Non Moufang Loop Satisfying Moufang's Theorem

> Maria de Lourdes Merlini Giuliani work in progress with Giliard dos Anjos

Federal University of $A B C$

Third Mile High Conference on Nonassociative Mathematics Denver, August 11-17, 2013

MOTIVATION

Moufang's Theorem says that if 3 elements associate in some order, then they associate in any order.

Moufang loops satisfies Moufang's Theorem. Is there other category that satisfy Moufang's Theorem?

MOTIVATION

Moufang's Theorem says that if 3 elements associate in some order, then they associate in any order.

Moufang loops satisfies Moufang's Theorem.

MOTIVATION

Moufang's Theorem says that if 3 elements associate in some order, then they associate in any order.

Moufang loops satisfies Moufang's Theorem.

Is there other category that satisfy Moufang's Theorem?

THE QUESTION

Is every variety of loops that satisfies Moufang's Theorem contained in the variety of Moufang loops?

FUNDAMENTALS

A quasigroup is a pair $(Q,$.$) such that if in the equation a \cdot b=c$ any two of the elements are known, then the third is uniquely determined.
A loop is a quasigroup with identity element, say 1.

FUNDAMENTALS

A quasigroup is a pair $(Q,$.$) such that if in the equation a \cdot b=c$ any two of the elements are known, then the third is uniquely determined.
A loop is a quasigroup with identity element, say 1.

A Moufang loop is a loop satisfying the identity $(x y)(z x)=(x(y z)) x$

FUNDAMENTALS

A quasigroup is a pair $(Q,$.$) such that if in the equation a \cdot b=c$ any two of the elements are known, then the third is uniquely determined.
A loop is a quasigroup with identity element, say 1.

A Moufang loop is a loop satisfying the identity $(x y)(z x)=(x(y z)) x$

Moufang Theorem: If $(a, b, c)=1$ for some $a, b, c \in Q$, where Q is a loop, then a, b, c generate a subgroup of Q.

FUNDAMENTALS

A quasigroup is a pair $(Q,$.$) such that if in the equation a . b=c$ any two of the elements are known, then the third is uniquely determined.
A loop is a quasigroup with identity element, say 1.

A Moufang loop is a loop satisfying the identity $(x y)(z x)=(x(y z)) x$

Moufang Theorem: If $(a, b, c)=1$ for some $a, b, c \in Q$, where Q is a loop, then a, b, c generate a subgroup of Q.

A loop Q is a Steiner loop if Q has Inverse Property, $\left(x^{-1}(x y)=y\right)$ and of exponent 2.

From now on I will say that a loop L satisfies the property \mathcal{P} if: L is not Moufang loop, but satisfies Moufang's theorem

From now on I will say that a loop L satisfies the property \mathcal{P} if: L is not Moufang loop, but satisfies Moufang's theorem

Steiner loops are not Moufang loops.

From now on I will say that a loop L satisfies the property \mathcal{P} if: L is not Moufang loop, but satisfies Moufang's theorem

Steiner loops are not Moufang loops.

Can Steiner loops have property \mathcal{P} ?

An example of a Steiner loop with property \mathcal{P}

1	2	3	4	5	6	7	8	9	10
2	1	4	3	8	10	9	5	7	6
3	4	1	2	10	9	8	7	6	5
4	3	2	1	9	8	10	6	5	7
5	8	10	9	1	7	6	2	4	3
6	10	9	8	7	1	5	4	3	2
7	9	8	10	6	5	1	3	2	4
8	5	7	6	2	4	3	1	10	9
9	7	6	5	4	3	2	10	1	8
10	6	5	7	3	2	4	9	8	1

It has this property:

An example of a Steiner loop with property \mathcal{P}

1	2	3	4	5	6	7	8	9	10
2	1	4	3	8	10	9	5	7	6
3	4	1	2	10	9	8	7	6	5
4	3	2	1	9	8	10	6	5	7
5	8	10	9	1	7	6	2	4	3
6	10	9	8	7	1	5	4	3	2
7	9	8	10	6	5	1	3	2	4
8	5	7	6	2	4	3	1	10	9
9	7	6	5	4	3	2	10	1	8
10	6	5	7	3	2	4	9	8	1

It has this property:

For any x, y, z, such that $x \neq y ; y \neq z ; z \neq x$, if $x . y z=x y . z$ then $z=x y$ Then $\langle x, y, z\rangle=\langle x, y\rangle$

Second example: A Steiner loop of order $16((16,80)$ in GAP)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	4	3	6	5	8	7	10	9	12	11	14	13	16	15
3	4	1	2	7	9	5	10	6	8	13	15	11	16	12	14
4	3	2	1	11	8	12	6	16	14	5	7	15	10	13	9
5	6	7	11	1	2	3	13	14	15	4	16	8	9	10	12
6	5	9	8	2	1	15	4	3	11	10	14	16	12	7	13
7	8	5	12	3	15	1	2	13	16	14	4	9	11	6	10
8	7	10	6	13	4	2	1	12	3	16	9	5	15	14	11
9	10	6	16	14	3	13	12	1	2	15	8	7	5	11	4
10	9	8	14	15	11	16	3	2	1	6	13	12	4	5	7
11	12	13	5	4	10	14	16	15	6	1	2	3	7	9	8
12	11	15	7	16	14	4	9	8	13	2	1	10	6	3	5
13	14	11	15	8	16	9	5	7	12	3	10	1	2	4	6
14	13	16	10	9	12	11	15	5	4	7	6	2	1	8	3
15	16	12	13	10	7	6	14	11	5	9	3	4	8	1	2
16	15	14	9	12	13	10	11	4	7	8	5	6	3	2	1

