Jan Hora, Přemysl Jedlička

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> 3rd Milehigh August 13, 2013 Denver, CO

・ロット (雪) (日) (日)

Semidirect product of groups

Fact (Semidirect product as a configuration)

Let G be a group and let H < G and $K \triangleleft G$ such that KH = G and $K \cap H = 1$. Then G is a semidirect product of K and H, denoted by $G = K \rtimes H$.

Fact (Semidirect product as a construction)

Let K, H be two groups and $\varphi : H \to \operatorname{Aut}(K)$ a homomorphism. Then the set $K \times H$ equipped with the binary operation $(a,i) * (b,j) = (a \cdot \varphi_i(b), i \cdot j)$

is a group, denoted by $K \rtimes_{\varphi} H$.

Fact (The correspondence)

 $K \times 1$ is a normal subgroup and $1 \times H$ is a subgroup of $K \rtimes_{\varphi} H$. On the other hand, starting with *G*, we can define φ_i as $k \mapsto k^i$.

Semidirect product of groups

Fact (Semidirect product as a configuration)

Let G be a group and let H < G and $K \triangleleft G$ such that KH = G and $K \cap H = 1$. Then G is a semidirect product of K and H, denoted by $G = K \rtimes H$.

Fact (Semidirect product as a construction)

Let K, H be two groups and $\varphi : H \to \operatorname{Aut}(K)$ a homomorphism. Then the set $K \times H$ equipped with the binary operation $(a, i) * (b, j) = (a \cdot \varphi_i(b), i \cdot j)$ is a group, denoted by $K \to -H$

is a group, denoted by $K \rtimes_{\varphi} H$.

Fact (The correspondence)

 $K \times 1$ is a normal subgroup and $1 \times H$ is a subgroup of $K \rtimes_{\varphi} H$. On the other hand, starting with *G*, we can define φ_i as $k \mapsto k^i$.

Semidirect product of groups

Fact (Semidirect product as a configuration)

Let G be a group and let H < G and $K \triangleleft G$ such that KH = G and $K \cap H = 1$. Then G is a semidirect product of K and H, denoted by $G = K \rtimes H$.

Fact (Semidirect product as a construction)

Let K, H be two groups and $\varphi : H \to \operatorname{Aut}(K)$ a homomorphism. Then the set $K \times H$ equipped with the binary operation $(a, i) * (b, j) = (a \cdot \varphi_i(b), i \cdot j)$ is a group, denoted by $K \rtimes H$

is a group, denoted by $K \rtimes_{\varphi} H$.

Fact (The correspondence)

 $K \times 1$ is a normal subgroup and $1 \times H$ is a subgroup of $K \rtimes_{\varphi} H$. On the other hand, starting with *G*, we can define φ_i as $k \mapsto k^i$.

Commutative automorphic loops

Definition

A loop *Q* is called *automorphic* if $Inn(Q) \subseteq Aut(Q)$.

Fact

Let *Q* be a commutative loop. Then $Inn(Q) = \langle L_{x,y}; x, y \in Q \rangle$, where $L_{x,y} = L_{xy}^{-1}L_xL_y$.

Corollary

A commutative loop Q is automorphic if and only if, for all $x, y, u, v \in Q$,

 $((uv \cdot x) \cdot y)/(xy) = ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)).$

・ロト・西ト・ヨト・日下 ひゃぐ

Commutative automorphic loops

Definition

A loop *Q* is called *automorphic* if $Inn(Q) \subseteq Aut(Q)$.

Fact

Let *Q* be a commutative loop. Then $Inn(Q) = \langle L_{x,y}; x, y \in Q \rangle$, where $L_{x,y} = L_{xy}^{-1}L_xL_y$.

Corollary

A commutative loop Q is automorphic if and only if, for all $x, y, u, v \in Q$,

 $((uv \cdot x) \cdot y)/(xy) = ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)).$

・ロト・西ト・ヨト・ヨー うへぐ

Commutative automorphic loops

Definition

A loop *Q* is called *automorphic* if $Inn(Q) \subseteq Aut(Q)$.

Fact

Let *Q* be a commutative loop. Then $\text{Inn}(Q) = \langle L_{x,y}; x, y \in Q \rangle$, where $L_{x,y} = L_{xy}^{-1}L_xL_y$.

