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August 15, 2013A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Abstract

Introduction
Groupoids, Groups, Quasigroups And Loops
Osborn Loops

Preliminaries

Main Results
Representations of Osborn Loops of order 16

Acknowledgement

References
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Abstract

It is shown that an Osborn loop of order n has n/2 generators.
Given the generators such that R(2)2 = I , the representation Π is
generated by R(2) ◦ R(2 + i) = R(3 + i)∀i = 1, 3, 5, ..., n − 3. The
representation of Osborn loops of order 16 is presented and it is
used as an example to verify the results. It is also shown that the
order of every element of the representation Π divides the order of
the loop, hence, Osborn loops of order 16 are langrangelike.
Keywords: Osborn loops, Representation, order, generators,
isomorphism
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Groupoids, Groups, Quasigroups And Loops
Osborn Loops

GROUPOIDS, GROUPS, QUASIGROUPS AND LOOPS

A loop L is a quasigroup with a neutral element. All groups are
loops but all loops are not groups. Those that are groups are
called associative loops. Thus, loop theory is a generalization of
group theory by introducing non-associativity into the set.
However, we wish to formally define a loop.
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Groupoids, Groups, Quasigroups And Loops
Osborn Loops

A LOOP

Definition
A loop is a set G with binary operation (denoted here simply by
juxtaposition) such that

I for each a in G , the left multiplication map
La : G → G , x → ax is bijective,

I for each a in G , the right multiplication map
Ra : G → G , x → xa is bijective; and

I G has a two-sided identity G .

The order of G is its cardinality |G |.
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Groupoids, Groups, Quasigroups And Loops
Osborn Loops

Definition
A loop (G , ·, /, \, e) is a set G together with three binary
operations (·), (/), (\) and one nullary operation e such that

(i) x · (x\y) = y , (y/x) · x = y for all x , y ∈ G ,

(ii) x\(x · y) = y , (y · x)/x = y for all x , y ∈ G and

(iii) x\x = y/y or e · x = x and x · e = x for all x , y ∈ G .

Definition
Let G be a loop. The set Π ={R(a) : a ∈ G} is called the right
regular representation of G or briefly the representation of G .
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Groupoids, Groups, Quasigroups And Loops
Osborn Loops

Definition
[2, 3] A set Π of permutations on a set G is the representation of a
loop (G , ·) if and only if

(i) I ∈ Π (identity mapping),

(ii) Π is transitive on G (i.e for all x , y ∈ G , there exists a
unique π ∈ Π such that xπ = y),

(iii) if α, β ∈ Π and αβ−1 fixes one element of G , then
α = β.

The left and right representation of a loop G is denoted by

Πλ(G , ·) = Πλ(G ) and Πρ(G , ·) = Πρ(G ) respectively.
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Osborn Loops

Osborn Loops

A loop I (·) is called an Osborn loop if it obeys the identity:

(xλ\y) · zx = x(yz · x) (1)

for all x , y , z ∈ I . Here xλ is the left inverse of x , and a\b is the
left division operation.

The term Osborn loops first appeared in a
work of Huthnance Jr [5] in 1968, on generalized Moufang loops.
However, the equation (1) above is according to Basarab [5] in
1979[1]. For detail see Kinyon[5] and Jaiyeola[2].
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Preliminaries

Theorem
(Huthnance [5] and Basarab) Let G be an Osborn loop.
Nρ(G ) = Nλ(G ) = Nµ(G ) = N(G ) and N(G )/ G .

Lemma
Every Moufang loop is an Osborn loop.

Lemma
An Osborn loop that is flexible or which has the LAP or RAP or
LIP or RIP or AAIP is a Moufang loop. But an Osborn loop that is
commutative or which has the CIP is a commutative Moufang loop.

Remark
The theorem helps to determine a non-Moufang Osborn
loop.Consider also [2, 3]

A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Preliminaries

Theorem
(Huthnance [5] and Basarab) Let G be an Osborn loop.
Nρ(G ) = Nλ(G ) = Nµ(G ) = N(G ) and N(G )/ G .

Lemma
Every Moufang loop is an Osborn loop.

