G_{2} and the Rolling Ball

G_{2} and the Rolling Ball

John Huerta

arXiv:1205.2447
with John Baez and James Dolan

http://math.ucr.edu/~huerta
CAMGSD
Instituto Superior Técnico

3rd Mile High Conference, Denver, CO
13 August 2013

The Cartan-Killing classification

Up to choice of cover and real form, the simple Lie groups are:

- Three infinite families, $\mathrm{SO}(n), \mathrm{SU}(n)$, and $\mathrm{Sp}(n)$.
- Five exceptions:

$$
\mathrm{G}_{2}, \quad \mathrm{~F}_{4}, \quad \mathrm{E}_{6}, \quad \mathrm{E}_{7}, \quad \mathrm{E}_{8} .
$$

The Cartan-Killing classification

Up to choice of cover and real form, the simple Lie groups are:

- Three infinite families, $\mathrm{SO}(n), \mathrm{SU}(n)$, and $\mathrm{Sp}(n)$.
- Five exceptions:

$$
\mathrm{G}_{2}, \quad \mathrm{~F}_{4}, \quad \mathrm{E}_{6}, \quad \mathrm{E}_{7}, \quad \mathrm{E}_{8} .
$$

- The infinite families are the respective symmetry groups of $\mathbb{R}^{n}, \mathbb{C}^{n}, \mathbb{H}^{n}$ with inner product.
- Where do the exceptions come from? They're all related to (1).

The split real form of G_{2}

We will relate two models for the split real form of G_{2}, both essentially due to Cartan:

- $\mathrm{G}_{2}=\operatorname{Aut}\left(\mathbb{O}^{\prime}\right)$, where \mathbb{O}^{\prime} is the 'split octonions'.
- $\mathfrak{g}_{2}=\operatorname{Lie}\left(\mathrm{G}_{2}\right)$ acts locally as symmetries of one ball rolling on another without slipping or twisting, provided the ratio of radii is 3:1 or 1:3.

The split real form of G_{2}

We will relate two models for the split real form of G_{2}, both essentially due to Cartan:

- $\mathrm{G}_{2}=\operatorname{Aut}\left(\mathbb{O}^{\prime}\right)$, where \mathbb{O}^{\prime} is the 'split octonions'.
- $\mathfrak{g}_{2}=\operatorname{Lie}\left(\mathrm{G}_{2}\right)$ acts locally as symmetries of one ball rolling on another without slipping or twisting, provided the ratio of radii is 3:1 or 1:3.
Relating the two will explain

Split octonions

... are pairs of quaternions:

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H}
$$

with product $(a, b)(c, d)=(a c+\bar{d} b, \bar{a} d+c b)$.

Split octonions

.... are pairs of quaternions:

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H}
$$

with product $(a, b)(c, d)=(a c+\bar{d} b, \bar{a} d+c b)$.
They form a composition algebra: there is a quadratic form Q on \mathbb{O}^{\prime} such that

$$
Q(x y)=Q(x) Q(y), \quad x, y \in \mathbb{O}^{\prime}
$$

On pairs of quaternions, this is given by:

$$
Q(a, b)=|a|^{2}-|b|^{2}, \quad(a, b) \in \mathbb{H} \oplus \mathbb{H}
$$

G_{2} acts on ...

- \mathbb{O}^{\prime}, fixing $1 \in \mathbb{O}^{\prime}$ and preserving Q;
- $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)=\operatorname{Im}(\mathbb{H}) \oplus \mathbb{H}$, the subspace orthogonal to 1 ;
- $C=\left\{x \in \operatorname{Im}\left(\mathbb{O}^{\prime}\right): Q(x)=0\right\}$, the space of null vectors in $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$;
- $\mathrm{PC}=1 \mathrm{~d}$ null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$, the projectivization of C.

G_{2} acts on...

- \mathbb{O}^{\prime}, fixing $1 \in \mathbb{O}^{\prime}$ and preserving Q;
- $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)=\operatorname{Im}(\mathbb{H}) \oplus \mathbb{H}$, the subspace orthogonal to 1 ;
- $C=\left\{x \in \operatorname{Im}\left(\mathbb{O}^{\prime}\right): Q(x)=0\right\}$, the space of null vectors in $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$;
- $\mathrm{PC}=1 \mathrm{~d}$ null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$, the projectivization of C.

We will see that this last space is closely related to the rolling ball, provided the ratio of radii is $1: 3$.

Rolling balls

The configuration space of the rolling ball is $S^{2} \times \mathrm{SO}(3)$.

Figure : Bor and Montgomery, 2009.
We will consider a ball of unit radius rolling on a fixed ball of radius R, and see why $R=3$ is special.

Without slipping or twisting

We encode the constraint in an incidence geometry, a barebones geometry with points, lines, and an incidence relation, telling us which points lie on which lines.

Without slipping or twisting

We encode the constraint in an incidence geometry, a barebones geometry with points, lines, and an incidence relation, telling us which points lie on which lines.

There is an incidence geometry with:

- Points are elements of $S^{2} \times \mathrm{SO}(3)$;
- Lines are given by rolling without slipping or twisting along great circles.

Without slipping or twisting

Without slipping or twisting

If the central angle changes by θ, the rolling ball rotates by $(R+1) \theta$.

- Points are elements of $S^{2} \times \mathrm{SO}(3)$;
- Lines are given by subsets of the form:

$$
L=\{(\cos (\theta) u+\sin (\theta) v, \mathbf{R}(u \times v,(R+1) \theta) g): \theta \in \mathbb{R}\}
$$

where u, v are orthonormal, $g \in \mathrm{SO}(3)$ and $\mathbf{R}(w, \alpha)$ denotes the right-handed rotation about the w-axis by angle α.