Corollary

A commutative loop Q is automorphic if and only if, for all $x, y, u, v \in Q$,

$$((uv \cdot x) \cdot y)/(xy) = ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)).$$

Let (Q, +) be a commutative automorphic loop. We consider subloops *H* and *K* of *Q* such that

- K + H = Q and $K \cap H = \{0\};$
- $K \triangleleft H$;
- *K* and *H* are abelian groups;

• $K \leqslant N_{\mu}(Q)$.

Example

Let *Q* be the non-associative commutative Moufang loop with 81 elements. *Q* is of exponent 3 and there exists a normal subgroup of order 27 and hence $Q \cong \mathbb{Z}_3^3 \rtimes \mathbb{Z}_3$. However $N(Q) \cong \mathbb{Z}_3$.

.emma

If $a, b \in K$ and $i, j \in H$ as above then $(a + i) + (b + j) = L_{i,j}(a + b) + (i + j).$

Let (Q, +) be a commutative automorphic loop. We consider subloops *H* and *K* of *Q* such that

- K + H = Q and $K \cap H = \{0\};$
- $K \triangleleft H$;
- K and H are abelian groups;
- $K \leq N_{\mu}(Q)$.

Example

Let *Q* be the non-associative commutative Moufang loop with 81 elements. *Q* is of exponent 3 and there exists a normal subgroup of order 27 and hence $Q \cong \mathbb{Z}_3^3 \rtimes \mathbb{Z}_3$. However $N(Q) \cong \mathbb{Z}_3$.

_emma

If $a, b \in K$ and $i, j \in H$ as above then $(a + i) + (b + j) = L_{i,j}(a + b) + (i + j).$

Let (Q, +) be a commutative automorphic loop. We consider subloops *H* and *K* of *Q* such that

- K + H = Q and $K \cap H = \{0\};$
- $K \triangleleft H$;
- *K* and *H* are abelian groups;
- $K \leq N_{\mu}(Q)$.

Example

Let *Q* be the non-associative commutative Moufang loop with 81 elements. *Q* is of exponent 3 and there exists a normal subgroup of order 27 and hence $Q \cong \mathbb{Z}_3^3 \rtimes \mathbb{Z}_3$. However $N(Q) \cong \mathbb{Z}_3$.

_emma

If $a, b \in K$ and $i, j \in H$ as above then $(a + i) + (b + j) = L_{i,j}(a + b) + (i + j).$

Let (Q, +) be a commutative automorphic loop. We consider subloops *H* and *K* of *Q* such that

- K + H = Q and $K \cap H = \{0\};$
- $K \triangleleft H$;
- *K* and *H* are abelian groups;
- $K \leq N_{\mu}(Q)$.

Example

Let *Q* be the non-associative commutative Moufang loop with 81 elements. *Q* is of exponent 3 and there exists a normal subgroup of order 27 and hence $Q \cong \mathbb{Z}_3^3 \rtimes \mathbb{Z}_3$. However $N(Q) \cong \mathbb{Z}_3$.

.emma

If $a, b \in K$ and $i, j \in H$ as above then $(a+i) + (b+j) = L_{i,j}(a+b) + (i+j).$

Let (Q, +) be a commutative automorphic loop. We consider subloops *H* and *K* of *Q* such that

- K + H = Q and $K \cap H = \{0\};$
- $K \triangleleft H$;
- *K* and *H* are abelian groups;
- $K \leq N_{\mu}(Q)$.

Example

Let *Q* be the non-associative commutative Moufang loop with 81 elements. *Q* is of exponent 3 and there exists a normal subgroup of order 27 and hence $Q \cong \mathbb{Z}_3^3 \rtimes \mathbb{Z}_3$. However $N(Q) \cong \mathbb{Z}_3$.

Lemma

If
$$a, b \in K$$
 and $i, j \in H$ as above then
 $(a + i) + (b + j) = L_{i,j}(a + b) + (i + j).$

External semidirect product

Proposition

Let *H* and *K* be two abelian groups and let φ be a mapping $\varphi : H^2 \to Aut(K)$. We define an operation * on $Q = K \times H$ as follows:

$$(a,i) * (b,j) = (\varphi_{i,j}(a+b), i+j).$$

 $\circ \varphi_{i,k}$.

