SIMPLE RIGHT CONJUGACY CLOSED LOOPS

Mark Greer

Department of Mathematics

Mile High Conference 11 August 2013

3

イロト 不得 トイヨト イヨト

Definition

For a loop Q, we define: left and right translations of a by x right section of Q right multiplication group of Q multiplication group of Q inner mapping group of Q

$$\begin{array}{ll} aL_x = xa & aR_x = ax \\ R_Q = \{R_x \mid x \in Q\} \\ \mathrm{Mlt}_{\rho}(Q) = \langle R_Q \rangle \\ \mathrm{Mlt}(Q) = \langle L_x, R_x \mid \forall x \in Q \rangle \\ \mathrm{Inn}(Q) = \{\theta \in \mathrm{Mlt}(Q) | 1\theta = 1\} \end{array}$$

Definition

A subset S of a group G is closed under conjugation if $x^{-1}yx \in S$ for all $x, y \in S$.

Defintion

A loop Q is a *right conjugacy closed loop* (or RCC loop) if R_Q is closed under conjugation. **Note:** $R_x^{-1}R_yR_x \in R_Q$ for all $x, y \in Q$.

Mark Greer (UNA)

Background

Proposition

For a loop Q, the following are equivalent:

- (1) Q is an RCC loop,
- (2) The following holds for all $x, y, z \in Q$:

$$R_x^{-1}R_yR_x = R_{x\setminus yx}.$$
 (RCC₁)

(3) The following holds for all $x, y, z \in Q$:

$$(xy)z = (xz) \cdot z \setminus (yz). \tag{RCC}_2$$

イロト 不得下 イヨト イヨト 二日

3 / 20

Definition

For a loop Q, a subset S of Q is a subloop if $(S, \cdot, \backslash, /)$ is a loop. A subloop N of a loop Q is a *normal subloop*, $N \leq Q$, if it is invariant under Inn(Q).

Definitions

the left nucleus of Q, the middle nucleus of Q, the right nucleus of Q, the nucleus of Q, the commutant of Q, the center of Q,

$$N_{\lambda}(Q) = \{a \in Q \mid a \cdot xy = ax \cdot y \ \forall x, y \in Q \},\$$

$$N_{\mu}(Q) = \{a \in Q \mid x \cdot ay = xa \cdot y \ \forall x, y \in Q \},\$$

$$N_{\rho}(Q) = \{a \in Q \mid x \cdot ya = xy \cdot a \ \forall x, y \in Q \},\$$

$$N(Q) = N_{\lambda}(Q) \cap N_{\mu}(Q) \cap N_{\rho}(Q),\$$

$$C(Q) = \{a \in Q \mid xa = ax \ \forall x \in Q\},\$$

$$Z(Q) = N(Q) \cap C(Q).$$

イロト 不得 トイヨト イヨト 二日

Background

Proposition

Let Q be a RCC loop. Then

- (i) $N_{\mu}(Q) = N_{\rho}(Q) \trianglelefteq Q$ and
- (ii) $C(Q) \leq N_{\lambda}(Q)$.

Note:

Let Q be a RCC-loop with $N \leq Q$ and consider $R_N = \{R_x \mid x \in N\}$. Fix $x \in N$ and then $\forall y \in Q$, $R_y R_x R_y^{-1} = R_{(yx/y)} \in R_N$ since $yx/y \in N$. Hence, normal subloops of Q correspond to unions of conjugacy classes in R_Q .

イロト 不得下 イヨト イヨト 二日

Notation

Let \mathbb{F}_q be the finite field of order where $q = p^n$ for a prime p and some n > 0. For a matrix M, let

Det(M) denote the determinant of the matrix M,

Tr(M) denote the trace of the matrix M and

Char(M) denote the characteristic polynomial of the matrix M.

