{Kan}(n)=J\left(G_{n},\{\},\right)$.

Jordan Superalgebras examples

- The 3-dimentional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication: $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y,[x, y]=e$.
- The 1-parametric family of 4-dimensional superalgebras $D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$, with multiplication: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0$, $e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, i=1,2$.
- Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a \mathbb{Z}_{2}-graded vector space with a supersymmetric $\operatorname{superform}(\mid): V \times V: \rightarrow F$ and $\left(V_{\overline{0}} \mid V_{\overline{1}}\right)=\left(V_{\overline{1}} \mid V_{\overline{0}}\right)=(0)$. The superalgebra $J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}}$ is Jordan.
- V. Kac introduced the 10 -dimensional superalgebra K_{10} that is related (via the TKK construction) to the exceptional 40-dimensional Lie superalgebra.
- The Jordan superalgebra 2^{n+1}-dimensional $\operatorname{Kan}(n)=J\left(G_{n},\{\},\right)$.

Jordan superalgebras classification

In the article:
V. G. Kac, Classification of simple \mathbb{Z}-graded Lie superalgebras and simple Jordan superalgebras[Comm. in Algebra 5(1977),no. 13, 1375-1400].
V. Kac proved tha every simple finite dimentional Jordan superalgebra over a field algebraically closed of characterictic zero is isomorphic to one of the superalgebras above.

Jordan Bimodule

If J is a Jordan superalgebra and V a super-space, then V is a J-bimodule is the split null extention $E(J, V)=J \oplus V$ is Jordan superalgebra.

Reacall that the operation in the split null extention extends the multipliation of J and the action of J on V while the product of two arbitrary elements in V is zero.

Jordan Bimodule

If J is a Jordan superalgebra and V a super-space, then V is a J-bimodule is the split null extention $E(J, V)=J \oplus V$ is Jordan superalgebra.

Reacall that the operation in the split null extention extends the multipliation of J and the action of J on V while the product of two arbitrary elements in V is zero.

We define $R_{a}: V \rightarrow V$ and $L_{a}: V \rightarrow V$ as $R_{a}(v)=v a$ and $L_{a}(v)=a v$

Jordan Bimodule

If J is a Jordan superalgebra and V a super-space, then V is a J-bimodule is the split null extention $E(J, V)=J \oplus V$ is Jordan superalgebra.

Reacall that the operation in the split null extention extends the multipliation of J and the action of J on V while the product of two arbitrary elements in V is zero.

We define $R_{a}: V \rightarrow V$ and $L_{a}: V \rightarrow V$ as $R_{a}(v)=v a$ and $L_{a}(v)=a v$

Classification

In the articles

- C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras I, Trans. Amer. Math. Soc. 362 no.2, 815-846, (2010).
- C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras, Contem. Math. 483, 179-194, (2009).
- C. Martínez and E. Zelmanov, A Kronecker factorization for the exeptional Jordan supealgebra, J. Pure Appl. Algebra 177 no.1, 71-78, (2003).
- C. Martínez and E. Zelmanov, Unital bimodules over the simple Jordan superalgebras $D(t)$, Trans. Amer. Math. Soc. 358 no.8, 3637-3649, (2006).
- C. Martínez and I. Shestakov, Unital irreducible bimodules over M_{1+1}, Preprint.
- M. N. Trushina, Irreducible representation of a certain Jordan superalgebra, J. Algebra Appl. 4 no.1, 1-14, (2005).
- A.S. Shtern, Representation of finite-dimensional Jordan superalgebras of Poisson brackets, Comm. in Algebra 23 no.5, 1815-1823, (1995).
- A.S. Shtern, Representation an exepcional Jordan superalgebras, Funktzional Annal. i Prilozhen 21, 93-94, (1987).
> was done a classification of bimodules over simple finite dimentional Jordan superalgebra over a field algebraically closed of charecterictic zero.

Classification

In the articles

- C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras I, Trans. Amer. Math. Soc. 362 no.2, 815-846, (2010).
- C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras, Contem. Math. 483, 179-194, (2009).
- C. Martínez and E. Zelmanov, A Kronecker factorization for the exeptional Jordan supealgebra, J. Pure Appl. Algebra 177 no.1, 71-78, (2003).
- C. Martínez and E. Zelmanov, Unital bimodules over the simple Jordan superalgebras $D(t)$, Trans. Amer. Math. Soc. 358 no.8, 3637-3649, (2006).
- C. Martínez and I. Shestakov, Unital irreducible bimodules over M_{1+1}, Preprint.
- M. N. Trushina, Irreducible representation of a certain Jordan superalgebra, J. Algebra Appl. 4 no.1, 1-14, (2005).
- A.S. Shtern, Representation of finite-dimensional Jordan superalgebras of Poisson brackets, Comm. in Algebra 23 no.5, 1815-1823, (1995).
- A.S. Shtern, Representation an exepcional Jordan superalgebras, Funktzional Annal. i Prilozhen 21, 93-94, (1987).

was done a classification of bimodules over simple finite dimentional Jordan superalgebra over a field algebraically closed of charecterictic zero.