Then Q is a commutative automorphic loop if and only if

•
$$\varphi_{i,j} = \varphi_{j,i}$$
;
• $\varphi_{i,0} = \operatorname{id}_{K}$;
• $\varphi_{i,j} \circ \varphi_{k,n} = \varphi_{k,n} \circ \varphi_{i,j}$;
• $\varphi_{i,j,k} = \varphi_{j,k,i} = \varphi_{k,i,j}$;
• $\varphi_{i,j+k} + \varphi_{j,i+k} + \varphi_{k,i+j} = \operatorname{id}_{K} + 2\varphi_{i,j,k}$;
for all $i, j, k, n \in H$, where $\varphi_{i,j,k} = \varphi_{i,j+k} \circ \varphi_{j,j}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Known examples

[Q:K] = 2

Example

Let $H \cong \mathbb{Z}_2$. Then

$$\varphi_{0,0} = \varphi_{1,0} = \varphi_{0,1} = \mathrm{id}_K.$$

The only other non-trivial condition is

$$egin{aligned} & arphi_{1,0} + arphi_{1,0} = \mathrm{id}_K + 2 arphi_{1,1,1} \ & 3 \, \mathrm{id}_K = \mathrm{id}_K + 2 \, \mathrm{id}_K \circ arphi_{1,1} \ & 2 \, \mathrm{id}_K = 2 arphi_{1,1} \end{aligned}$$

In other words, $\varphi_{1,1}(2x) = 2x$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Known examples

$$[Q:K]=2$$

Example

Let $H \cong \mathbb{Z}_2$. Then

$$\varphi_{0,0} = \varphi_{1,0} = \varphi_{0,1} = \mathrm{id}_K.$$

The only other non-trivial condition is

$$egin{aligned} & arphi_{1,0} + arphi_{1,0} = \mathrm{id}_K + 2arphi_{1,1,1} \ & 3\,\mathrm{id}_K = \mathrm{id}_K + 2\,\mathrm{id}_K \circ arphi_{1,1} \ & 2\,\mathrm{id}_K = 2arphi_{1,1} \end{aligned}$$

In other words, $\varphi_{1,1}(2x) = 2x$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Loops of odd order

Proposition

Let *M* be a faithful module over a ring *R*, $2 \in R^*$, and let $r \in R^*$ be of a multiplicative order $k \in \mathbb{N} \cup \{\infty\}$. Suppose that $(r^i + 1) \in R^*$, for each $i \in \mathbb{Z}$. Then the set $M \times \mathbb{Z}_k$, equipped with the operation

$$(a,i)*(b,j) = \left(\frac{(r^i+1)(r^j+1)}{2\cdot (r^{i+j}+1)}\cdot (a+b), i+j\right)$$

is a commutative automorphic loop.

Example

- -M a vector space over a field of characteristics different from 2,
- -R = End(M); we see *M* as an *R*-module
- -r an automorphism of M,
- -k odd.

Loops of odd order

Proposition

Let *M* be a faithful module over a ring *R*, $2 \in R^*$, and let $r \in R^*$ be of a multiplicative order $k \in \mathbb{N} \cup \{\infty\}$. Suppose that $(r^i + 1) \in R^*$, for each $i \in \mathbb{Z}$. Then the set $M \times \mathbb{Z}_k$, equipped with the operation

$$(a,i)*(b,j) = \left(\frac{(r^i+1)(r^j+1)}{2\cdot (r^{i+j}+1)}\cdot (a+b), i+j\right)$$

is a commutative automorphic loop.

Example

- -M a vector space over a field of characteristics different from 2,
- -R = End(M); we see *M* as an *R*-module
- -r an automorphism of M,
- -k odd.

Bilinear mapping φ

Small normal subgroup

Lemma

If $|K| \leq 3$ then $K \rtimes_{\varphi} H$ is a group.

Example

$$K = \mathbb{Z}_4, H = \mathbb{Z}_2, \varphi_{1,1} = 3$$

.emma

Let $K \cong \mathbb{Z}_4$. Then $\varphi_{i+j,k} = \varphi_{i,k} \circ \varphi_{j,k}$.