All matrices will be of size 2×2 (*i.e.* $M \in GL(2, q)$), hence

$$Char(M) = x^2 - Tr(M)x + Det(M) \in \mathbb{F}_q[x].$$

Setup

First, let $f(x) = x^2 - rx + s$ be irreducible in $\mathbb{F}_q[x]$. For each $b \in \mathbb{F}_q$, define

$$M_{(0,b)} = \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}$$

and for $a \neq 0$,

$$M_{(a,b)} = \begin{pmatrix} r-b & rac{f(b)}{-a} \\ a & b \end{pmatrix}$$

Simple Right Conjugacy Closed loops

Lemma

Let $f(x) = x^2 - rx + s$ be irreducible in $\mathbb{F}_q[x]$. The conjugacy class of all matrices in GL(2, q) with characteristic polynomial f(x) is precisely the set $\{M_{(a,b)} \mid a, b \in \mathbb{F}_q\}$ for $a \neq 0$.

Theorem (MG)

Let $f(x) = x^2 - rx + s$ be irreducible in $\mathbb{F}_p[x]$. Let $Q = \mathbb{F}_q^2 \setminus \{[0, 0]\}$, written as a set of row vectors. Define a binary operation \circ_f on Q by

$$[a, b] \circ_f [c, d] = [a, b] M_{(c,d)}.$$

Then (Q, \circ_f) is a loop.

Note

In (Q, \circ_f) , we have (i) $[a, b] \circ_f [c, d] = [a(r - d) + bc, \frac{-af(d)}{c} + bd]$ $c \neq 0$, (ii) $[a, b] \circ_f [c, d] = [ad, bd]$ c = 0,

Notation

In (Q, \circ_f) ,

- (i) [x, y] denotes an element in Q,
- (ii) $R_{[x,y]}$ denotes the right translation by [x, y],
- (iii) $M_{(x,y)}$ denotes the matrix associated with the right translation by [x, y].

Lemma (MG)

In (Q, \circ_f)

(i) for
$$a \neq 0$$
, $R_{[a,b]}^{-1} = M_{(a,b)}^{-1} = \begin{pmatrix} r-b & \frac{f(b)}{-a} \\ a & b \end{pmatrix}^{-1} = \frac{1}{s} \begin{pmatrix} b & f(b)/a \\ -a & r-b \end{pmatrix} = \frac{1}{s} M_{[-a,r-b]},$
(ii) $R_{[0,b]}^{-1} = \frac{1}{b} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$
(iii) $R_{[a,b],[c,d]} = M_{(a,b)} M_{(c,d)} M_{[a,b] \circ r[c,d]}^{-1} = \begin{cases} s & \frac{-(a^2 s f(d) - a b c d s - a b c d + a b c r + a c d r - a c r^2 + a c r s + c^2 f(b))}{(a c (b c - a d + a r))} \end{pmatrix},$
(iv) $R_{[a,b],[0,d]} = M_{(a,b)} M_{(0,d)} M_{[a,b] \circ r[0,d]}^{-1} = \begin{pmatrix} d^2 & \frac{(d-1)(b-r+bd)}{a} \\ 0 & 1 \end{pmatrix},$
(v) $R_{[0,b],[c,d]} = M_{(0,b)} M_{(c,d)} M_{[0,b] \circ r[c,d]}^{-1} = \begin{pmatrix} b^2 & \frac{(b-1)(d-r+bd)}{a} \\ 0 & 1 \end{pmatrix}$ and
(vi) $R_{[0,b],[0,d]} = M_{(0,b)} M_{(0,d)} M_{[0,b] \circ r[0,d]}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

Mark Greer (UNA)

Simple RCC Loops

3

▲□▶ ▲圖▶ ▲臣▶ ★臣▶

Proposition

Let Q be a loop. Then $a \in C(Q) \cap N_{\lambda}(Q) \Leftrightarrow R_a \in Z(Mlt_{\rho}(Q)).$

Lemma

$$C(Q, \circ_f) = \{ [0, b] \mid \forall b \in \mathbb{F}_q \ b \neq 0 \}.$$
 That is, the only elements of $C(Q, \circ_f)$ are in the set $\{R_{[a,b]} \mid [a,b] \in C(Q, \circ_f)\}.$

Theorem (MG)

 (Q, \circ_f) is an RCC loop.

Lemma (MG)

Let
$$q \neq 3$$
. Then $C(Q, \circ_f) = N_{\lambda}(Q, \circ_f)$. If $q = 3$ and $r \neq 0$, then $C(Q, \circ_f) = N_{\lambda}(Q, \circ_f)$.

