The principal Wedderburn Theorem for Jordan superalgebras with unity．

Faber Gómez González

Universidad de Antioquia
Third Mile High Conference，Denver 2013

History

Theodor Mollien (1861-1941)
(1892) Let \mathcal{A} be a finite-dimensional associative algebra over the complex field, and let \mathcal{N} be the solvable radical of \mathcal{A}. Then there exists a subalgebra $\mathcal{S} \subseteq \mathcal{A}$ such that $\mathcal{S} \cong \mathcal{A} / \mathcal{N}$ and $\mathcal{A}=\mathcal{S} \oplus \mathcal{N}$.

- Üeber Systeme Höherer complexer zahlen, Math Ann 41, 1893

History

J. M. Wedderburn (1882-1941)
(1905) Let \mathcal{A} be a finite-dimensional associative algebra over \mathbb{F}, and let \mathcal{N} be the solvable radical of \mathcal{A}, then there exists a subalgebra $\mathcal{S} \subseteq \mathcal{A}$ such that $\mathcal{S} \cong \mathcal{A} / \mathcal{N}$ and $\mathcal{A}=\mathcal{S} \oplus \mathcal{N}$.

- On the structure of hypercomplex number systems, Amer. Math. Soc. Volume 12, Number 2 (1905).

History

Adrian A. Albert (1905-1972)

In 1945 proved an analogue to the Principal Wedderburn theorem for finite-dimensional especial Jordan algebras over a field of characteristic zero.

- The Wedderburn principal theorem for Jordan algebras, Ann. of Math. (2)

History

Penico, Askinuze

Generalized the result of A. Albert for any finite-dimensional Jordan algebra over arbitrary fields with Char $\mathbb{F} \neq 2$.

- Askinuze, A Theorem on the splittability of J-algebras, Ukrain.Mat.Z. 3 (1951)
- Penico, A.J. The Wedderburn principal theorem for Jordan algebras, Trans. Amer. Math. Soc. 70 (1951),

Definition

Let \mathcal{A}_{0} and \mathcal{A}_{1} be vector spaces over a field $\mathbb{F}, \mathcal{A}=\mathcal{A}_{0} \dot{+} \mathcal{A}_{1}$ is called a superalgebra if it is a \mathbb{Z}_{2}-graded algebra over \mathbb{F}, it is $\mathcal{A}_{i} \mathcal{A}_{j} \subseteq \mathcal{A}_{i+j} \bmod 2$

Definition

Let \mathcal{A}_{0} and \mathcal{A}_{1} be vector spaces over a field $\mathbb{F}, \mathcal{A}=\mathcal{A}_{0} \dot{+} \mathcal{A}_{1}$ is called a superalgebra if it is a \mathbb{Z}_{2}-graded algebra over \mathbb{F}, it is $\mathcal{A}_{i} \mathcal{A}_{j} \subseteq \mathcal{A}_{i+j} \bmod 2$

A superalgebra $\mathcal{A}=\mathcal{A}_{0} \dot{+} \mathcal{A}_{1}$ is called a Jordan superalgebra if it satisfies the superidentities

$$
\begin{equation*}
a_{i} a_{j}=(-1)^{i j} a_{j} a_{i} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\left(\left(a_{i} a_{j}\right) a_{k}\right) a_{l}+(-1)^{l k+l j+k j}\left(\left(a_{i} a_{l}\right) a_{k}\right) a_{j}+(-1)^{i j+i k+i l+l k}\left(\left(a_{j} a_{l}\right) a_{k}\right) a_{i}= \\
\left(a_{i} a_{j}\right)\left(a_{k} a_{l}\right)+(-1)^{l k+l j}\left(a_{i} a_{l}\right)\left(a_{j} a_{k}\right)+(-1)^{k j}\left(a_{i} a_{k}\right)\left(a_{j} a_{l}\right) \tag{2}
\end{gather*}
$$

for all $a_{i}, a_{j}, a, a_{k} \in \mathfrak{J}_{0} \cup \mathfrak{J}_{1}$.

Definition

Let \mathcal{A}_{0} and \mathcal{A}_{1} be vector spaces over a field $\mathbb{F}, \mathcal{A}=\mathcal{A}_{0} \dot{+} \mathcal{A}_{1}$ is called a superalgebra if it is a \mathbb{Z}_{2}-graded algebra over \mathbb{F}, it is $\mathcal{A}_{i} \mathcal{A}_{j} \subseteq \mathcal{A}_{i+j} \bmod 2$

A superalgebra $\mathcal{A}=\mathcal{A}_{0} \dot{+} \mathcal{A}_{1}$ is called a Jordan superalgebra if it satisfies the superidentities

$$
\begin{equation*}
a_{i} a_{j}=(-1)^{i j} a_{j} a_{i} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\left(\left(a_{i} a_{j}\right) a_{k}\right) a_{l}+(-1)^{l k+l j+k j}\left(\left(a_{i} a_{l}\right) a_{k}\right) a_{j}+(-1)^{i j+i k+i l+l k}\left(\left(a_{j} a_{l}\right) a_{k}\right) a_{i}= \\
\left(a_{i} a_{j}\right)\left(a_{k} a_{l}\right)+(-1)^{l k+l j}\left(a_{i} a_{l}\right)\left(a_{j} a_{k}\right)+(-1)^{k j}\left(a_{i} a_{k}\right)\left(a_{j} a_{l}\right) \tag{2}
\end{gather*}
$$

for all $a_{i}, a_{j}, a, a_{k} \in \mathfrak{J}_{0} \cup \mathfrak{J}_{1}$.

Definition

An \mathcal{A}-superbimodule $\mathcal{M}=\mathcal{M}_{0}+\mathcal{M}_{1}$ is called a Jordan superbimodule if the corresponding split null extension superalgebra $\mathcal{E}=\mathcal{A} \oplus \mathcal{M}$ is Jordan superalgebra.

Some Examples

- Let \mathcal{A} be an associative superalgebra and consider the new multiplication in \mathcal{A},

$$
x \circ y=\frac{1}{2}\left(x y+(-1)^{|x||y|} y x\right)
$$

The new superalgebra is a Jordan superalgebra and we denoted this by \mathcal{A}^{+}.

Some Examples

- Let \mathcal{A} be an associative superalgebra and consider the new multiplication in \mathcal{A},

$$
x \circ y=\frac{1}{2}\left(x y+(-1)^{|x||y|} y x\right)
$$

The new superalgebra is a Jordan superalgebra and we denoted this by \mathcal{A}^{+}.
In particulary, we can consider the associative superalgebra

$$
\mathcal{M}_{n+m}(\mathbb{F})=\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right) \dot{+}\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right)
$$

and denote this Jordan superalgebra by $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$.

- Let $V=V_{0} \oplus V_{1}$ be a graded \mathbb{F}-vectorspace and let $f: V \times V \longrightarrow \mathbb{F}$ be a superform, i.e $f \mid v_{0},\left(f \mid v_{1}\right)$ is a symmetric form (skew form) and $f\left(V_{0}, V_{1}\right)=0$. Is easy to check that $\mathfrak{J}=\mathbb{F} \cdot 1+V_{0}+V_{1}$ with multiplication $v \cdot 1=v, v \cdot w=f(v, w)$ is a Jordan superalgebra. It is called the Jordan superalgebra of superform.
- Let $V=V_{0} \oplus V_{1}$ be a graded \mathbb{F}-vectorspace and let $f: V \times V \longrightarrow \mathbb{F}$ be a superform, i.e $f \mid v_{0},\left(f \mid v_{1}\right)$ is a symmetric form (skew form) and $f\left(V_{0}, V_{1}\right)=0$. Is easy to check that $\mathfrak{J}=\mathbb{F} \cdot 1+V_{0}+V_{1}$ with multiplication $v \cdot 1=v, v \cdot w=f(v, w)$ is a Jordan superalgebra. It is called the Jordan superalgebra of superform.
- Let $t \in \mathbb{F}$ and $\mathcal{D}_{t}=\left(\mathbb{F} \cdot e_{1}+\mathbb{F} \cdot e_{2}\right) \dot{+}(\mathbb{F} \cdot x+\mathbb{F} \cdot y)$ be a parametric family of superalgebras with multiplication

$$
e_{i} \cdot x=\frac{1}{2} x, e_{i} \cdot y=\frac{1}{2} y,=x \cdot y=-y \cdot x=e_{1}+t e_{2}
$$

This superalgebra is a Jordan superalgebra.

- Let $V=V_{0} \oplus V_{1}$ be a graded \mathbb{F}-vectorspace and let $f: V \times V \longrightarrow \mathbb{F}$ be a superform, i.e $f \mid V_{0},\left(f \mid V_{1}\right)$ is a symmetric form (skew form) and $f\left(V_{0}, V_{1}\right)=0$. Is easy to check that $\mathfrak{J}=\mathbb{F} \cdot 1+V_{0}+V_{1}$ with multiplication $v \cdot 1=v, v \cdot w=f(v, w)$ is a Jordan superalgebra. It is called the Jordan superalgebra of superform.
- Let $t \in \mathbb{F}$ and $\mathcal{D}_{t}=\left(\mathbb{F} \cdot e_{1}+\mathbb{F} \cdot e_{2}\right) \dot{+}(\mathbb{F} \cdot x+\mathbb{F} \cdot y)$ be a parametric family of superalgebras with multiplication

$$
e_{i} \cdot x=\frac{1}{2} x, e_{i} \cdot y=\frac{1}{2} y,=x \cdot y=-y \cdot x=e_{1}+t e_{2}
$$

This superalgebra is a Jordan superalgebra.

