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Old dog...

Many people, including Felix and Sergey:

Motivated by Vertex Operator Algebras (VOA), consider algebras
containing idempotents with eigenvalues{

1, 0, 1
4 ,

1
32

}
Jon:

Consider algebras containing idempotents with eigenvalues

{1, 0, ζ, η}

“Proof of concept” {1, 0, η}
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New trick

Jon to Sergey and Felix:
I (seem to) have a proof of the "Proof of concept"

theorem. And it contains a surprise.

Sergey to Jon:
Thanks for the file. Indeed, this is a surprise. I

was aware that the Jordan algebra case does not

necessarily lead to a 3-transposition group, but this

being the only exception is completely unexpected!

Jon to Sergey:
Jordan algebras?

Mile High Conference, Denver, 12 August 2013 3 / 1



Algebras

For a vector space V over the field F, an algebra structure is an
F-linear map multiplication:

V ⊗ V −→ V given by v ⊗ w 7→ vw .

Alternatively, we have its adjoint actions—linear maps from V to
its space of F-endomorphisms:

v 7→ LAdv with LAdv (w) = vw .

v 7→ RAdv with RAdv (w) = wv .

The salient qualities of the algebra V are often given in terms of
the representation theoretic behaviour of its adjoint image in the
associative algebra EndF(V ).
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Representation theory

A class of algebras is often characterized by properties of the
adjoint action of single elements plus some type of Jacobi identity.

Examples

I Associative Algebra

I Lie Algebra

I Jordan Algebra

A Jordan algebra on V is given by the identities:

I (Single elements) LAdv = RAdv = Adv .

I (Jacobi identity) [Adv2 ,Adv ] = 0 .

E.g., V+ = (V ,+, ◦) with v ◦ w = 1
2 (vw + wv) .

(Associative (V ,+, ·) with char(F) 6= 2.)
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Semisimplicity

I (Associative) The center is spanned by idempotents with
Ad-eigenvalues {0, 1}.

I (Lie) There are a nondegenerate invariant form and Cartan
elements and subalgebras sl2 whose representation on V is
highly restricted.

I (Jordan) There are a nondegenerate invariant form and
idempotents with Ad-eigenvalues

{
0, 1, 1

2

}
and graded

Ad-eigenspaces.

invariant form: 〈〈x , y〉〉 = 〈〈y , x〉〉 and 〈〈xy , z〉〉 = 〈〈x , yz〉〉

Mile High Conference, Denver, 12 August 2013 6 / 1



Vertex Operator Algebras

The VOA of interest here are given by, roughly:

I V =
⊕

n≥0 V(n), a C-space with V(0) = C1, V(1) = 0 .

I (Multiplication (many)) V ⊗ V −→ V [[z , z−1]] .

I (Single elements) various restrictions; e.g., 1⊗ v 7→ v z0 .

I (Jacobi identity) For v ∈ V let Adv (z) be the “adjoint power
series” of endomorphisms of V . For N = N(v ,w) >> 0,

(z1 − z2)N [Adv (z1),Adw (z2)] = 0 .

I (Semisimplicity I) V admits a positive definite form.

I (Semisimplicity II) There are conformal vectors ω ∈ V(2) of

central charge 1
2 for which the coefficients of Adω(z) provide

Virasoro subalgebras.
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Automorphisms

The representation theory of Virasoro algebras led Miyamoto to
the amazing result:

Miyamoto 1996

Each conformal vector of central charge 1
2 gives a Z2-grading on

these VOA that commutes with the original N-grading. Thus these
conformal vectors lead to a normal set of involutions in the
automorphism group of the VOA respecting the grading.

For the Monster VOA V \ associated with the Monster sporadic
simple group M, the Miyamoto involutions form the class of 2A (or
“extra” or “triality”) involutions.
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Evolution

I (Griess 1981) constructs the Monster sporadic simple group M
as the automorphism group of a nonassociative, commutative
algebra in dimension 196884, the Griess algebra G.

I (Frenkel, Lepowsky, Meurman 1988, Borcherds 1986)

construct the Monster VOA V \ with G = V \
(2).

I (Miyamoto 1996) In every VOA V (of this type) the space V(2)

yields a commutative (probably not associative) algebra
admitting Miyamoto involutions—Griess algebras.

I (Ivanov 2007) isolates certain properties of the Griess algebras
to define Majorana algebras.
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Peirce grading

For m in the F-algebra M and λ ∈ Λ ⊂ F, let Mλ(m) be the
λ-eigenspace for Adm. (We allow Mλ(m) = 0.)

Majorana algebras are required to be generated by idempotents m
(corresponding to conformal vectors) with Peirce decomposition

M = M1(m)⊕M0(m)⊕M 1
4
(m)⊕M 1

32
(m) .

Furthermore Λ+ =
{

1, 0, 1
4

}
; Λ− =

{
1

32

}
is a Z2-grading of M.

Therefore associated with m there is a Miyamoto involution τ(m)
unless M 1

32
= 0 in which case we instead take

Λ+ = {1, 0} ; Λ− =
{

1
4

}
.
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Axial algebras (JIH, FR, SS 2013)

Let disjoint Λ+ and Λ− be subsets of F (of characteristic not 2).