Lemma
An Osborn loop that is flexible or which has the LAP or RAP or
LIP or RIP or AAIP is a Moufang loop. But an Osborn loop that is
commutative or which has the CIP is a commutative Moufang loop.

Remark
The theorem helps to determine a non-Moufang Osborn
loop.Consider also [2, 3]
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Examples of Osborn Loops

Example

(Kinyon [5]) The smallest order for which proper(non-Moufang and
non-CC) Osborn loops with non-trivial nucleus exists is 16. There
are two of such loops.

I Each of the two is a G-loop.

I Each contains as a subgroup, the dihedral group(D4) of order
8.

I For each loop, the center coincides with the nucleus and has
order 2. The quotient by the center is a non-associative
CC-loop of order 8.
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Example (cont’d)

I The second center is Z2 × Z, and the quotient is Z4.

I One loop satisfies L4x = R4
x = I , the other does not.

Their multiplication tables are presented below in form of
acceptable loops as Table 1 and Table 2.
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· 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 4 3 2 1 8 7 6 5 12 11 12 9 16 15 14 13
5 5 6 8 7 1 2 4 3 13 14 16 15 10 9 11 12
6 6 5 7 8 2 1 3 4 14 13 15 16 9 10 12 11
7 7 8 6 5 3 4 2 1 15 16 14 13 12 11 9 10
8 8 7 5 6 4 3 1 2 16 15 13 14 11 12 10 9
9 9 10 11 12 15 16 13 14 5 6 7 8 3 4 1 2
10 10 9 12 11 16 15 14 13 6 5 8 7 4 3 2 1
11 11 12 9 10 13 14 15 16 8 7 6 5 2 1 4 3
12 12 11 10 9 14 13 16 15 7 8 5 6 1 2 3 4
13 13 14 16 15 12 11 9 10 1 2 4 3 7 8 6 5
14 14 13 15 16 11 12 10 9 2 1 3 4 8 7 5 6
15 15 16 14 13 10 9 11 12 4 3 1 2 6 5 7 8
16 16 15 13 14 9 10 12 11 3 4 2 1 5 6 8 7

Table : The first Osborn loop of order 16 that is a G-loop
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� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 4 3 2 1 8 7 6 5 12 11 12 9 16 15 14 13
5 5 6 8 7 1 2 4 3 13 14 16 15 10 9 11 12
6 6 5 7 8 2 1 3 4 14 13 15 16 9 10 12 11
7 7 8 6 5 3 4 2 1 15 16 14 13 12 11 9 10
8 8 7 5 6 4 3 1 2 16 15 13 14 11 12 10 9
9 9 10 11 12 15 16 13 14 7 8 5 6 2 1 4 3
10 10 9 12 11 16 15 14 13 8 7 6 5 1 2 3 4
11 11 12 9 10 13 14 15 16 6 5 8 7 3 4 1 2
12 12 11 10 9 14 13 16 15 5 6 7 8 4 3 2 1
13 13 14 16 15 12 11 9 10 3 4 2 1 6 5 7 8
14 14 13 15 16 11 12 10 9 4 3 1 2 5 6 8 7
15 15 16 14 13 10 9 11 12 2 1 3 4 7 8 6 5
16 16 15 13 14 9 10 12 11 1 2 4 3 8 7 5 6

Table : The second Osborn loop of order 16 that is a G-loop
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·/� 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 1 4 3 6 5 8 7

3 3 4 1 2 7 8 5 6

4 4 3 2 1 8 7 6 5

5 5 6 8 7 1 2 4 3

6 6 5 7 8 2 1 3 4

7 7 8 6 5 3 4 2 1

8 8 7 5 6 4 3 1 2

Table : The Smarandache Subgroup(D4) of an Osborn loop
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1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 8 7 1 2 4 3

6 5 7 8 2 1 3 4

7 8 6 5 3 4 2 1

8 7 5 6 4 3 1 2

Table : The first latin sub-square of length 8 from the first and second
Osborn loops
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9 10 11 12 13 14 15 16