◆□> <圖> < => < => < => <0 < ○</p>

Bilinear mapping φ

Small normal subgroup

Lemma

If $|K| \leq 3$ then $K \rtimes_{\varphi} H$ is a group.

Example

$$K = \mathbb{Z}_4, H = \mathbb{Z}_2, \varphi_{1,1} = 3$$

.emma

Let $K \cong \mathbb{Z}_4$. Then $\varphi_{i+j,k} = \varphi_{i,k} \circ \varphi_{j,k}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bilinear mapping φ

Small normal subgroup

Lemma

If $|K| \leq 3$ then $K \rtimes_{\varphi} H$ is a group.

Example

$$K = \mathbb{Z}_4, H = \mathbb{Z}_2, \varphi_{1,1} = 3$$

Lemma

Let
$$K \cong \mathbb{Z}_4$$
. Then $\varphi_{i+j,k} = \varphi_{i,k} \circ \varphi_{j,k}$.

Bilinear forms

Proposition

Let $K = \mathbb{Z}_{n^2}$, for some $n \in \mathbb{N}$. Let H be an abelian group and let $\alpha : H^2 \to \mathbb{Z}_n$ be a symmetric bilinear form. We define

 $\varphi_{i,j}: x \mapsto (\alpha(i,j) \cdot n + 1) \cdot x.$

Then $K \rtimes_{\varphi} H$ is a commutative automorphic loop.

Proposition

Let $K = \mathbb{Z}_{p^2}$, for some prime p. Let H be an elementary abelian p-group. Let α_1, α_2 be two symmetric bilinear forms $H^2 \to \mathbb{Z}_p$. Let Q_1 and Q_2 be two loops obtained from α_1 and α_2 . Then $Q_1 \cong Q_2$ if and only if α_1 and α_2 are equivalent.

Bilinear forms

Proposition

Let $K = \mathbb{Z}_{n^2}$, for some $n \in \mathbb{N}$. Let H be an abelian group and let $\alpha : H^2 \to \mathbb{Z}_n$ be a symmetric bilinear form. We define

 $\varphi_{i,j}: x \mapsto (\alpha(i,j) \cdot n + 1) \cdot x.$

Then $K \rtimes_{\varphi} H$ is a commutative automorphic loop.

Proposition

Let $K = \mathbb{Z}_{p^2}$, for some prime p. Let H be an elementary abelian p-group. Let α_1, α_2 be two symmetric bilinear forms $H^2 \to \mathbb{Z}_p$. Let Q_1 and Q_2 be two loops obtained from α_1 and α_2 . Then $Q_1 \cong Q_2$ if and only if α_1 and α_2 are equivalent.

Classification of bilinear forms

Fact

Let V be a vector space over a finite field F of characteristics p. If p > 2 then there exist 2 non-degenerate symmetric bilinear forms, up to equivalence, namely

(1)	• • •	0	0)		(1)	• • •	0	0)
:	·	÷	÷	and	1:	·	÷	:
0	• • •	1	0	and	0		1	0
0/	• • •	0	1/		(0		0	a)

where a is not a quadratic residue.

If p = 2 and dim V is odd then there exists only one non-degenerate symmetric bilinear form, up to equivalence. If p = 2 and dim V is even then there exist two such forms, one of them alternating.

Classification of bilinear forms

Fact

Let V be a vector space over a finite field F of characteristics p. If p > 2 then there exist 2 non-degenerate symmetric bilinear forms, up to equivalence, namely

(1)	• • •	0	0)		(1)	• • •	0	0)
1 :	۰.	÷	÷	and	1:	۰.	÷	÷
0		1	0	and	0		1	0
0/	• • •	0	1/		(0		0	a)

where a is not a quadratic residue.

If p = 2 and dim V is odd then there exists only one non-degenerate symmetric bilinear form, up to equivalence. If p = 2 and dim V is even then there exist two such forms, one of them alternating.

Observation

Let $\varphi : H^2 \to Aut(K)$ be bilinear. Then the φ satisfies the conditions of the semidirect product if and only if

1	φ is symmetric,	4	granted,
2	granted,		
3	Im φ is commutative,	5	???

lemma

Let R be a unitary ring and let $n \in \mathbb{N}_0$. Then the following properties are equivalent:

- there exists G, a commutative subgroup of R^* , such that, for all $a, b, c \in G$, we have na = n and ab + ac + bc = 1 + 2abc;
- there exist elements $x_1, x_2, ...$ in R such that $nx_i = 0$ and $x_i x_j = 0$, for all i, j.

Observation

Let $\varphi : H^2 \to Aut(K)$ be bilinear. Then the φ satisfies the conditions of the semidirect product if and only if

1	φ is symmetric,	4	granted,
2	granted,		
3	Im φ is commutative,	6	???

Lemma

Let R be a unitary ring and let $n \in \mathbb{N}_0$. Then the following properties are equivalent:

• there exists G, a commutative subgroup of R^* , such that, for all $a, b, c \in G$, we have na = n and ab + ac + bc = 1 + 2abc;

• there exist elements $x_1, x_2, ...$ in R such that $nx_i = 0$ and $x_i x_j = 0$, for all i, j.

Bilinear mapping φ

Observation

Let $\varphi : H^2 \to Aut(K)$ be bilinear. Then the φ satisfies the conditions of the semidirect product if and only if

1	φ is symmetric,	4	granted,
2	granted,		
3	Im φ is commutative,	6	???

Lemma

Let R be a unitary ring and let $n \in \mathbb{N}_0$. Then the following properties are equivalent:

- there exists G, a commutative subgroup of R^* , such that, for all $a, b, c \in G$, we have na = n and ab + ac + bc = 1 + 2abc;
- there exist elements $x_1, x_2, ...$ in R such that $nx_i = 0$ and $x_ix_j = 0$, for all i, j.

Construction with a bilinear mapping

Theorem

Let *K* be an abelian group and let $n \in \mathbb{N}_0$. Let *X* be a subset of End(*K*) satisfying $nX = X^2 = 0$. Denote $G = \langle X + id_K \rangle_{Aut(K)}$. Let φ be a symmetric bilinear \mathbb{Z}_n -module mapping $H^2 \to G$. Then $K \rtimes_{\varphi} H$ is a commutative automorphic loop.

Example

$$K = \mathbb{Z}_{n^2}, X = \{n\}, G = \{kn + 1; k \in \mathbb{Z}\}.$$

Example

- -K, H: vector spaces over a field F of characteristic n,
- $-M_{i,j}$ is a square matrix with 1 on position *i*, *j* and 0 elsewhere,
- -X is a set { $M_{i,j}$; no index is repeated twice}.

Construction with a bilinear mapping

Theorem

Let *K* be an abelian group and let $n \in \mathbb{N}_0$. Let *X* be a subset of End(*K*) satisfying $nX = X^2 = 0$. Denote $G = \langle X + id_K \rangle_{Aut(K)}$. Let φ be a symmetric bilinear \mathbb{Z}_n -module mapping $H^2 \to G$. Then $K \rtimes_{\varphi} H$ is a commutative automorphic loop.

Example

$$K = \mathbb{Z}_{n^2}, X = \{n\}, G = \{kn + 1; k \in \mathbb{Z}\}.$$

Example

- -K, H: vector spaces over a field F of characteristic n,
- $-M_{i,j}$ is a square matrix with 1 on position i, j and 0 elsewhere,
- -X is a set { $M_{i,j}$; no index is repeated twice}.

Conclusion

Loops of order p^3

Proposition

There exist at least 6 non-isomorphic commutative automorphic loops of order p^3 , for p prime, namely

- \mathbb{Z}_p^3 , \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$,
- $K = \mathbb{Z}_{p^2}$, $H = \mathbb{Z}_p$, $X = \{p\}$, φ equivalent to the scalar product,
- K = Z_{p²}, H = Z_p, X = {p}, φ not equivalent to the scalar product (for p odd),

•
$$K = \mathbb{Z}_{p}^{2}, H = \mathbb{Z}_{p}, X = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}, \varphi$$
 non-degenerate,

•
$$K = \mathbb{Z}_{2}^{2}, H = \mathbb{Z}_{2}, \varphi_{1,1}$$
 of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