The commutative F-algebra M is an axial algebra with respect to
Λ = Λ+ ∪ Λ− if it is generated by a subset P of idempotent axes
with:

I (Peirce decomposition) For m ∈ P, M =
⊕

λ∈Λ Mλ(m).

I (Z2-grading) For m ∈ P and δ, ε ∈ ±

Mδ(m)Mε(m) ⊆ Mδε(m) ,

where M?(m) =
⊕

λ∈Λ?
Mλ(m).

I (Invariant form) 〈〈·, ·〉〉 is an invariant form from M ×M to F.

I (Primitivity) For m ∈ P, M1(m) = Fm and 〈〈m,m〉〉 = 1.
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Definitions and examples

Old dog:

The axial algebra has Virasoro type (ζ, η) provided
Λ+ = {1, 0, ζ} and Λ− = {η}

Example:
Majorana algebras are axial algebras of Virasoro type

(
1
4 ,

1
32

)
Proof of concept:

The axial algebra has Jordan type η provided
Λ+ = {1, 0} and Λ− = {η}.

Examples: Majorana algebras for Mα = 0 with {α, η} =
{

1
4 ,

1
32

}
;

surprise! : Jordan algebras for η = 1
2 .
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A Sakuma theorem

The main working result:

“Proof of concept theorem” (JIH, FR, SS 2013)

Let M be an axial F-algebra of Jordan type η generated by the two
axes a0 and a1. Then we have one of:

I M is an associative algebra F and |τ(a0)τ(a1)| = 1.

I M is an associative algebra F⊕ F and |τ(a0)τ(a1)| = 2.

I M is of type 3C(η) (or 3C(−1)∗) and |τ(a0)τ(a1)| = 3.

I η = 1
2 and M is a Jordan algebra of dimension at most 3.

Sakuma 2007 proved the corresponding 2-generator theorem for
Griess algebras. (Adapted by Ivanov, Pasechnik, Seress,
Shpectorov 2010 for Majorana algebras.)
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Type 3C(η)

I 3C(η) = Fc−1 ⊕ Fc0 ⊕ Fc1 subject to

c2
i = ci , cicj = η

2 (ci + cj − ck)

with symmetric bilinear form given by

〈〈ci , ci 〉〉 = 1 , 〈〈ci , cj〉〉 = η
2 .

I 3C(−1)∗ = 3C(−1)/F(c−1 + c0 + c1) and so is spanned by
any two of d−1, d0, d1 subject to

d−1 + d0 + d1 = 0 , d2
i = di , didj = dk

with
〈〈di , di 〉〉 = 1 , 〈〈di , dj〉〉 = −1

2 .
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Definition (Fischer 1971)

Let D be a conjugacy class of elements of order 2 in the group
G = 〈D〉. Further assume that, for all d , e ∈ D, we have |de| ≤ 3 .
Then (G ,D) is called a 3-transposition group.

Motivating example: The tranpositions (i , j) of a symmetric group
form a conjugacy class of 3-transpositions.

Corollary to the Sakuma theorem

Let M be a axial algebra of Jordan type η 6= 1
2 . Then the set of

Miyamoto involutions corresponding to all η-axes form a normal
set of 3-transpositions in the automorphism group of M, and M is
a quotient of the F-permutation module for this normal set.

This generalizes observations of Miyamoto (η = 1
4 ) and Shpectorov

(η = 1
32 ).
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This is significant because:

I Fischer’s work (1971) together with that of Cuypers-JIH 1995
essentially classifies all 3-transposition groups.
In particular, they are always locally finite. Hence a finitely
generated axial algebra of Jordan type η 6= 1

2 is finite
dimensional.

I Results by Liebeck, Tiep, Sin, Hong, JIH, and others find
almost all quotients of the corresponding permutation
modules.
In particular, the minimal eigenvalues of their Gram matrices
are known (JIH, SS 2012), so those that are positive (semi-)
definite can be identified.
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Proving the Sakuma Theorem

(i) Set ρ = 〈〈a0, a1〉〉/η.

Also let a−1 = a
τ(a0)
1 and a2 = a

τ(a1)
0 for the dihedral group

〈τ(a0), τ(a1)〉.
(ii) M = Fa0 + Fa1 + Fa2 = Fa0 + Fa1 + Fa−1.

(iii) 〈〈a1a2, a−1〉〉 − 〈〈a1, a2a−1〉〉 = 2(ηρ− 1)ρ(2ρ− 1)(2η − 1) .

As the form is invariant, this must be equal to 0.

The four ways this can happen give the four conclusions of
the theorem.
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A further piece of motivation

How easily can we get to

PΩ+
8 (2) : Sym(3) ≤ PΩ+

8 (3) : Sym(3) ≤ Fi23

from

PΩ+
8 (2) : Sym(3) ≤ PΩ+

8 (3) : Sym(3) ??

Fischer 1973:
PΩ+

8 (2) : Sym(3) ≤ PΩ+
8 (3) : Sym(3) ≤ Fi23 ≤ BM ≤M

Cuypers, Horn, in ’t panhuis, Shpectorov 2012:

PΩ+
8 (3) : Sym(3) ≤ Fi23 simultaneously act on an

“F2-axial algebra with Jordan type η = 2 and dimension 782”
(although by our definitions, this makes no sense).
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