In this anticles nothing is known about irredutible bimodules over $\operatorname{Kan}(n)$, $n=2,3,4$.

Classification

In the articles

- C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras I, Trans. Amer. Math. Soc. 362 no.2, 815-846, (2010).
- C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras, Contem. Math. 483, 179-194, (2009).
- C. Martínez and E. Zelmanov, A Kronecker factorization for the exeptional Jordan supealgebra, J. Pure Appl. Algebra 177 no.1, 71-78, (2003).
- C. Martínez and E. Zelmanov, Unital bimodules over the simple Jordan superalgebras $D(t)$, Trans. Amer. Math. Soc. 358 no.8, 3637-3649, (2006).
- C. Martínez and I. Shestakov, Unital irreducible bimodules over M_{1+1}, Preprint.
- M. N. Trushina, Irreducible representation of a certain Jordan superalgebra, J. Algebra Appl. 4 no.1, 1-14, (2005).
- A.S. Shtern, Representation of finite-dimensional Jordan superalgebras of Poisson brackets, Comm. in Algebra 23 no.5, 1815-1823, (1995).
- A.S. Shtern, Representation an exepcional Jordan superalgebras, Funktzional Annal. i Prilozhen 21, 93-94, (1987).
was done a classification of bimodules over simple finite dimentional Jordan superalgebra over a field algebraically closed of charecterictic zero.

In this anticles nothing is known about irredutible bimodules over $\operatorname{Kan}(n)$, $n=2,3,4$.

Kantor Superalgebra J(A)

A dot-bracket superalgebra $A=\left(A_{0}+A_{1}, \cdot,\{\},\right)$ is an associative, supercommutative F-superalgebra (A, \cdot) together with a super-skew-symmetric bilinear product $\{$,$\} .$

We created a Kantor superalgebra $J(A)$ via the Kantor doubling process as follows:

Kantor Superalgebra J(A)

A dot-bracket superalgebra $A=\left(A_{0}+A_{1}, \cdot,\{\},\right)$ is an associative, supercommutative F-superalgebra (A, \cdot) together with a super-skew-symmetric bilinear product $\{$,$\} .$

We created a Kantor superalgebra $J(A)$ via the Kantor doubling process as follows:

```
J=A\oplus\overline{A}\mathrm{ , direct sum of F-modules, where }\overline{A}\mathrm{ is just }A\mathrm{ labelled.}
```

Multiplication in $J(A)$ is given by:

Kantor Superalgebra J(A)

A dot-bracket superalgebra $A=\left(A_{0}+A_{1}, \cdot,\{\},\right)$ is an associative, supercommutative F-superalgebra (A, \cdot) together with a super-skew-symmetric bilinear product $\{$,$\} .$

We created a Kantor superalgebra $J(A)$ via the Kantor doubling process as follows:
$J=A \oplus \bar{A}$, direct sum of F-modules, where \bar{A} is just A labelled.
Multiplication in $J(A)$ is given by:

Kantor Superalgebra J(A)

A dot-bracket superalgebra $A=\left(A_{0}+A_{1}, \cdot,\{\},\right)$ is an associative, supercommutative F-superalgebra (A, \cdot) together with a super-skew-symmetric bilinear product $\{$,$\} .$

We created a Kantor superalgebra $J(A)$ via the Kantor doubling process as follows:
$J=A \oplus \bar{A}$, direct sum of F-modules, where \bar{A} is just A labelled.
Multiplication in $J(A)$ is given by:

$$
\begin{gathered}
f \bullet g=f \cdot g, \\
f \bullet \bar{g}=\overline{f \cdot g}, \\
\bar{f} \bullet g=(-1)^{|g|} \mid \cdot g, \\
\bar{f} \bullet \bar{g}=(-1)^{|g|}\{f, g\},
\end{gathered}
$$

$J(A)=J_{0}+J_{1}$, where $J_{0}=A_{0}+\overline{A_{1}}$ and $J_{1}=A_{1}+\overline{A_{0}}$, is a superalgebra supercommutative under this product.

Kantor Superalgebra J(A)

A dot-bracket superalgebra $A=\left(A_{0}+A_{1}, \cdot,\{\},\right)$ is an associative, supercommutative F-superalgebra (A, \cdot) together with a super-skew-symmetric bilinear product $\{$,$\} .$

We created a Kantor superalgebra $J(A)$ via the Kantor doubling process as follows:
$J=A \oplus \bar{A}$, direct sum of F-modules, where \bar{A} is just A labelled.
Multiplication in $J(A)$ is given by:

$$
\begin{gathered}
f \bullet g=f \cdot g \\
f \bullet \bar{g}=\overline{f \cdot g} \\
\bar{f} \bullet g=(-1)^{|g|} \overline{f \cdot g}, \\
\bar{f} \bullet \bar{g}=(-1)^{|g|}\{f, g\},
\end{gathered}
$$

$J(A)=J_{0}+J_{1}$, where $J_{0}=A_{0}+\overline{A_{1}}$ and $J_{1}=A_{1}+\overline{A_{0}}$, is a superalgebra supercommutative under this product.

Jordan Superbracket

Let $A=A_{0}+A_{1}$ be a dot-bracket superalgebra. We call $\{$,$\} a Jordan$ superbracket if:

$$
\{f,(g \cdot h)\}=\{f, g\} \cdot h+(-1)^{|f||g|} g \cdot\{f, h\}-D(f) \cdot g \cdot h,
$$

Jordan Superbracket

Let $A=A_{0}+A_{1}$ be a dot-bracket superalgebra. We call $\{$,$\} a Jordan$ superbracket if:
$\{f,(g \cdot h)\}=\{f, g\} \cdot h+(-1)^{|f||g|} g \cdot\{f, h\}-D(f) \cdot g \cdot h$,
$\{f,\{g, h\}\}-\{\{f, g\}, h\}-(-1)^{|f||g|}\{g,\{f, h\}\}=$
$D(f) \cdot\{g, h\}+(-1)^{|g|(|f|+|h|)} D(g) \cdot\{h, f\}+(-1)^{|h|| | f|+|g||} D(h) \cdot\{f, g\}$

Jordan Superbracket

Let $A=A_{0}+A_{1}$ be a dot-bracket superalgebra. We call $\{$,$\} a Jordan$ superbracket if:

$$
\begin{aligned}
& \{f,(g \cdot h)\}=\{f, g\} \cdot h+(-1)^{|f||g|} g \cdot\{f, h\}-D(f) \cdot g \cdot h, \\
& \begin{array}{l}
\{f,\{g, h\}\}-\{\{f, g\}, h\}-(-1)^{|f||g|}\{g,\{f, h\}\}= \\
D(f) \cdot\{g, h\}+(-1)^{|g|(|f|+|h|)} D(g) \cdot\{h, f\}+(-1)^{|h|(|f|+|g|)} D(h) \cdot\{f, g\}
\end{array}
\end{aligned}
$$

where $D(f)=\{f, 1\}, f, g, h \in A_{0} \cup A_{1}$

Jordan Superbracket

Let $A=A_{0}+A_{1}$ be a dot-bracket superalgebra. We call $\{$,$\} a Jordan$ superbracket if:
$\{f,(g \cdot h)\}=\{f, g\} \cdot h+(-1)^{|f||g|} g \cdot\{f, h\}-D(f) \cdot g \cdot h$,
$\{f,\{g, h\}\}-\{\{f, g\}, h\}-(-1)^{|f||g|}\{g,\{f, h\}\}=$
$D(f) \cdot\{g, h\}+(-1)^{|g|(|f|+|h| \mid} D(g) \cdot\{h, f\}+(-1)^{|h|| | f|+|g||} D(h) \cdot\{f, g\}$
where $D(f)=\{f, 1\}, f, g, h \in A_{0} \cup A_{1}$

Theorem

If A is a bracket superalgebra then $J(A)$ is a Jordan superalgebra if and only if $\{$,$\} is a Jordan superbracket.$

Jordan Superbracket

Let $A=A_{0}+A_{1}$ be a dot-bracket superalgebra. We call $\{$,$\} a Jordan$ superbracket if:
$\{f,(g \cdot h)\}=\{f, g\} \cdot h+(-1)^{|f||g|} g \cdot\{f, h\}-D(f) \cdot g \cdot h$,
$\{f,\{g, h\}\}-\{\{f, g\}, h\}-(-1)^{|f||g|}\{g,\{f, h\}\}=$
$D(f) \cdot\{g, h\}+(-1)^{|g|(|f|+|h| \mid} D(g) \cdot\{h, f\}+(-1)^{|h|| | f|+|g||} D(h) \cdot\{f, g\}$
where $D(f)=\{f, 1\}, f, g, h \in A_{0} \cup A_{1}$

Theorem

If A is a bracket superalgebra then $J(A)$ is a Jordan superalgebra if and only if $\{$,$\} is a Jordan superbracket.$

Grassmann Superalgebra G_{n}

Let G_{n} be the Grassman superalgebra with odd generators $e_{1}, e_{2}, \ldots, e_{n}$, with $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$.

We define an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ with the equalities:

Grassmann Superalgebra G_{n}

Let G_{n} be the Grassman superalgebra with odd generators $e_{1}, e_{2}, \ldots, e_{n}$, with $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$.

We define an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ with the equalities:
$\frac{\partial e_{i}}{\partial e_{j}}=\delta_{i j}$ and $\frac{\partial(u v)}{\partial e_{j}}=\frac{\partial u}{\partial e_{j}} v+(-1)^{|u|} u \frac{\partial v}{\partial e_{j}}$

Grassmann Superalgebra G_{n}

Let G_{n} be the Grassman superalgebra with odd generators $e_{1}, e_{2}, \ldots, e_{n}$, with $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$.

We define an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ with the equalities:
$\frac{\partial e_{i}}{\partial e_{j}}=\delta_{i j}$ and $\frac{\partial(u v)}{\partial e_{j}}=\frac{\partial u}{\partial e_{j}} v+(-1)^{|u|} u \frac{\partial v}{\partial e_{j}}$
and we define and superbracket:

Grassmann Superalgebra G_{n}

Let G_{n} be the Grassman superalgebra with odd generators $e_{1}, e_{2}, \ldots, e_{n}$, with $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$.

We define an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ with the equalities:
$\frac{\partial e_{i}}{\partial e_{j}}=\delta_{i j}$ and $\frac{\partial(u v)}{\partial e_{j}}=\frac{\partial u}{\partial e_{j}} v+(-1)^{|u|} u \frac{\partial v}{\partial e_{j}}$
and we define and superbracket:
$\{f, g\}=(-1)^{|f|} \sum_{i=1}^{n} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{j}}$

Grassmann Superalgebra G_{n}

Let G_{n} be the Grassman superalgebra with odd generators $e_{1}, e_{2}, \ldots, e_{n}$, with $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$.

We define an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ with the equalities:
$\frac{\partial e_{i}}{\partial e_{j}}=\delta_{i j}$ and $\frac{\partial(u v)}{\partial e_{j}}=\frac{\partial u}{\partial e_{j}} v+(-1)^{|u|} u \frac{\partial v}{\partial e_{j}}$
and we define and superbracket:
$\{f, g\}=(-1)^{|f|} \sum_{i=1}^{n} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{j}}$
that is a Jordan superbracket, then $\operatorname{Kan}(n)=J\left(G_{n}\right)$ is a Jordan superalgebra.

Grassmann Superalgebra G_{n}

Let G_{n} be the Grassman superalgebra with odd generators $e_{1}, e_{2}, \ldots, e_{n}$, with $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$.

We define an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ with the equalities:
$\frac{\partial e_{i}}{\partial e_{j}}=\delta_{i j}$ and $\frac{\partial(u v)}{\partial e_{j}}=\frac{\partial u}{\partial e_{j}} v+(-1)^{|u|} u \frac{\partial v}{\partial e_{j}}$
and we define and superbracket:
$\{f, g\}=(-1)^{|f|} \sum_{i=1}^{n} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{j}}$
that is a Jordan superbracket, then $\operatorname{Kan}(n)=J\left(G_{n}\right)$ is a Jordan superalgebra.

Notation

$\operatorname{Kan}(n)$ is generated as vector space by:

$$
e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}} \text { and } \overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}
$$

without forgetting 1 and $\overline{1}$

$$
e_{I}:=e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}} \text { if } I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1,2, \ldots, n\}
$$

$$
\text { so, } \overline{e_{I}}=\overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}, e_{\phi}=1 \text { and } \overline{e_{\phi}}=\overline{1}
$$

Notation

$\operatorname{Kan}(n)$ is generated as vector space by:

$$
e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}} \text { and } \overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}
$$

without forgetting 1 and $\overline{1}$

$$
e_{I}:=e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}} \text { if } I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1,2, \ldots, n\}
$$

so, $\overline{e_{I}}=\overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}, e_{\phi}=1$ and $\overline{e_{\phi}}=\overline{1}$,

$$
e_{i} e_{j}=-e_{j} e_{i}, \text { for } i, j \in I_{n}, i \neq j
$$

If σ is a permutation of the set I, we have $e_{I}=\operatorname{Sgn}(\sigma) e_{\sigma(I)}$.

Notation

$\operatorname{Kan}(n)$ is generated as vector space by:

$$
e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}} \text { and } \overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}
$$

without forgetting 1 and $\overline{1}$

$$
e_{I}:=e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}} \text { if } I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1,2, \ldots, n\}
$$

so, $\overline{e_{I}}=\overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}, e_{\phi}=1$ and $\overline{e_{\phi}}=\overline{1}$,

$$
e_{i} e_{j}=-e_{j} e_{i}, \text { for } i, j \in I_{n}, i \neq j
$$

If σ is a permutation of the set I, we have $e_{I}=\operatorname{Sgn}(\sigma) e_{\sigma(I)}$.

Multiplication

If $I=\left\{i_{1}, \ldots i_{k}\right\}$ and $J=\left\{j_{1}, \ldots j_{s}\right\}$:

$$
\begin{gathered}
e_{I} \bullet e_{J}=e_{I} e_{J}=\left\{\begin{array}{cll}
e_{I \cup J} & \text { if } & I \cap J=\phi \\
0 & \text { if } & I \cap J \neq \phi
\end{array}\right. \\
e_{I} \bullet \overline{e_{J}}=\overline{e_{I} e_{J}}=\left\{\begin{array}{cll}
\overline{e_{I \cup J}} & \text { if } & I \cap J=\phi \\
0 & \text { if } & I \cap J \neq \phi
\end{array}\right. \\
\overline{e_{I}} \bullet e_{J}=(-1)^{s} \overline{e_{I} e_{J}}=\left\{\begin{array}{cl}
(-1)^{s} \overline{e_{I \cup J}} & \text { if } \\
0 & \text { if } \\
0 & I \cap J \neq \phi
\end{array}\right.
\end{gathered}
$$

$\overline{e_{I}} \bullet \overline{e_{J}}=(-1)^{s}\left\{e_{I}, e_{J}\right\}=\left\{\begin{array}{cl}(-1)^{s+k+p+q} e_{I^{\prime} \cup J^{\prime}} & \text { if } \quad \begin{array}{l}I \cap J=\left\{i_{p}\right\}=\left\{j_{q}\right\} \\ 0\end{array} \\ \text { otherwise }\end{array}\right.$
where $I^{\prime}=\left\{i_{1}, \ldots, i_{p-1}, i_{p+1}, \ldots, i_{k}\right\}$ and $J^{\prime}=\left\{j_{1}, \ldots, j_{q-1}, j_{q+1}, \ldots, j_{s}\right\}$.

Multiplication

If $I=\left\{i_{1}, \ldots i_{k}\right\}$ and $J=\left\{j_{1}, \ldots j_{s}\right\}$:

$$
\begin{gathered}
e_{I} \bullet e_{J}=e_{I} e_{J}=\left\{\begin{array}{cll}
e_{I \cup J} & \text { if } & I \cap J=\phi \\
0 & \text { if } & I \cap J \neq \phi
\end{array}\right. \\
e_{I} \bullet \overline{e_{J}}=\overline{e_{I} e_{J}}=\left\{\begin{array}{cll}
\overline{e_{I \cup J}} & \text { if } & I \cap J=\phi \\
0 & \text { if } & I \cap J \neq \phi
\end{array}\right. \\
\overline{e_{I}} \bullet e_{J}=(-1)^{s} \overline{e_{I} e_{J}}=\left\{\begin{array}{cl}
(-1)^{s} \overline{e_{I \cup J}} & \text { if } \\
0 & \text { if } \\
0 & I \cap J \neq \phi
\end{array}\right.
\end{gathered}
$$

$\overline{e_{I}} \bullet \overline{e_{J}}=(-1)^{s}\left\{e_{I}, e_{J}\right\}=\left\{\begin{array}{cll}(-1)^{s+k+p+q} e_{I^{\prime} \cup J^{\prime}} & \text { if } & I \cap J=\left\{i_{p}\right\}=\left\{j_{q}\right\} \\ 0 & & \text { otherwise }\end{array}\right.$
where $I^{\prime}=\left\{i_{1}, \ldots, i_{p-1}, i_{p+1}, \ldots, i_{k}\right\}$ and $J^{\prime}=\left\{j_{1}, \ldots, j_{q-1}, j_{q+1}, \ldots, j_{s}\right\}$.

Commutators

$$
\left[R_{x}, R_{y}\right]_{s}=R_{x} R_{y}-(-1)^{|x||y|} R_{y} R_{x} .
$$

Lemma

Given $I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$ index sets contained in $I_{n}=\{1, \ldots, n\}$, then
(- $\left[R_{e_{I}}, R_{e_{J}}\right]_{s}=0$, for all I and J.
(-) $\left[R_{e_{I}}, R_{\overline{e_{J}}}\right]_{s}=0$, if $|J \cap I| \geq 2$.

- $\left[R_{e_{I}}, R_{\overline{1}}\right]=0$, for all $I \neq\{1,2, \ldots, n\}$.
© $\left[R_{\overline{e_{I}}}, R_{\overline{e_{J}}}\right]_{s}=0$, if $I \cap J \neq \phi$.

Commutators

$$
\left[R_{x}, R_{y}\right]_{s}=R_{x} R_{y}-(-1)^{|x||y|} R_{y} R_{x} .
$$

Lemma

Given $I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$ index sets contained in $I_{n}=\{1, \ldots, n\}$, then
(1) $\left[R_{e_{I}}, R_{e_{J}}\right]_{s}=0$, for all I and J.
(3) $\left[R_{e_{I}}, R_{\overline{e_{J}}}\right]_{s}=0$, if $|J \cap I| \geq 2$.
(- $\left[R_{e_{I}}, R_{\overline{1}}\right]=0$, for all $I \neq\{1,2, \ldots, n\}$.

- $\left[R_{\overline{e_{I}}}, R_{\overline{e_{J}}}\right]_{s}=0$, if $I \cap J \neq \phi$.

Operators

Lemma

For $\operatorname{Kan}(n)=\operatorname{Kan}(n)_{0}+\operatorname{Kan}(n)_{1}$ and F such that $\operatorname{Car} F \neq 2$:
(1) If $a \in \operatorname{Kan}(n)_{1}, a=e_{I}$ or $\overline{e_{I}}, a \neq \overline{1}$, then:

$$
R_{a}^{2}=0 .
$$

(3) If $a \in \operatorname{Kan}(n)_{0}, a=e_{I}$ or $\overline{e_{I}}, a \neq 1, \overline{e_{i}}$, then:

$$
R_{a}^{3}=0 .
$$

(0) If V is irreducible and F is algebricaly closed then:

$$
R_{1}^{2}=\alpha, \text { for some } \alpha \in F \text {. }
$$

(1) $R_{e_{i}}^{3}=R_{\overline{e_{i}}}$, for all $i \in\{1, \ldots, n\}$.

Special Element in V

Lemma

If V is an unital Jordan bimodulo over $\operatorname{Kan}(n)$, then there exists $0 \neq v \in V$ such that

$$
v e_{I}=v \overline{e_{I}}=0
$$

for all $\phi \neq I \subseteq I_{n}=\{1, \ldots, n\}$.
For example, $n=2$
Lemma
If V is an unital Jordan bimodulo over $K a n(2)$, then there exists $0 \neq v \in V$ such that

$$
v e_{1}=v e_{2}=v\left(e_{1} e_{2}\right)=v \overline{e_{1}}=v \overline{e_{2}}=v \overline{e_{1} e_{2}}=0
$$

Special Element in V

Lemma

If V is an unital Jordan bimodulo over $\operatorname{Kan}(n)$, then there exists $0 \neq v \in V$ such that

$$
v e_{I}=v \overline{e_{I}}=0
$$

for all $\phi \neq I \subseteq I_{n}=\{1, \ldots, n\}$.
For example, $n=2$

Lemma

If V is an unital Jordan bimodulo over $\operatorname{Kan}(2)$, then there exists $0 \neq v \in V$ such that

$$
v e_{1}=v e_{2}=v\left(e_{1} e_{2}\right)=v \overline{e_{1}}=v \overline{e_{2}}=v \overline{e_{1} e_{2}}=0
$$

v and $v \overline{1}$ are not zero.

Special Element in V

Lemma

If V is an unital Jordan bimodulo over $\operatorname{Kan}(n)$, then there exists $0 \neq v \in V$ such that

$$
v e_{I}=v \overline{e_{I}}=0
$$

for all $\phi \neq I \subseteq I_{n}=\{1, \ldots, n\}$.
For example, $n=2$

Lemma

If V is an unital Jordan bimodulo over $\operatorname{Kan}(2)$, then there exists $0 \neq v \in V$ such that

$$
v e_{1}=v e_{2}=v\left(e_{1} e_{2}\right)=v \overline{e_{1}}=v \overline{e_{2}}=v \overline{e_{1} e_{2}}=0
$$

v and $v \overline{1}$ are not zero.

Notation

If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$:

$$
w(I):=w \overline{\overline{1}} \overline{e_{1}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1},
$$

Notation

If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$:

$$
w(I):=w \overline{\overline{1}} \overline{e_{1}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\left.\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1},
$$

so, If $I=\phi$ we have

$$
w(I)=w \mathrm{e} \overline{w(I)}=w \overline{1},
$$

Notation

If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$:

$$
w(I):=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{1}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1},
$$

so, If $I=\phi$ we have

$$
w(I)=w \mathrm{e} \overline{w(I)}=w \overline{1},
$$

and we can show that:

$$
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{j}}=0, \text { for } i=j,
$$

Notation

If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$:

$$
w(I):=w \overline{\overline{e_{i_{1}}}} \overline{\overline{1}} \cdots \overline{\overline{e_{i_{k}}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1},
$$

so, If $I=\phi$ we have

$$
w(I)=w \mathrm{e} \overline{w(I)}=w \overline{1},
$$

and we can show that:

$$
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{j}}=0, \text { for } i=j,
$$

and

$$
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{j}}=-R_{\bar{e}_{j}} R_{\overline{1}} R_{\overline{e_{i}}}, \text { para } i \neq j,
$$

Notation

If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$:

$$
w(I):=w \overline{\overline{e_{i_{1}}}} \overline{\overline{1}} \cdots \overline{\overline{e_{i_{k}}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1},
$$

so, If $I=\phi$ we have

$$
w(I)=w \mathrm{e} \overline{w(I)}=w \overline{1},
$$

and we can show that:

$$
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{j}}=0, \text { for } i=j,
$$

and

$$
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{j}}=-R_{\bar{e}_{j}} R_{\overline{1}} R_{\bar{e}_{i}}, \text { para } i \neq j,
$$

then, if σ is a permutation of I, we have

$$
w(I)=\operatorname{Sgn}(\sigma) w(\sigma(I)),
$$

Notation

If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$:

$$
w(I):=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1},
$$

so, If $I=\phi$ we have

$$
w(I)=w \text { e } \overline{w(I)}=w \overline{1}
$$

and we can show that:

$$
R_{\overline{e_{i}}} R_{\overline{1}} R_{\overline{e_{j}}}=0, \text { for } i=j,
$$

and

$$
R_{\overline{e_{i}}} R_{\overline{1}} R_{\overline{e_{j}}}=-R_{\overline{e_{j}}} R_{\overline{1}} R_{\overline{e_{i}}}, \text { para } i \neq j
$$

then, if σ is a permutation of I, we have

$$
w(I)=\operatorname{Sgn}(\sigma) w(\sigma(I)),
$$

Theorem: Multiplication on V over $\operatorname{Kan}(n)$

If V is an unital irreducible Jordan bimodulo over the superalgebra $\operatorname{Kan}(n)$, then V is generated as vector space by the elements

$$
v(I) \text { e } \overline{v(I)}, \text { where } I \subseteq I_{n}=\{1, \ldots, n\}
$$

and the multiplication of $\operatorname{kan}(n)$ over V is given by:

$$
\begin{gathered}
v(I) \odot e_{J}=\left\{\begin{array}{cll}
v(I \backslash J) & \text { if } & s_{2}=0 \\
0 & \text { otherwise }
\end{array}\right. \\
v(I) \odot \overline{e_{J}}=\left\{\begin{array}{cl}
\overline{v(I \backslash J)} & \text { if } \\
0 & s_{2}=0 \\
0 & \text { otherwise }
\end{array}\right. \\
\overline{v(I)} \odot e_{J}=\left\{\begin{array}{cll}
(-1)^{s} \overline{v(I \backslash J)} & \text { if } & s_{2}=0 \\
0 & \text { otherwise }
\end{array}\right. \\
\overline{v(I)} \odot \overline{e_{J}}=\left\{\begin{array}{cll}
(-1)^{s_{1}} \overline{v\left(I \backslash J_{1}\right)} \overline{e_{J_{2}}} & \text { if } & s_{2}=1 \\
-(-1)^{s} \alpha(s-1) v(I \backslash J) & \text { if } & s_{2}=0 \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

where $\alpha=R_{\overline{1}}^{2}, J=J_{1} \cup J_{2} \subseteq I_{n}$ com $J_{1} \subseteq I, J_{2} \cap I=\phi, s_{p}=\left|J_{p}\right|$ for $p=1,2$ and $s=s_{1}+s_{2}=|J|$.

Example $n=2$

1	e_{1}	e_{2}	$e_{1} e_{2}$	1	$\overline{e_{1}}$	$\overline{e_{2}}$	$\overline{e_{1} e_{2}}$
$v \overline{1} \overline{e_{1}} \overline{\overline{1}} \overline{e_{2}}$	$-v \overline{1} \overline{e_{2}}$	$v \overline{1} \overline{e_{1}}$	-v	$v \overline{1} \overline{e_{1}} \overline{\overline{1}} \overline{e_{2}} \overline{1}$	$-v \overline{1} \overline{e_{2}} \overline{1}$	$v \overline{1} \overline{e_{1}} \overline{1}$	$-v \overline{1}$
$v \overline{1} \overline{e_{2}}$	0	v	0	$v \overline{1} \overline{e_{2}} \overline{1}$	0	$v \overline{1}$	0
$v \overline{1} \overline{e_{1}}$	v	0	0	$v \overline{1} \overline{e_{1}} \overline{1}$	$v \overline{1}$	0	0
v	0	0	0	$v \overline{1}$	0	0	0
$v \overline{1} \overline{e_{1}} \overline{1} \overline{e_{2}} \overline{1}$	$v \overline{1} \overline{e_{2}} \overline{1}$	$-v \overline{1} \overline{e_{1}} \overline{1}$	$-v \overline{1}$	$\alpha v \overline{1} \overline{e_{1}} \overline{1} \overline{e_{2}}$	0	0	αv
$v \overline{1} \overline{e_{2}} \overline{\overline{1}}$	0	$-v \overline{1}$	0	$-\alpha v \overline{1} \overline{e_{2}}$	$-v \overline{1} \overline{e_{1}} \overline{\overline{1}} \overline{e_{2}}$	0	$v \overline{1} \overline{e_{1}}$
$v \overline{1} \overline{e_{1}} \overline{1}$	$-v \overline{1}$	0	0	$\alpha v \overline{1} \overline{e_{1}}$	0	$v \overline{1} \overline{e_{1}} \overline{1} \overline{e_{2}}$	$-v \overline{1} \overline{e_{2}}$
$v \overline{1}$	0	0	0	αv	$v \overline{1} \overline{e_{1}}$	$v \overline{1} \overline{e_{2}}$	0

where $v a_{1} a_{2} \ldots a_{p}:=\left(\ldots\left(\left(v a_{1}\right) a_{2}\right) \ldots\right) a_{p}$ and $\alpha=R_{\overline{1}}^{2}$.
If $\alpha=0$ then we have the regular bimodule.

Example $n=2$

1	e_{1}	e_{2}	$e_{1} e_{2}$	1	$\overline{e_{1}}$	$\overline{e_{2}}$	$\overline{e_{1} e_{2}}$
$v \overline{1} \overline{e_{1}} \overline{\mathrm{l}} \overline{e_{2}}$	$-v \overline{1} \overline{e_{2}}$	$v \overline{1} \overline{e_{1}}$	-v	$v \overline{1} \overline{e_{1}} \overline{\overline{1}} \overline{e_{2}} \overline{1}$	$-v \overline{1} \overline{e_{2}} \overline{1}$	$v \overline{1} \overline{e_{1}} \overline{1}$	$-v \overline{1}$
$v \overline{1} \overline{e_{2}}$	0	v	0	$v \overline{1} \overline{e_{2}} \overline{1}$	0	$v \overline{1}$	0
$v \overline{1} \overline{e_{1}}$	v	0	0	$v \overline{1} \overline{e_{1}} \overline{1}$	$v \overline{1}$	0	0
v	0	0	0	$v \overline{1}$	0	0	0
$v \overline{1} \overline{e_{1}} \overline{1} \overline{e_{2}} \overline{1}$	$v \overline{1} \overline{e_{2}} \overline{1}$	$-v \overline{1} \overline{e_{1}} \overline{1}$	$-v \overline{1}$	$\alpha v \overline{1} \overline{e_{1}} \overline{1} \overline{e_{2}}$	0	0	αv
$v \overline{1} \overline{e_{2}} \overline{1}$	0	$-v \overline{1}$	0	$-\alpha v \overline{1} \overline{e_{2}}$	$-v \overline{1} \overline{e_{1}} \overline{\overline{1}} \overline{e_{2}}$	0	$v \overline{1} \overline{e_{1}}$
$v \overline{1} \overline{e_{1}} \overline{1}$	$-v \overline{1}$	0	0	$\alpha v \overline{1} \overline{e_{1}}$	0	$v \overline{1} \overline{e_{1}} \overline{1} \overline{e_{2}}$	$-v \overline{1} \overline{e_{2}}$
$v \overline{1}$	0	0	0	αv	$v \overline{1} \overline{e_{1}}$	$v \overline{1} \overline{e_{2}}$	0

where $v a_{1} a_{2} \ldots a_{p}:=\left(\ldots\left(\left(v a_{1}\right) a_{2}\right) \ldots\right) a_{p}$ and $\alpha=R_{\overline{1}}^{2}$.
If $\alpha=0$ then we have the regular bimodule.

Thanks

THANKS!