In Van Lint \& Wilson (2001) we find a construction of Steiner Triple System:
Let $n=2 t+1$ and define $Q:=\mathbb{Z}_{n} \times \mathbb{Z}_{3}$. All triples $\left\{(x, i),(y, i),\left(\frac{x+y}{2}, i+1\right)\right\} \quad$, where $x \neq y$ in \mathbb{Z}_{n}, provides STS.
J.H.Van Lint, R.M.Wilson; A Course in Combinatorics; Camb. Uni. Press, 2001.

In Van Lint \& Wilson (2001) we find a construction of Steiner Triple System:
Let $n=2 t+1$ and define $Q:=\mathbb{Z}_{n} \times \mathbb{Z}_{3}$. All triples
$\left\{(x, i),(y, i),\left(\frac{x+y}{2}, i+1\right)\right\} \quad$, where $x \neq y$ in \mathbb{Z}_{n}, provides STS.
Let $L=Q \cup\{e\}$, then $(L, *)$ is a Steiner loop, $|L|=3 n+1$, with the rules:

$$
\begin{aligned}
& (x, i) *(y, i)=\left(\frac{x+y}{2}, i+1\right) \\
& (x, i) *(y, i+1)=(2 y-x, i) \\
& (x, i) *(y, i-1)=(2 x-y, i-1) \\
& (x, i) *(x, i)=e \\
& \text { for any } x \neq y \in \mathbb{Z}_{n} .
\end{aligned}
$$

J.H.Van Lint, R.M.Wilson; A Course in Combinatorics; Camb. Uni. Press, 2001.

We verified that if L is a Steiner loop constructed as above with $|L|=k$, for

$$
\begin{aligned}
k \in\{ & 28,34,40,46,52,58,79,76,82,88,94,100 \\
& 112,118,124,130,136,142,154\}
\end{aligned}
$$

then L has property \mathcal{P}.

We verified that if L is a Steiner loop constructed as above with $|L|=k$, for

$$
\begin{aligned}
k \in\{ & 28,34,40,46,52,58,79,76,82,88,94,100 \\
& 112,118,124,130,136,142,154\}
\end{aligned}
$$

then L has property \mathcal{P}.
For $k=22,64,106,148$, such L doesnt have property \mathcal{P}

Theorem 1

Let L be a Steiner loop constructed as above.
If 7 is an invertible element in \mathbb{Z}_{n}, then L has the property \mathcal{P}.

Theorem 1

Let L be a Steiner loop constructed as above.
If 7 is an invertible element in \mathbb{Z}_{n}, then L has the property \mathcal{P}.

Note: If 7 is not invertible in \mathbb{Z}_{n}, then there exists $a \in \mathbb{Z}_{n}$ $7 a=0(\bmod n)$.

Theorem 1

Let L be a Steiner loop constructed as above.
If 7 is an invertible element in \mathbb{Z}_{n}, then L has the property \mathcal{P}.

Note: If 7 is not invertible in \mathbb{Z}_{n}, then there exists $a \in \mathbb{Z}_{n}$ $7 a=0(\bmod n)$.

The associator $((0,1),(0,0),(a, 0))=1$

Theorem 1

Let L be a Steiner loop constructed as above.
If 7 is an invertible element in \mathbb{Z}_{n}, then L has the property \mathcal{P}.

Note: If 7 is not invertible in \mathbb{Z}_{n}, then there exists $a \in \mathbb{Z}_{n}$ $7 a=0(\bmod n)$.

The associator $((0,1),(0,0),(a, 0))=1$
whereas $((0,1),(a, 0),(0,0)) \neq 1$.

Theorem 2
Let L be a Steiner loop satisfying \mathcal{P} and let M be a Moufang loop. Then $L \times M$ satisfies \mathcal{P}.

THE QUESTION

Is every variety of loops that satisfies Moufang's Theorem contained in the variety of Moufang loops?

VARIETY \mathcal{V}

Define \mathcal{V} as the variety of loops satisfying \mathcal{P}. $\mathcal{V}=\{$ Moufang loop \times Steiner loops satisfying $\mathcal{P}\}$

VARIETY \mathcal{V}
 Define \mathcal{V} as the variety of loops satisfying \mathcal{P}.

\square Question: Is there other class of loops in this variety?

VARIETY \mathcal{V}

Define \mathcal{V} as the variety of loops satisfying \mathcal{P}.
$\mathcal{V}=\{$ Moufang loop \times Steiner loops satisfying $\mathcal{P}\}$

VARIETY \mathcal{V}

Define \mathcal{V} as the variety of loops satisfying \mathcal{P}.
$\mathcal{V}=\{$ Moufang loop \times Steiner loops satisfying $\mathcal{P}\}$
Question: Is there other class of loops in this variety?

THANK YOU!