10 9 12 11 14 13 16 15

11 12 9 10 15 16 13 14

12 11 10 9 16 15 14 13

13 14 16 15 10 9 11 12

14 13 15 16 9 10 12 11

15 16 14 13 12 11 9 10

16 15 13 14 11 12 10 9

Table : The second latin sub-square of length 8 from the first and second
Osborn loops
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Construction

Example

(Isere et al[1])
Let I (·) = C2n × C2 that is
I = {(xα, yβ), 0 ≤ α ≤ 2n − 1, 0 ≤ β ≤ 1} and the binary
operation is defined as follows:

(xa, e) · (xb, yβ) = (xa+b, yβ) (2)

(xa, yα) · (xb, e) = (xa+b, yα) (3)

(xa, yα) · (xb, yβ) = (xa+b, yα+β) if b ≡ 0(mod 2) (4)
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Example
cont’d

= (xa+3b, yα+β) if b ≡ 1(mod 2) (5)

(xa, yα) · (xb, yβ) = (xa+3b, yα+3β) if a ≡ 1(mod 2), b ≡ 1(mod 2) (6)

(xb+c , yδ) · (xa, yα) = (xa+b+c , yα+δ) if b ≡ 0(mod 2) (7)

(xb+c , yδ) · (xa, yα) = (xa+3b+c , yα+δ) if b ≡ 1(mod 2) (8)

(xb+c , yβ+γ) · (xa, yα) = (x3a+3b+c , yα+3β+γ) if a ≡ 1(mod 2), b ≡ 1(mod 2)
(9)

Then I (·) is an Osborn loop of order 4n, where n = 2, 3, 4, 6, 9, 12 and 18
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A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Example

cont’d

= (xa+kb, yα+β) if a ≡ 0(mod 2), b ≡ 1(mod 2) (13)

(xa, yα) ·(xb, yβ) = (xa+kb, yα+kβ) if a ≡ 1(mod 2), b ≡ 1(mod 2)
(14)

(xb+c , y δ)·(xa, yα) = (xa+b+c , yα+δ) if a ≡ 0(mod 2), b ≡ 0(mod 2)
(15)

(xb+c , y δ)·(xa, yα) = (xa+kb+c , yα+δ) if a ≡ 0(mod 2), b ≡ 1(mod 2)
(16)

(xb+c , yβ+γ)·(xa, yα) = (xb+c+ka, yβ+γ+kα) if a ≡ 1(mod 2), b ≡ 0(mod 2)
(17)

(xb+c , yβ+γ)·(xa, yα) = (xc+ka+kb, yα+kβ+γ) if a ≡ 1(mod 2), b ≡ 1(mod 2)
(18)

Then I (·) is an Osborn loop of order 4n, where
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Representations of Osborn Loops of order 16

Main Results

Theorem
Let Π be the right regular representation of an Osborn loop of
order 16. Then, the element R(2) and other elements of odd
numbers greater than 2 (R(3),R(5),..,R(15)) that are between 1
and 16 generate the loop.
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Representations of Osborn Loops of order 16

Proof:
Consider an Osborn loop of order 16 represented by Π. Suppose
R(2) ∈ Π is given and suppose other elements of odd numbers
greater than 2 that are between 1 and 16 (R(3),R(5),R(7),R(9),
R(11), R(13) and R(15)) are also given.

Then the other elements
are generated as follows:
R(2)2 = R(3)2 = R(1) = I
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Representations of Osborn Loops of order 16

Proof:
Consider an Osborn loop of order 16 represented by Π. Suppose
R(2) ∈ Π is given and suppose other elements of odd numbers
greater than 2 that are between 1 and 16 (R(3),R(5),R(7),R(9),
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R(4) = R(2) ◦ R(3)

R(6) = R(2) ◦ R(5)

R(8) = R(2) ◦ R(7)

R(10) = R(2) ◦ R(9)

R(12) = R(2) ◦ R(11)

R(14) = R(2) ◦ R(13)

R(16) = R(2) ◦ R(14)

Thus, R(1),R(2),...,R(16) is an Osborn loop of order 16.