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

 Remember:$\mathrm{PC}=1 \mathrm{~d}$ null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

Remember:
$\mathrm{PC}=1 \mathrm{~d}$ null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$

$$
=\left\{\langle x\rangle: \text { nonzero } x \in \operatorname{Im}\left(\mathbb{O}^{\prime}\right), Q(x)=0\right\}
$$

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

Remember:

$\mathrm{PC}=1 \mathrm{~d}$ null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$
$=\left\{\langle x\rangle\right.$: nonzero $\left.x \in \operatorname{Im}\left(\mathbb{O}^{\prime}\right), Q(x)=0\right\}$
$=\left\{\langle(a, b)\rangle:\right.$ nonzero $\left.(a, b) \in \operatorname{Im}(\mathbb{H}) \oplus \mathbb{H},|a|^{2}=|b|^{2}\right\}$

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

Remember:

$$
\begin{aligned}
\mathrm{PC} & =1 \mathrm{~d} \text { null subspaces of } \operatorname{Im}\left(\mathbb{O}^{\prime}\right) \\
& =\left\{\langle x\rangle: \text { nonzero } x \in \operatorname{Im}\left(\mathbb{O}^{\prime}\right), Q(x)=0\right\} \\
& =\left\{\langle(a, b)\rangle \text { : nonzero }(a, b) \in \operatorname{Im}(\mathbb{H}) \oplus \mathbb{H},|a|^{2}=|b|^{2}\right\} \\
& =\frac{S^{2} \times S^{3}}{(a, b) \sim(-a,-b)} .
\end{aligned}
$$

This last space

$$
\frac{S^{2} \times S^{3}}{\mathbb{Z}_{2}}
$$

tells us PC is awfully similar to the rolling ball configuration space:

$$
S^{2} \times \mathrm{SO}(3) .
$$

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

Recall:

- $S^{3} \subset \mathbb{H}$ is the group of unit quaternions.
- $\frac{S^{3}}{\mathbb{Z}_{2}} \cong \mathrm{SO}(3)$.

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

Recall:

- $S^{3} \subset \mathbb{H}$ is the group of unit quaternions.
- $\frac{S^{3}}{\mathbb{Z}_{2}} \cong \mathrm{SO}(3)$.
- Alas:

$$
\frac{S^{2} \times S^{3}}{\mathbb{Z}_{2}} \neq S^{2} \times \mathrm{SO}(3)
$$

Hiding inside $\operatorname{Im}\left(\mathbb{O}^{\prime}\right) \ldots$

Recall:

- $S^{3} \subset \mathbb{H}$ is the group of unit quaternions.
- $\frac{S^{3}}{\mathbb{Z}_{2}} \cong \mathrm{SO}(3)$.
- Alas:

$$
\frac{S^{2} \times S^{3}}{\mathbb{Z}_{2}} \not \equiv S^{2} \times \mathrm{SO}(3)
$$

- Instead:

$$
\frac{S^{2} \times S^{3}}{\mathbb{Z}_{2}} \cong \mathbb{R} \mathrm{P}^{2} \times S^{3}
$$

We will think of $\mathbb{R} \mathrm{P}^{2} \times S^{3}$ as the configuration space of a spinor rolling on a projective plane.

Spinor rolling on a projective plane

- $\mathbb{R} P^{2}$ is S^{2} with antipodal points identified; so instead of one ball, we consider a pair, rolling in sync.
- The ball is a spinor: it is rotated by elements of S^{3} instead of $\mathrm{SO}(3)$. Since

$$
S^{3} \rightarrow \mathrm{SO}(3)
$$

is a double-cover, it takes a 720° rotation to get back where you started.

Spinor rolling on a projective plane

Without slipping or twisting

There is an incidence geometry where:

- Points are elements of $\mathbb{R}^{2} \times S^{3}$.
- Lines are given by a spinor rolling without slipping or twisting along lines of $\mathbb{R} \mathrm{P}^{2}$.

Without slipping or twisting

There is an incidence geometry where:

- Points are elements of $\mathbb{R} P^{2} \times S^{3}$.
- Lines are given by a spinor rolling without slipping or twisting along lines of $\mathbb{R} P^{2}$. Explicitly, lines are given by subsets of the form:

$$
\left.L=\left\{\left(\pm e^{\theta w} u, e^{\frac{R+1}{2} \theta w} q\right)\right): \theta \in \mathbb{R}\right\}
$$

where u, w are orthonormal, $q \in S^{3}$ and the exponentiation takes place in \mathbb{H}.

When $R=3$

Remember, $\mathbb{R P}^{2} \times S^{3} \cong \mathrm{PC}$, the space of null 1 d subspaces in $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$.
Theorem
If and only if $R=3$, the incidence geometry of a spinor rolling on a projective plane coincides with the incidence geometry where

- Points are 1d null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$, i.e. elements of $P C$.
- Lines are $2 d$ null subspaces of $\operatorname{Im}\left(\mathbb{O}^{\prime}\right)$ on which the product vanishes.
G_{2} acts as symmetries of this incidence geometry, hence of the spinor rolling on the projective plane when $R=3$.

Coda

- A spinor needs to turn twice to get back where it started.
- On a projective plane, we get back where we started by going half way around.
- For what ratio of radii do we turn twice as we roll half way around?

Coda

- A spinor needs to turn twice to get back where it started.
- On a projective plane, we get back where we started by going half way around.
- For what ratio of radii do we turn twice as we roll half way around?

Only 1:3