- Let $\mathcal{K}_{3}=\mathbb{F} \cdot e_{1} \dot{+}(\mathbb{F} \cdot x+\mathbb{F} \cdot y)$ be a superalgebra with multiplication

$$
e_{1} \cdot x=\frac{1}{2} x, e_{1} \cdot y=\frac{1}{2} y,=x \cdot y=-y \cdot x=e_{1}
$$

This superalgebra is a Jordan superalgebra. It is called the Kaplansky superalgebra.

- V.Kac introduced the Jordan superalgebra of dimension $10, K_{10}$.

Over a field \mathbb{F}, Char $\mathbb{F}=0$, any Jordan superalgebra of the list above is a simple Jordan superalgebra

The Problem

The Problem

Let \mathcal{A} be a Jordan superalgebra and let \mathcal{N} be the solvable radical of \mathcal{A}. When there exists a subsuperalgebra $\mathcal{S} \subseteq \mathcal{A}$ such that $\mathcal{S} \cong \mathcal{A} / \mathcal{N}$ and $\mathcal{A}=\mathcal{S} \oplus \mathcal{N}$?

The Problem

The Problem

Let \mathcal{A} be a Jordan superalgebra and let \mathcal{N} be the solvable radical of \mathcal{A}. When there exists a subsuperalgebra $\mathcal{S} \subseteq \mathcal{A}$ such that $\mathcal{S} \cong \mathcal{A} / \mathcal{N}$ and $\mathcal{A}=\mathcal{S} \oplus \mathcal{N}$?

This problem is an analogue to the validity of the Principal Wedderburn Theorem (PWT) for associative algebras.

Reduction preliminaries

Proposition

If the principal Wedderburn theorem is valid for Jordan superalgebras with unity, then it is valid for any Jordan superalgebra

Reduction preliminaries

Proposition

If the principal Wedderburn theorem is valid for Jordan superalgebras with unity, then it is valid for any Jordan superalgebra

Proposition

Let \mathfrak{J} be a finite dimensional semisimple Jordan superalgebra, that is, $\mathcal{N}(\mathfrak{J})=0$ where \mathcal{N} is the soluble radical. Fix a class $\mathfrak{M}(\mathfrak{J})$ of finite dimensional Jordan \mathfrak{J}-bimodules which is closed with respect to subbimodules and homomorphic images. Denote by $\mathfrak{K}_{\mathfrak{M}(\mathfrak{J})}$ the class of finite dimensional Jordan superalgebras \mathcal{A} that satisfy the following conditions: $\mathcal{A} / \mathcal{N}(\mathcal{A}) \cong \mathfrak{J}, \mathcal{N}(\mathcal{A})^{2}=0$ and, $\mathcal{N}(\mathcal{A})$ considered as \mathfrak{J}-bimodule belongs to $\mathfrak{M}(\mathfrak{J})$. Then if PWT is true for all superalgebras $\mathcal{B} \in \mathfrak{K}_{\mathfrak{M}(\mathfrak{J})}$ with $\mathcal{N}(\mathcal{B})$ an irreducible \mathfrak{J}-bimodule, then it is true for all superalgebras \mathcal{A} from $\mathfrak{K}_{\mathfrak{M}(\mathfrak{J})}$

irreducible bimodules over Jordan superalgebras

Irreducible bimodules over Jordan superalgebras of type $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}, \mathcal{D}_{t}$, Kaplansky, and superform were classified by Zelmanov-Martinez. The cases of Jordan superalgebras of type K_{10} was proved by Shtern.

Answer to the problem

As a first step we consider the case in which the radical satifies $\mathcal{N}^{2}=0$, and the quotient superalgebra $\mathfrak{J} / \mathcal{N}$ is a simple Jordan superalgebra of one of the following types: $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$, superforms, \mathcal{D}_{t}, or \mathcal{K}_{10}, we prove that an analogue to the PWT is valid, provided some restrictions are imposed on the types of irreducible bimodules contained in the radical \mathcal{N}.
The restrictions are necessary and counter-examples were provided

Main Theorem

Theorem (Main Theorem)
Let $\mathfrak{J}, \mathcal{N}$ be as before. In the following cases there exists a subsuperalgebra $\mathcal{S} \subseteq \mathfrak{J}$ such that $\mathcal{S} \cong \mathfrak{J} / \mathcal{N}$ and $\mathfrak{J}=\mathcal{S} \oplus \mathcal{N}$:

Main Theorem

Theorem (Main Theorem)

Let $\mathfrak{J}, \mathcal{N}$ be as before. In the following cases there exists a subsuperalgebra $\mathcal{S} \subseteq \mathfrak{J}$ such that $\mathcal{S} \cong \mathfrak{J} / \mathcal{N}$ and $\mathfrak{J}=\mathcal{S} \oplus \mathcal{N}$:

- $\mathfrak{J} / \mathcal{N}$ is isomorphic to $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. And when $n+m \geq 3, \mathcal{N}$ does not contain any copy of the regular bimodule $\operatorname{Reg} \mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. When $m=n=1 \mathcal{N}$ does not contain any copy of the regular bimodule nor of V^{e}.

Main Theorem

Theorem (Main Theorem)

Let $\mathfrak{J}, \mathcal{N}$ be as before. In the following cases there exists a subsuperalgebra $\mathcal{S} \subseteq \mathfrak{J}$ such that $\mathcal{S} \cong \mathfrak{J} / \mathcal{N}$ and $\mathfrak{J}=\mathcal{S} \oplus \mathcal{N}$:

- $\mathfrak{J} / \mathcal{N}$ is isomorphic to $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. And when $n+m \geq 3, \mathcal{N}$ does not contain any copy of the regular bimodule $\operatorname{Reg} \mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. When $m=n=1 \mathcal{N}$ does not contain any copy of the regular bimodule nor of V^{e}.
- $\mathfrak{J} / \mathcal{N}$ is a superalgebra of a superform with even part of dimension n, and \mathcal{N} does not contain any copy of the irreducible bimodule $\mathcal{C}_{n} / \mathcal{C}_{n-2}$ when n is odd, or of $u \cdot \mathcal{C}_{n} / u \cdot \mathcal{C}_{n-2}$ when n is even.

Main Theorem

Theorem (Main Theorem)

Let $\mathfrak{J}, \mathcal{N}$ be as before. In the following cases there exists a subsuperalgebra $\mathcal{S} \subseteq \mathfrak{J}$ such that $\mathcal{S} \cong \mathfrak{J} / \mathcal{N}$ and $\mathfrak{J}=\mathcal{S} \oplus \mathcal{N}$:

- $\mathfrak{J} / \mathcal{N}$ is isomorphic to $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. And when $n+m \geq 3, \mathcal{N}$ does not contain any copy of the regular bimodule $\operatorname{Reg} \mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. When $m=n=1 \mathcal{N}$ does not contain any copy of the regular bimodule nor of V^{e}.
- $\mathfrak{J} / \mathcal{N}$ is a superalgebra of a superform with even part of dimension n, and \mathcal{N} does not contain any copy of the irreducible bimodule $\mathcal{C}_{n} / \mathcal{C}_{n-2}$ when n is odd, or of $u \cdot \mathcal{C}_{n} / u \cdot \mathcal{C}_{n-2}$ when n is even.
- $\mathfrak{J} / \mathcal{N}$ is isomorphic to $\mathcal{D}_{t}, t \neq-1$. And \mathcal{N} does not contain any copy of the bimodule $\operatorname{Reg} \mathcal{D}_{t}$, or of the vector space generated by one even vector.

Main Theorem

Theorem (Main Theorem)

Let $\mathfrak{J}, \mathcal{N}$ be as before. In the following cases there exists a subsuperalgebra $\mathcal{S} \subseteq \mathfrak{J}$ such that $\mathcal{S} \cong \mathfrak{J} / \mathcal{N}$ and $\mathfrak{J}=\mathcal{S} \oplus \mathcal{N}$:

- $\mathfrak{J} / \mathcal{N}$ is isomorphic to $\mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. And when $n+m \geq 3, \mathcal{N}$ does not contain any copy of the regular bimodule $\operatorname{Reg} \mathcal{M}_{n \mid m}(\mathbb{F})^{(+)}$. When $m=n=1 \mathcal{N}$ does not contain any copy of the regular bimodule nor of V^{e}.
- $\mathfrak{J} / \mathcal{N}$ is a superalgebra of a superform with even part of dimension n, and \mathcal{N} does not contain any copy of the irreducible bimodule $\mathcal{C}_{n} / \mathcal{C}_{n-2}$ when n is odd, or of $u \cdot \mathcal{C}_{n} / u \cdot \mathcal{C}_{n-2}$ when n is even.
- $\mathfrak{J} / \mathcal{N}$ is isomorphic to $\mathcal{D}_{t}, t \neq-1$. And \mathcal{N} does not contain any copy of the bimodule $\operatorname{Reg} \mathcal{D}_{t}$, or of the vector space generated by one even vector.
- $\mathfrak{J} / \mathcal{N}$ is a Kac superalgebra without restriction in the bimodule.

The restrictions impossed by the theorem above are essential, and we provide the corresponding counter-examples

Irreducible bimodules over Jordan superalgebras of superform

Let $V=V_{0}+V_{1}$ be a vector superspace equipped with a nondegenerate superform, and suppose that $V_{1} \neq 0$. Let v_{1}, \ldots, v_{n} be an orthogonal basis of V_{0} and $w_{1}, \ldots, w_{2 m}$ be a basis of V_{1} such that $\left(w_{2 i-1}, w_{2 i}\right)=1,1 \leq i \leq m$, where all other products are zero.

Let \mathcal{C} be the Clifford algebra over \mathbb{F}. Let $0 \leq i_{1}, \ldots, i_{n} \leq 1$ and $k_{1}, \ldots, k_{2 m}$ are non negative integers, the elements $v_{1}^{i_{1}} \cdots v_{n}^{i_{n}} w_{1}^{k_{1}} \cdots w_{2 m}^{k_{2 m}}$, form a basis for \mathcal{C}.

Consider the subspace $\mathcal{C}_{r}=\sum_{i \leq r} \underbrace{V \cdots V}_{i}$ as the span of all basic products of lenght $\leq r$.

$$
\mathbb{F}=\mathcal{C}_{0} \subseteq \mathcal{C}_{1} \subset \cdots ; \quad \mathcal{C}=\cup_{r \geq 0} \mathcal{C}_{r}
$$

Irreducible bimodules over a Jordan superalgebras of superform

Any superspace of type \mathcal{C}_{r} with r odd integer is a superbimodule over the Jordan superalgebra of superform.

Irreducible bimodules over a Jordan superalgebras of superform

Any superspace of type \mathcal{C}_{r} with r odd integer is a superbimodule over the Jordan superalgebra of superform.

Theorem (C. Martinez- E. Zelmanov)

The only finite dimensional unital irreducible Jordan bimodules over $\mathfrak{J}=\mathbb{F} \cdot 1+V$, (Jordan superalgebra of superform) are $\mathcal{C}_{r} / \mathcal{C}_{r-2}$ if r is odd and $u \mathcal{C}_{r} / u \mathcal{C}_{r-2}$ if r is even, where u is an even vector.

A counter-example to the PWT in Jordan superalgebras of superform

We consider the superspace $\mathcal{N} \subset \mathcal{A}$ where

$$
\mathcal{A}_{0}=\operatorname{Vect}\left\langle 1, v_{i}, v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{2} v_{3}, v_{i} w_{s}^{2}, v_{i} w_{1} w_{2}, w_{s}^{2}, w_{1} w_{2}\right\rangle
$$

for $i=1,2,3, s=1,2$

A counter-example to the PWT in Jordan superalgebras of superform

We consider the superspace $\mathcal{N} \subset \mathcal{A}$ where

$$
\begin{aligned}
& \mathcal{A}_{0}=\operatorname{Vect}\left\langle 1, v_{i}, v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{2} v_{3}, v_{i} w_{s}^{2}, v_{i} w_{1} w_{2}, w_{s}^{2}, w_{1} w_{2}\right\rangle \\
& \mathcal{A}_{1}=\operatorname{Vect}\left\langle w_{1}, w_{2}, v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle
\end{aligned}
$$

A counter-example to the PWT in Jordan superalgebras of superform

We consider the superspace $\mathcal{N} \subset \mathcal{A}$ where

$$
\begin{aligned}
& \mathcal{A}_{0}=\operatorname{Vect}\left\langle 1, v_{i}, v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{2} v_{3}, v_{i} w_{s}^{2}, v_{i} w_{1} w_{2}, w_{s}^{2}, w_{1} w_{2}\right\rangle \\
& \mathcal{N}_{0}=\operatorname{Vect}\left\langle v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{2} v_{3}, v_{i} w_{s}^{2}, v_{i} w_{1} w_{2}, w_{s}^{2}, w_{1} w_{2}\right\rangle
\end{aligned}
$$

A counter-example to the PWT in Jordan superalgebras of superform

We consider the superspace $\mathcal{N} \subset \mathcal{A}$ where

$$
\begin{aligned}
& \mathcal{A}_{1}=\operatorname{Vect}\left\langle w_{1}, w_{2}, v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle \\
& \mathcal{N}_{1}=\operatorname{Vect}\left\langle v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle
\end{aligned}
$$

A counter-example to the PWT in Jordan superalgebras of superform

We consider the superspace $\mathcal{N} \subset \mathcal{A}$ where

$$
\begin{aligned}
& \mathcal{A}_{0}=\operatorname{Vect}\left\langle 1, v_{i}, v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{2} v_{3}, v_{i} w_{s}^{2}, v_{i} w_{1} w_{2}, w_{s}^{2}, w_{1} w_{2}\right\rangle \\
& \mathcal{A}_{1}=\operatorname{Vect}\left\langle w_{1}, w_{2}, v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle \\
& \mathcal{N}_{0}=\operatorname{Vect}\left\langle v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{2} v_{3}, v_{i} w_{s}^{2}, v_{i} w_{1} w_{2}, w_{s}^{2}, w_{1} w_{2}\right\rangle \\
& \mathcal{N}_{1}=\operatorname{Vect}\left\langle v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle
\end{aligned}
$$

and we observe that

$$
\mathcal{A} / \mathcal{N} \cong\left(\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}\right) \dot{+}\left(\mathbb{F} \cdot w_{1}+\mathbb{F} \cdot w_{2}\right)
$$

A counter-example

We define the nonzero products on \mathcal{A}, as follows $v_{i}^{2}=1$ for $i=1,2,3$ and $w_{1} \cdot w_{2}=1+v_{1} v_{2} v_{3}$

$$
v_{i} \circ v_{j}=\frac{1}{2}\left(v_{i} v_{j}+v_{j} v_{i}\right) \quad 0=v_{i} \circ w_{s}=v_{i} w_{s}+w_{s} v_{i}
$$

A counter-example

We define the nonzero products on \mathcal{A}, as follows $v_{i}^{2}=1$ for $i=1,2,3$ and $w_{1} \cdot w_{2}=1+v_{1} v_{2} v_{3}$

$$
v_{1} \cdot v_{2} v_{3}=v_{1} v_{2} v_{3}, \quad v_{2} \cdot v_{1} v_{3}=-v_{1} v_{2} v_{3}, \quad v_{3} \cdot v_{1} v_{2}=v_{1} v_{2} v_{3}
$$

A counter-example

We define the nonzero products on \mathcal{A}, as follows $v_{i}^{2}=1$ for $i=1,2,3$ and $w_{1} \cdot w_{2}=1+v_{1} v_{2} v_{3}$

$$
\begin{array}{ccl}
v_{1} \cdot v_{2} v_{3}=v_{1} v_{2} v_{3}, & v_{2} \cdot v_{1} v_{3}=-v_{1} v_{2} v_{3}, & v_{3} \cdot v_{1} v_{2}=v_{1} v_{2} v_{3} \\
v_{i} \cdot w_{1} w_{2}=v_{i} w_{1} w_{2}, & v_{i} \cdot w_{s}^{2}=v_{i} w_{s}^{2}, & v_{i} \cdot v_{i} w_{s}^{2}=w_{s}^{2} \\
v_{i} \cdot v_{i} w_{1} w_{2}=w_{1} w_{2}, & v_{1} \cdot v_{2} w_{s}=v_{1} v_{2} w_{s}, & v_{1} \cdot v_{3} w_{s}=v_{1} v_{3} w_{s}, \\
v_{2} \cdot v_{3} w_{s}=v_{2} v_{3} w_{s}, & v_{i} \cdot v_{i} v_{j} w_{s}=v_{j} w_{s} &
\end{array}
$$

A counter-example

We define the nonzero products on \mathcal{A}, as follows $v_{i}^{2}=1$ for $i=1,2,3$ and $w_{1} \cdot w_{2}=1+v_{1} v_{2} v_{3}$

$$
\begin{array}{rcl}
v_{1} \cdot v_{2} v_{3}=v_{1} v_{2} v_{3}, & v_{2} \cdot v_{1} v_{3}=-v_{1} v_{2} v_{3}, & v_{3} \cdot v_{1} v_{2}=v_{1} v_{2} v_{3} \\
v_{i} \cdot w_{1} w_{2}=v_{i} w_{1} w_{2}, & v_{i} \cdot w_{s}^{2}=v_{i} w_{s}^{2}, & v_{i} \cdot v_{i} w_{s}^{2}=w_{s}^{2} \\
v_{i} \cdot v_{i} w_{1} w_{2}=w_{1} w_{2}, & v_{1} \cdot v_{2} w_{s}=v_{1} v_{2} w_{s}, & v_{1} \cdot v_{3} w_{s}=v_{1} v_{3} w_{s} \\
v_{2} \cdot v_{3} w_{s}=v_{2} v_{3} w_{s}, & v_{i} \cdot v_{i} v_{j} w_{s}=v_{j} w_{s}, & \\
w_{s} \cdot v_{i} v_{j}=v_{i} v_{j} w_{s}, & w_{1} \cdot v_{i} v_{j} w_{2}=v_{i} v_{j}, & w_{2} \cdot v_{i} v_{j} w_{1}=-v_{i} v_{j}
\end{array}
$$

A counter-example

We define the nonzero products on \mathcal{A}, as follows $v_{i}^{2}=1$ for $i=1,2,3$ and $w_{1} \cdot w_{2}=1+v_{1} v_{2} v_{3}$