Remark
Thus R(2),R(3),R(5),R(7),R(9), R(11), R(13) and R(15) are the
generators of Osborn loops of order 16
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Representations of Osborn Loops of order 16

Corollary

Let Π be the representation of an Osborn loop of order 16, and a
transposition permutation R(2) ∈ Π such that R(2)2 = I . Then,
given the generators in Π,

others are generated by:
R(2) ◦ R(2 + i) = R(3 + i) ∀ i = 1, 3, 5, ..., 13., and R(2 + i)
determines the structure and order of R(3 + i). i.e. R(3 + i)
retains the structure and order of R(2 + i) where i = 1, 3, 5, .., 13.

Remark
If the given generators are of even numbers then the equation
becomes R(2) ◦ R(2 + i) = R(1 + i) ∀ i = 0, 2, 4, ..., 14.
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A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Representations of Osborn Loops of order 16

Proof:
When i = 1, the equation becomes

R(2) ◦ R(3) = R(4)

when i = 3, we have

R(2) ◦ R(5) = R(6)

when i = 5, we have

R(2) ◦ R(7) = R(8)

continuing in this way up to i = 13, we have:

R(2) ◦ R(15) = R(16)

The composition follows from the theorem above. Hence, the
proof.
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Representations of Osborn Loops of order 16

Example

Given the following:

R(2) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

R(3) = (1, 3)(2, 4)(5, 8)(6, 7)(9, 11)(10, 12)(13, 16)(14, 15)

R(5) = (1, 5)(2, 6)(3, 7)(4, 8)(9, 15, 10, 16)(11, 13, 12, 14)

R(7) = (1, 7, 2, 8)(3, 5, 4, 6)(9, 13)(10, 14)(11, 15)(12, 16)

R(9) = (1, 9, 7, 15, 2, 10, 8, 16)(3, 11, 6, 14, 4, 12, 5, 13)
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Representations of Osborn Loops of order 16

Example

cont’d

R(11) = (1, 11, 8, 13, 2, 12, 7, 14)(3, 9, 5, 16, 4, 10, 6, 15)

R(13) = (1, 13, 6, 9, 2, 14, 5, 10)(3, 15, 7, 12, 4, 16, 8, 11)

R(15) = (1, 15, 6, 12, 2, 16, 5, 11)(3, 13, 7, 9, 4, 14, 8, 10)

determine an Osborn loop of order 16
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Representations of Osborn Loops of order 16

Solution
Using the Corollary above, we obtained the following permutations

R(1) = R(2)2 = I

R(4) = (1, 4)(2, 3)(5, 7)(8, 6)(9, 12)(10, 11)(13, 15)(14, 16)

R(6) = (1, 6)(2, 5)(3, 8)(4, 7)(9, 16, 10, 15)(11, 14, 12, 13)

R(8) = (1, 8, 2, 7)(3, 6, 4, 5)(9, 14)(10, 13)(11, 16)(12, 15)

R(10) = (1, 10, 7, 16, 2, 9, 8, 15)(3, 12, 6, 13, 4, 11, 5, 14)
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R(8) = (1, 8, 2, 7)(3, 6, 4, 5)(9, 14)(10, 13)(11, 16)(12, 15)

R(10) = (1, 10, 7, 16, 2, 9, 8, 15)(3, 12, 6, 13, 4, 11, 5, 14)
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A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Representations of Osborn Loops of order 16

Solution
Using the Corollary above, we obtained the following permutations

R(1) = R(2)2 = I

R(4) = (1, 4)(2, 3)(5, 7)(8, 6)(9, 12)(10, 11)(13, 15)(14, 16)

R(6) = (1, 6)(2, 5)(3, 8)(4, 7)(9, 16, 10, 15)(11, 14, 12, 13)

R(8) = (1, 8, 2, 7)(3, 6, 4, 5)(9, 14)(10, 13)(11, 16)(12, 15)

R(10) = (1, 10, 7, 16, 2, 9, 8, 15)(3, 12, 6, 13, 4, 11, 5, 14)
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Representations of Osborn Loops of order 16

Solution

R(12) = (1, 12, 8, 14, 2, 11, 7, 13)(3, 10, 5, 15, 4, 9, 6, 16)