Mark Greer (UNA)

イロト イロト イヨト イヨト 三日

Simple Right Conjugacy Closed loops

Note

As noted before, normal subloops of Q correspond to unions of conjugacy classes of matrices in GL(2,q) which are contained in $R_{(Q,\circ_f)}$. $R_{(Q,\circ_f)}$ itself is the union of conjugacy classes, namely, $\{M_{(a,b)}|a, b \in Q, a, b \neq 0\}$, which has size $q^2 - q$, and the q - 1 one-element conjugacy classes in the center of GL(2,q). Since the order of a normal subloop of Q must divide $|Q| = q^2 - 1$.

Lemma (MG)

The only non-trivial normal subgroups of (Q, \circ_f) are $C(Q, \circ_f)$ and $\{[0, 1], [0, -1]\}$.

Simple Right Conjugacy Closed loops

Theorem (MG)

Let $f(x) = x^2 - rx + s$ be irreducible. (i) If $r \neq 0$, then (Q, \circ_f) is simple.

(ii) If r = 0, then $Z(Q, \circ_f) = \{[0, \pm 1]\}$ and $(Q, \circ_f)/Z(Q, \circ_f)$ is simple.

イロト 不得下 イヨト イヨト 二日

Elements

Let q = 3 and hence the elements of (Q, \circ_f) are

 $\{[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2]\}.$

Conjugacy Class

Let $f(x) = x^2 + 2x + 2$ and note that f(x) is irreducible in \mathbb{F}_3 .

$$\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} \right\}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Full Set of Matrices

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} \right\},$$

Note

$$M_{(0,1)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, M_{(0,2)} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} M_{(1,0)} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \dots$$

Mark Greer (UNA)

Simple RCC Loops

14 / 20

Visualizing the construction

Mark Greer (UNA)

Simple RCC Loops

15 / 20

Visualizing the construction

Visualizing the construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Right Section

$$\begin{split} R_{(Q,\circ_f)} &= \{(), (1,2)(3,6)(4,8)(5,7), (1,3,4,7,2,6,8,5), (1,4,5,6,2,8,7,3), \\ &(1,5,3,8,2,7,6,4), (1,6,7,4,2,3,5,8), (1,7,8,3,2,5,4,6), (1,8,6,5,2,4,3,7)\}. \end{split}$$

Loop (Q, \circ_f)

\circ_f	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	6	8	7	3	5	4
3	3	6	4	1	8	5	2	7
4	4	8	7	5	1	2	6	3
5	5	7	1	6	3	8	4	2
6	6	3	8	2	4	7	1	5
7	7	5	2	3	6	4	8	1
8	8	4	5	7	2	1	3	6

Table: Multiplication Table for (Q, \circ_f)

イロン 不通 と イヨン イヨン

Conclusion

Simple RCC Loops

q	Order	Number of	Number of	Number of	Exhaustive
·		primitive	non-isomorphic,	Simple RCC loops	
		polynomials	nonassociative		
			RCC Loops		
3	8	3	3	2	\checkmark
5	12	2	2	2	\checkmark
4	15	6	3	3	\checkmark
5,7	24	10,3	13	11	
9	40	2	2	2	
7	48	21	21	18	
11	60	5	5	5	
8	63	28	10	10	
9	80	36	18	16	
13	84	6	6	6	
11	120	55	55	50	
13	168	78	78	72	
16	255	120	30	30	

3

・ロト ・四ト ・ヨト ・ヨト

Conclusion

Conjecture 1

For (Q, \circ_f)

$$\mathrm{Inn}_
ho(Q,\circ_f)=\{egin{pmatrix} x & y \ 0 & 1 \end{pmatrix} \mid x=a^2s^m \quad a,y\in \mathbb{F}_q \quad m\in \mathbb{Z}\}.$$

Conjecture 2

Let p be a prime number.

- (i) If q = p, then the number of nonisomorphic RCC loops constructed from GL(2, q) is $\frac{q^2-q}{2}$.
- (ii) If $q = p^2$, then the number of nonisomorphic RCC loops constructed from GL(2, q) is $\frac{q^2-q}{4}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの