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Semidirect product

Semidirect product of groups

Fact (Semidirect product as a configuration)

Let G be a group and let H < G and K / G such that KH = G and
K ∩ H = 1. Then G is a semidirect product of K and H, denoted
by G = K o H.

Fact (Semidirect product as a construction)

Let K, H be two groups and ϕ : H → Aut(K) a homomorphism.
Then the set K × H equipped with the binary operation

(a, i) ∗ (b, j) = (a ·ϕi(b), i · j)
is a group, denoted by K oϕ H.

Fact (The correspondence)

K × 1 is a normal subgroup and 1× H is a subgroup of K oϕ H.
On the other hand, starting with G, we can define ϕi as k 7→ ki.
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Semidirect product

Commutative automorphic loops

Definition

A loop Q is called automorphic if Inn(Q) ⊆ Aut(Q).

Fact

Let Q be a commutative loop. Then Inn(Q) = 〈Lx,y; x, y ∈ Q〉,
where Lx,y = L−1

xy LxLy.

Corollary

A commutative loop Q is automorphic if and only if, for all
x, y, u, v ∈ Q,

((uv · x) · y)/(xy) = ((ux · y)/(xy)) · ((vx · y)/(xy)).
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Semidirect product

Nuclear semidirect product

Let (Q,+) be a commutative automorphic loop. We consider
subloops H and K of Q such that

K + H = Q and K ∩ H = {0};
K / H;
K and H are abelian groups;
K 6 Nµ(Q).

Example

Let Q be the non-associative commutative Moufang loop with 81
elements. Q is of exponent 3 and there exists a normal subgroup
of order 27 and hence Q ∼= Z3

3 o Z3. However N(Q) ∼= Z3.

Lemma

If a, b ∈ K and i, j ∈ H as above then
(a + i) + (b + j) = Li,j(a + b) + (i + j).
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Semidirect product

External semidirect product

Proposition

Let H and K be two abelian groups and let ϕ be a mapping
ϕ : H2 → Aut(K). We define an operation ∗ on Q = K × H as
follows:

(a, i) ∗ (b, j) = (ϕi,j(a + b), i + j).

Then Q is a commutative automorphic loop if and only if
1 ϕi,j = ϕj,i;
2 ϕi,0 = idK;
3 ϕi,j ◦ϕk,n = ϕk,n ◦ϕi,j;
4 ϕi,j,k = ϕj,k,i = ϕk,i,j;
5 ϕi,j+k +ϕj,i+k +ϕk,i+j = idK +2ϕi,j,k;

for all i, j, k, n ∈ H, where ϕi,j,k = ϕi,j+k ◦ϕj,k.
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Known examples

[Q : K] = 2

Example

Let H ∼= Z2. Then

ϕ0,0 = ϕ1,0 = ϕ0,1 = idK .

The only other non-trivial condition is

ϕ1,0 +ϕ1,0 +ϕ1,0 = idK +2ϕ1,1,1

3 idK = idK +2 idK ◦ϕ1,1

2 idK = 2ϕ1,1

In other words, ϕ1,1(2x) = 2x.



Nuclear semidirect product of commutative automorphic loops 6 / 14

Known examples

[Q : K] = 2

Example

Let H ∼= Z2. Then

ϕ0,0 = ϕ1,0 = ϕ0,1 = idK .

The only other non-trivial condition is

ϕ1,0 +ϕ1,0 +ϕ1,0 = idK +2ϕ1,1,1

3 idK = idK +2 idK ◦ϕ1,1

2 idK = 2ϕ1,1

In other words, ϕ1,1(2x) = 2x.



Nuclear semidirect product of commutative automorphic loops 7 / 14

Known examples

Loops of odd order

Proposition

Let M be a faithful module over a ring R, 2 ∈ R∗, and let r ∈ R∗ be
of a multiplicative order k ∈ N ∪ {∞}. Suppose that (ri + 1) ∈ R∗,
for each i ∈ Z. Then the set M × Zk, equipped with the operation

(a, i) ∗ (b, j) =
(
(ri + 1)(rj + 1)
2 · (ri+j + 1)

· (a + b), i + j
)

is a commutative automorphic loop.

Example

— M a vector space over a field of characteristics different from 2,
— R = End(M); we see M as an R-module
— r an automorphism of M,
— k odd.
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Bilinear mappingϕ

Small normal subgroup

Lemma

If |K| 6 3 then K oϕ H is a group.

Example

K = Z4, H = Z2, ϕ1,1 = 3

Lemma

Let K ∼= Z4. Then ϕi+j,k = ϕi,k ◦ϕj,k.
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Bilinear mappingϕ

Bilinear forms

Proposition

Let K = Zn2 , for some n ∈ N. Let H be an abelian group and let
α : H2 → Zn be a symmetric bilinear form. We define

ϕi,j : x 7→ (α(i, j) · n + 1) · x.

Then K oϕ H is a commutative automorphic loop.

Proposition

Let K = Zp2 , for some prime p. Let H be an elementary abelian
p-group. Let α1,α2 be two symmetric bilinear forms H2 → Zp. Let
Q1 and Q2 be two loops obtained from α1 and α2. Then Q1 ∼= Q2
if and only if α1 and α2 are equivalent.
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Bilinear mappingϕ

Classification of bilinear forms

Fact

Let V be a vector space over a finite field F of characteristics p. If
p > 2 then there exist 2 non-degenerate symmetric bilinear forms,
up to equivalence, namely

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 1

 and


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 a


where a is not a quadratic residue.
If p = 2 and dim V is odd then there exists only one
non-degenerate symmetric bilinear form, up to equivalence.
If p = 2 and dim V is even then there exist two such forms, one of
them alternating.
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Bilinear mappingϕ

Bilinear mapping ϕ

Observation

Let ϕ : H2 → Aut(K) be bilinear. Then the ϕ satisfies the
conditions of the semidirect product if and only if

1 ϕ is symmetric,
2 granted,
3 Imϕ is commutative,

4 granted,

5 ???

Lemma

Let R be a unitary ring and let n ∈ N0. Then the following
properties are equivalent:

there exists G, a commutative subgroup of R∗, such that, for
all a, b, c ∈ G, we have na = n and ab + ac + bc = 1 + 2abc;
there exist elements x1, x2, . . . in R such that nxi = 0 and
xixj = 0, for all i, j.
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Bilinear mappingϕ

Construction with a bilinear mapping

Theorem

Let K be an abelian group and let n ∈ N0. Let X be a subset of
End(K) satisfying nX = X2 = 0. Denote G = 〈X + idK〉Aut(K). Let
ϕ be a symmetric bilinear Zn-module mapping H2 → G. Then
K oϕ H is a commutative automorphic loop.

Example

K = Zn2 , X = {n}, G = {kn + 1; k ∈ Z}.

Example

— K, H: vector spaces over a field F of characteristic n,
— Mi,j is a square matrix with 1 on position i, j and 0 elsewhere,
— X is a set {Mi,j; no index is repeated twice}.
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Conclusion

Loops of order p3

Proposition

There exist at least 6 non-isomorphic commutative automorphic
loops of order p3, for p prime, namely

Z3
p, Zp3 , Zp2 × Zp,

K = Zp2 , H = Zp, X = {p}, ϕ equivalent to the scalar product,

K = Zp2 , H = Zp, X = {p}, ϕ not equivalent to the scalar
product (for p odd),

K = Z2
p, H = Zp, X =

{ (
0 1
0 0

) }
, ϕ non-degenerate,

K = Z2
2, H = Z2, ϕ1,1 of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

There exist exactly 7 non-isomorphic commutative automorphic
loops of order p3, for p prime.
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Conclusion
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