$$
\begin{array}{rcc}
v_{1} \cdot v_{2} v_{3}=v_{1} v_{2} v_{3}, & v_{2} \cdot v_{1} v_{3}=-v_{1} v_{2} v_{3}, & v_{3} \cdot v_{1} v_{2}=v_{1} v_{2} v_{3}, \\
v_{i} \cdot w_{1} w_{2}=v_{i} w_{1} w_{2}, & v_{i} \cdot w_{s}^{2}=v_{i} w_{s}^{2}, & v_{i} \cdot v_{i} w_{s}^{2}=w_{s}^{2} \\
v_{i} \cdot v_{i} w_{1} w_{2}=w_{1} w_{2}, & v_{1} \cdot v_{2} w_{s}=v_{1} v_{2} w_{s}, & v_{1} \cdot v_{3} w_{s}=v_{1} v_{3} w_{s}, \\
v_{2} \cdot v_{3} w_{s}=v_{2} v_{3} w_{s}, & v_{i} \cdot v_{i} v_{j} w_{s}=v_{j} w_{s}, & \\
w_{s} \cdot v_{i} v_{j}=v_{i} v_{j} w_{s}, & w_{1} \cdot v_{i} v_{j} w_{2}=v_{i} v_{j}, & w_{2} \cdot v_{i} v_{j} w_{1}=-v_{i} v_{j} \\
w_{1} \cdot w_{2}^{3}=3 w_{2}^{2}, & w_{1} \cdot w_{1} w_{2}^{2}=2 w_{1} w_{2}, & w_{1} \cdot w_{1}^{2} w_{2}=w_{1}^{2} \\
w_{2} \cdot w_{1}^{3}=-3 w_{1}^{2}, & w_{2} \cdot w_{1} w_{2}^{2}=-w_{2}^{2}, & w_{2} \cdot w_{1}^{2} w_{2}=2 w_{1} w_{2} \\
w_{1} \cdot v_{1} w_{2}^{2}=-2 v_{1} w_{2}, & w_{1} \cdot v_{1} w_{1} w_{2}=-v_{1} w_{1}, & \\
w_{2} \cdot v_{1} w_{1}^{2}=-2 v_{1} w_{1}, & w_{2} \cdot v_{1} w_{1} w_{2}=v_{1} w_{2} &
\end{array}
$$

$$
1=w_{1} \circ w_{2}=\frac{1}{2}\left(w_{1} w_{2}-w_{2} w_{1}\right)
$$

A counter-example

it is easy to check that the superspace \mathcal{A} with the multiplication above is a Jordan superalgebra and the quotient superalgebra is isomorphic to superalgebra of superform

$$
\mathcal{A} / \mathcal{N} \cong\left(\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}\right) \dot{+}\left(\mathbb{F} \cdot w_{1}+\mathbb{F} \cdot w_{2}\right) \text { e } \mathcal{N} \cong \mathcal{C}_{3} / \mathcal{C}_{1} .
$$

A counter-example

it is easy to check that the superspace \mathcal{A} with the multiplication above is a Jordan superalgebra and the quotient superalgebra is isomorphic to superalgebra of superform

$$
\mathcal{A} / \mathcal{N} \cong\left(\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}\right) \dot{+}\left(\mathbb{F} \cdot w_{1}+\mathbb{F} \cdot w_{2}\right) \text { e } \mathcal{N} \cong \mathcal{C}_{3} / \mathcal{C}_{1} .
$$

In particular, we have that

$$
\mathcal{A}_{0} / \mathcal{N}_{0} \cong \mathfrak{J}\left(V_{0}, f\right)=\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}
$$

is a Jordan algebra.

A counter-example

it is easy to check that the superspace \mathcal{A} with the multiplication above is a Jordan superalgebra and the quotient superalgebra is isomorphic to superalgebra of superform

$$
\mathcal{A} / \mathcal{N} \cong\left(\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}\right) \dot{+}\left(\mathbb{F} \cdot w_{1}+\mathbb{F} \cdot w_{2}\right) \text { e } \mathcal{N} \cong \mathcal{C}_{3} / \mathcal{C}_{1} .
$$

In particular, we have that

$$
\mathcal{A}_{0} / \mathcal{N}_{0} \cong \mathfrak{J}\left(V_{0}, f\right)=\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}
$$

is a Jordan algebra.
Since the PWT is valid for Jordan algebras, then there exist $\widetilde{v_{i}} \in \mathcal{A}_{0}$ such that $\widetilde{v}_{i} \equiv v_{i} \bmod \mathcal{N}_{0}$ and $\widetilde{v}_{i}^{2}=1, \widetilde{v}_{i} \cdot \widetilde{v}_{j}=0 i \neq j$.

A counter-example

it is easy to check that the superspace \mathcal{A} with the multiplication above is a Jordan superalgebra and the quotient superalgebra is isomorphic to superalgebra of superform

$$
\mathcal{A} / \mathcal{N} \cong\left(\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}\right) \dot{+}\left(\mathbb{F} \cdot w_{1}+\mathbb{F} \cdot w_{2}\right) \text { e } \mathcal{N} \cong \mathcal{C}_{3} / \mathcal{C}_{1} .
$$

In particular, we have that

$$
\mathcal{A}_{0} / \mathcal{N}_{0} \cong \mathfrak{J}\left(V_{0}, f\right)=\mathbb{F} \cdot 1+\mathbb{F} \cdot v_{1}+\mathbb{F} \cdot v_{2}+\mathbb{F} \cdot v_{3}
$$

is a Jordan algebra.
Since the PWT is valid for Jordan algebras, then there exist $\widetilde{v}_{i} \in \mathcal{A}_{0}$ such that $\widetilde{v}_{i} \equiv v_{i} \bmod \mathcal{N}_{0}$ and $\widetilde{v}_{i}^{2}=1, \widetilde{v}_{i} \cdot \widetilde{v}_{j}=0 i \neq j$. We assume $\widetilde{v}_{i}=v_{i}$.