Conclusion

Loops of order p^3

Proposition

There exist at least 6 non-isomorphic commutative automorphic loops of order p^3 , for p prime, namely

•
$$\mathbb{Z}_p^3$$
, \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$,

• $K = \mathbb{Z}_{p^2}$, $H = \mathbb{Z}_p$, $X = \{p\}$, φ equivalent to the scalar product,

K = Z_{p²}, H = Z_p, X = {p}, φ not equivalent to the scalar product (for p odd),

•
$$K = \mathbb{Z}_{p}^{2}, H = \mathbb{Z}_{p}, X = \left\{ \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right) \right\}, \phi$$
 non-degenerate,

•
$$K = \mathbb{Z}_{2}^{2}, H = \mathbb{Z}_{2}, \varphi_{1,1}$$
 of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

Proposition

There exist at least 6 non-isomorphic commutative automorphic loops of order p^3 , for p prime, namely

- \mathbb{Z}_p^3 , \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$,
- $K = \mathbb{Z}_{p^2}$, $H = \mathbb{Z}_p$, $X = \{p\}$, φ equivalent to the scalar product,
- K = Z_{p²}, H = Z_p, X = {p}, φ not equivalent to the scalar product (for p odd),
- $K = \mathbb{Z}_p^2$, $H = \mathbb{Z}_p$, $X = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$, φ non-degenerate,
- $K = \mathbb{Z}_{2}^{2}$, $H = \mathbb{Z}_{2}$, $\varphi_{1,1}$ of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

Proposition

There exist at least 6 non-isomorphic commutative automorphic loops of order p^3 , for p prime, namely

- \mathbb{Z}_p^3 , \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$,
- $K = \mathbb{Z}_{p^2}$, $H = \mathbb{Z}_p$, $X = \{p\}$, φ equivalent to the scalar product,
- K = Z_{p²}, H = Z_p, X = {p}, φ not equivalent to the scalar product (for p odd),

•
$$K = \mathbb{Z}_{p}^{2}, H = \mathbb{Z}_{p}, X = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}, \varphi$$
 non-degenerate,

•
$$K = \mathbb{Z}_{2'}^2$$
, $H = \mathbb{Z}_2$, $\varphi_{1,1}$ of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

Proposition

There exist at least 6 non-isomorphic commutative automorphic loops of order p^3 , for p prime, namely

- \mathbb{Z}_p^3 , \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$,
- $K = \mathbb{Z}_{p^2}$, $H = \mathbb{Z}_p$, $X = \{p\}$, φ equivalent to the scalar product,
- K = Z_{p²}, H = Z_p, X = {p}, φ not equivalent to the scalar product (for p odd),

•
$$K = \mathbb{Z}_p^2, H = \mathbb{Z}_p, X = \left\{ \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right) \right\}, \phi$$
 non-degenerate,

•
$$K = \mathbb{Z}_{2}^{2}$$
, $H = \mathbb{Z}_{2}$, $\varphi_{1,1}$ of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

Proposition

There exist at least 6 non-isomorphic commutative automorphic loops of order p^3 , for p prime, namely

- \mathbb{Z}_p^3 , \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$,
- $K = \mathbb{Z}_{p^2}$, $H = \mathbb{Z}_p$, $X = \{p\}$, φ equivalent to the scalar product,
- K = Z_{p²}, H = Z_p, X = {p}, φ not equivalent to the scalar product (for p odd),

•
$$K = \mathbb{Z}_{p}^{2}, H = \mathbb{Z}_{p}, X = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}, \varphi$$
 non-degenerate,

•
$$K = \mathbb{Z}_{2}^{2}$$
, $H = \mathbb{Z}_{2}$, $\varphi_{1,1}$ of order 3.

Theorem (de Barros, Grishkov, Vojtěchovský)

- D. A. S. de Barros, A. Grishkov, P. Vojtěchovský: Commutative automorphic loops of order p³ to appear in Journal of Algebra and its Applications
- J. Hora, P. Jedlička: Nuclear semidirect product of commutative automorphic loops

to appear in Journal of Algebra and its Applications

P. Jedlička, M. K. Kinyon, P. Vojtěchovský: Structure of commutative automorphic loops Transactions of AMS 363,1 (2011), 365–384