R(14) = (1, 14, 6, 10, 2, 13, 5, 9)(3, 16, 7, 11, 4, 15, 8, 12)

R(16) = (1, 16, 6, 11, 2, 15, 5, 12)(3, 14, 7, 10, 4, 13, 8, 9)

Thus, R(1), ...,R(16) is an Osborn loop of order 16
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Representations of Osborn Loops of order 16

Corollary

Let Π be the representation of an Osborn loop of order 16, and
R(2) a transposition permutation in Π. Given the generators in Π,
others are generated by < R(2),R(2 + i) > where i is either an
even or odd number depending on whether the given generators
are of either even or odd number.
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Representations of Osborn Loops of order 16

Proof:
Obviously, as i = 1, 3, 5, ..., 13, the generators are given, and the
proof follows from the theorem and corollary above.

Remark
For Osborn loops of order n, given the generators, others will be
generated by < R(2),R(2 + i) > ∀ i = 1, 3, ..., n − 3 or
i = 0, 2, ..., n − 2 depending on the given generators.

.
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A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Representations of Osborn Loops of order 16

Corollary

If Π is the representation of an Osborn loop of order n, Π has n/2
generators.

Proof:
Given R(2) in Π, the odd numbers between 1 and n that are
greater than 2 will be (n − 2)/2 (i.e. n less 1 and 2).Then adding
that of R(2) to this number gives (n − 2)/2 + 1 = n/2 implies
1/2(n) generators.
We need to show by induction that it is true for all values of n.
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Representations of Osborn Loops of order 16

Suppose n = 16, then by the theorem above, there are 8
generators, which implies 1/2(16) = 16/2. So it is true for n = 16.

Suppose n = k , then we would have k/2, implies 1/2(k). So, it is
true for n = k.
Suppose n = k + 1, then, we have
(k + 1)/2 = k/2 + 1/2 = 1/2(k + 1). So, it is true for n = k + 1.
Inductively, it is true for all values of n. The proof is complete.
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A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Representations of Osborn Loops of order 16

Suppose n = 16, then by the theorem above, there are 8
generators, which implies 1/2(16) = 16/2. So it is true for n = 16.
Suppose n = k , then we would have k/2, implies 1/2(k). So, it is
true for n = k.
Suppose n = k + 1, then, we have
(k + 1)/2 = k/2 + 1/2 = 1/2(k + 1). So, it is true for n = k + 1.
Inductively, it is true for all values of n. The proof is complete.
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Representations of Osborn Loops of order 16

Theorem
Let Π be the representation of an Osborn loop of order 16. Every
permutation in Π has no distinct inverse.

Proof:
Considering the Osborn loops generated in the example above(the
only two examples at that order). We observe that they have no
distinct inverses.

Corollary

The representation of a finite Osborn loop do not generate a
multiplicative gruop.

The proof follows from the above theorem

Remark
The above Corollary is confirmed by LOOPs Package in GAP [4]
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A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria. J. O. Adéńıran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013REPRESENTATIONS OF FINITE OSBORN LOOPS



Abstract
Introduction
Preliminaries
Main Results

Acknowledgement
References

Representations of Osborn Loops of order 16

Theorem
Let Π be the representation of an Osborn loop of order 16. Every
permutation in Π has no distinct inverse.

Proof:
Considering the Osborn loops generated in the example above(the
only two examples at that order). We observe that they have no
distinct inverses.

Corollary

The representation of a finite Osborn loop do not generate a
multiplicative gruop.

The proof follows from the above theorem

Remark
The above Corollary is confirmed by LOOPs Package in GAP [4]
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Representations of Osborn Loops of order 16

Lemma
Let Π be the representation of an Osborn loop of order 16. The
order of every element of the representation Π divides the order of
the loop.

Proof:
The order of elements of the first example of Osborn loop of order
16 are 2 and 4 while the order of elements of the second example
are 2, 4 and 8 respectively. These are divisors of 16. The proof
follows.
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Representations of Osborn Loops of order 16

Summary

This work divides the search space of an Osborn loop by 2. One
only need to generate the generators by any means and using the
equation in the corollary above one can get the entire loop.
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