A counter-example

$(\mathcal{A} / \mathcal{N})_{1} \cong$

$$
\mathbb{F} \cdot w_{1}+\mathbb{F} \cdot w_{2}
$$

If the PWT is valid for \mathcal{A} then there exists elements $\widetilde{w_{1}}, \widetilde{w_{2}} \in \mathcal{A}_{1}$ such that $\widetilde{w_{s}} \equiv w_{s}$ and $\widetilde{w_{1}} \cdot \widetilde{w_{2}}=1, \widetilde{w_{s}} \cdot v_{i}=0$.

A counter-example

We recall that
$\mathcal{N}_{1}=\operatorname{Vect}\left\langle v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle$, and we can adopt

A counter-example

We recall that
$\mathcal{N}_{1}=\operatorname{Vect}\left\langle v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle$, and we can adopt $\widetilde{w}_{i}=w_{i}+\sum_{\omega \in \mathcal{N}_{1}} \alpha_{\omega} \omega$,

A counter-example

We recall that
$\mathcal{N}_{1}=\operatorname{Vect}\left\langle v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle$, and we can adopt $\widetilde{w}_{i}=w_{i}+\sum_{\omega \in \mathcal{N}_{1}} \alpha_{\omega} \omega$,
Now, it is possible to prove that

$$
\begin{aligned}
& \widetilde{w_{1}}=w_{1}+\alpha_{11} w_{1}^{3}+\alpha_{21} w_{1}^{2} w_{2}+\alpha_{31} w_{1} w_{2}^{2}+\alpha_{41} w_{2}^{3} \\
& \widetilde{w_{2}}=w_{2}+\alpha_{12} w_{1}^{3}+\alpha_{22} w_{1}^{2} w_{2}+\alpha_{32} w_{1} w_{2}^{2}+\alpha_{42} w_{2}^{3}
\end{aligned}
$$

, but $v_{1} v_{2} v_{3}$ is a non zero
vector.

A counter-example

We recall that
$\mathcal{N}_{1}=\operatorname{Vect}\left\langle v_{i} w_{s}, v_{1} v_{2} w_{s}, v_{1} v_{3} w_{s}, v_{2} v_{3} w_{s}, w_{s}^{3}, w_{s}^{2} w_{t}\right\rangle$, and we can adopt $\widetilde{w}_{i}=w_{i}+\sum_{\omega \in \mathcal{N}_{1}} \alpha_{\omega} \omega$,
Now, it is possible to prove that

$$
\begin{aligned}
& \widetilde{w_{1}}=w_{1}+\alpha_{11} w_{1}^{3}+\alpha_{21} w_{1}^{2} w_{2}+\alpha_{31} w_{1} w_{2}^{2}+\alpha_{41} w_{2}^{3} \\
& \widetilde{w_{2}}=w_{2}+\alpha_{12} w_{1}^{3}+\alpha_{22} w_{1}^{2} w_{2}+\alpha_{32} w_{1} w_{2}^{2}+\alpha_{42} w_{2}^{3}
\end{aligned}
$$

therefore $\widetilde{w_{1}} \cdot \widetilde{w_{2}}=1$
, but $v_{1} v_{2} v_{3}$ is a non zero vector.

A counter-example

We recall that $w_{1} \cdot w_{2}=1+v_{1} v_{2} v_{3}$

$$
\begin{aligned}
& \widetilde{w_{1}}=w_{1}+\alpha_{11} w_{1}^{3}+\alpha_{21} w_{1}^{2} w_{2}+\alpha_{31} w_{1} w_{2}^{2}+\alpha_{41} w_{2}^{3} \\
& \widetilde{w_{2}}=w_{2}+\alpha_{12} w_{1}^{3}+\alpha_{22} w_{1}^{2} w_{2}+\alpha_{32} w_{1} w_{2}^{2}+\alpha_{42} w_{2}^{3}
\end{aligned}
$$

therefore $\widetilde{w_{1}} \cdot \widetilde{w_{2}}=1$ if and only if $v_{1} v_{2} v_{3}=0$, but $v_{1} v_{2} v_{3}$ is a non zero vector.

References

居 V.G. Kac, Classification of simple \mathbb{Z}-graded Lie superalgebras and simple Jordan superalgebras; Comunications in algebra, 5(13),1375-1400 (1977).
Jacobson N, The structure and representations of Jordan algebras; Ame. Math Soc, Colloquium Publications 39 No. 2 (1968).
N. A. Pisarenko, The Wedderburn decomposition in finite dimensional alternative superalgebras, Algebra i logika, 32, No. 4, 231-238 (1993).
(e. M.L. Racine, and E.I. Zelmanov, Simple Jordan Superalgebras with semisimple even part, J. Algebra 270, no.2, 374-444 (2003).
(i- C. Martinez, and E.I. Zelmanov, Representation theory of Jordan superalgebras I; Trans. of american Mathematical Society 362 no. 2, (815-846) 2010.

THANKS FOR YOUR ATTENTION!

