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Group matrices

Let G be a finite group of order n with a listing of elements
{g1 = e, g2, ..., gn} and let {xg1 , xg2 , ..., xgn} be a set of
independent commuting variables indexed by the elements of G .

Definition
The (full) group matrix XG is the matrix whose rows and columns
are indexed by the elements of G and whose (g , h)th entry is xgh−1 .

The group matrix is a patterned matrix: it is determined by its first
row (or column)

Example

The group matrix of C3 is (abbreviating xgi by i) the circulant

C (1, 2, 3) =

 1 3 2
2 1 3
3 2 1

 .



Further example

Example

The group matrix of S3 is the matrix

1 3 2 4 5 6
2 1 3 6 4 5
3 2 1 5 6 4
4 6 5 1 2 3
5 4 6 3 1 2
6 5 4 2 3 1

 =

[
C (1, 2, 3) C (4, 6, 5)
C (4, 5, 6) C (1, 3, 2)

]



The loop matrix

The loop matrix: Q is a loop of order n
variables {xqi}qi∈Q are taken.
XQ is the matrix with (i , j)th element xqi/qj .
Most of the time think of this as xqiq−1

j

This is the latin square matrix of the parastrophe.
The loop determinant...



group matrices obtained from the cosets of an arbitrary
subgroup

If |G | = kr and H is any cyclic subgroup of order k then the
elements of G can be listed such that XG is a block matrix of the
form 

B11 B12 ... B1r

B21 B22 ... B2r

... .. ... ..
Br1 Br2 ... Brr

 ,
where each Bij is a circulant of size k × k . A corresponding result
holds for any subgroup H. (Dickson 1907) If in the above H is
arbitrary, XG is as above, but the blocks are now all of the form
XH(gi1 , gi2 ...gik ). Here elements in the vector (gi1 , gi2 ...gik ) are
elements in G , and not necessarily arising from any specific coset
of H.



Dickson’s results on the mod p case

The group determinant mod p of a p-group.

Lemma
Let H be any p-group of order r = ps . Let P be the upper
triangular matrix of the form

1 1 1 1 ... 1
1 2 3 r − 1

1 3 (r − 1)(r − 2)/2
1 ...

... r − 1
1

 .

Then a suitable ordering of H exists such that, modulo p, PXHP
−1

is a lower triangular matrix with identical diagonal entries of the
form α =

∑r
i=1 xhi .

The group determinant ΘH modulo p is thus αr .



Example

G = C5. Then P = 
1 1 1 1 1

1 2 3 4
1 3 6

1 4
1


and modulo 5

PXGP
−1 =


α 0 0 0 0
β α 0 0 0
γ β α 0 0
δ γ β α 0
µ δ γ β α


where α =

∑5
i=1 xgi , β = 4x2 + 3x3 + 2x4 + x5, γ = x2 + 3x3 + x4,

δ = 4x2 + x3 and µ = x2.
Question: does this have any relevance to the FFT?



Lemma
Let G be a group of order n divisible by p and H be a Sylow-p
subgroup of index k and order r . Then, an ordering of G exists
such that, modulo p, XG is similar to a matrix which has a block
diagonal part of the form

diag(B,B, ...,B) (r occurences of B)

with the upper triangular part above the diagonal 0. Moreover B
encodes the permutation representation of G on the cosets of H.

This is proved by acting on the XG obtained by ordering G by the
left cosets of H and acting by diag(P,P, ...,P) and rearranging.
Thus it follows that, modulo p, ΘG = det(B)r .
Question: is there an explanation of all this using the standard
techniques of modular representation theory?



(a) M12 (smallest non-associative Moufang loop)
With a suitable ordering of the loop, the loop matrix is of the form
(abbreviating xi by i)

C (1, 3, 2) C (4, 5, 6) C (7, 8, 9) C (10, 11, 12)
C (4, 6, 5) C (1, 2, 3) R(10, 11, 12) R(7, 8, 9)
C (7, 9, 8) R(10, 11, 12) C (1, 2, 3) R(4, 5, 6)

C (10, 12, 11) R(4, 5, 6) R(7, 8, 9) C (1, 2, 3)

 .
Now, if P3 is the 3× 3 Pascal matrix,

PC (a, b, c)P−1 ≡

 α 0 0
β α 0
γ β α

 , PR(a, b, c)P−1 =

 α 0 0
β −α 0
γ δ α





O16 (the Octonion loop) The loop matrix can be put in the form
C(1,2,3,4) C(7,6,5,8) C(11,10,9,12) C(15,14,13,16)

C(5,6,7,8) C(1,4,3,2) R(13,16,15,14) R(11,10,9,12)

C(9,10,11,12) R(15,14,13,16) C(1,4,3,2) R(5,8,7,6)

C(13,14,15,16) R(9,12,11,10) R(7,6,5,8) C(1,4,3,2)

 .
Now, if P = P4 is the 4× 4 Pascal matrix,

PC (a, b, c , d)P−1 ≡


α 0 0 0
β α 0 0
γ β α 0
δ γ β α

 (modulo 2),

PR(a, b, c , d)P−1 =


α 0 0 0
∗ α 0 0
∗ ∗ α 0
∗ ∗ ∗ α

 (modulo 2)



Then, after conjugating by diag(P,P,P,P), rearranging and
conjugating again, the loop matrix of O16 is transformed, mod 2,
to a lower triangular matrix with diagonal entry

∑16
i=1 xi . Thus the

determinant of O16 mod 2 is exactly the same as that of any group
of order 16.
Questions: (1) When do loops of order a power of p loops Q which
are of the form

D → Q → Cp.

behave similarly?
(2) Is there a characterisation of loops whose loop matrix can be
written as a block matrix of circulants and reverse circulants with
respect to a cyclic subgroup? (they probably need to be power
associative). (3) Commutative automorphic loops mod 2?



The k-class algebra

Let Q be a loop with inner mapping group IQ. The k-class
algebra of Q is defined as follows. Consider the orbits {∆i} of
IQ × Sk acting on Q(k) by

σ(q1, ..., qk) = (σq1, ..., σqk), σ ∈ IQ

and
τ(q1, ..., qk) = (qτ(1), ..., qτ(k)).

Let ∆i be the element of C(Q(k)) which is the sum of the elements
of ∆i .These sums generate the k-class algebra of Q. Call this Ak .
If Q is a group, then the k-class algebra is an S-ring over Q(k). It
contains interesting information.
If Q is a loop, the 1-class algebra is commutative and associative
(and is an S-ring over Q).



Questions: (1) for an arbitrary loop, when is Ak an S-ring over
Q(k)?
If Q is an A-loop- yes.

(2) For which loops is Ak commutative?
(3) For which loops is Ak associative?



Harmonic analysis

Suppose that a random walk on a loop Q proceeds as follows.
There is given a probability p on Q, i.e. p is a function Q → R�0
such that

∑
q∈Q p(q) = 1. If the walk is at element q1 at the r th

stage, it moves to the element q1s with probability p(s). This is a
Markov chain with transition matrix XQ(p) with (i , j) entry
p(q−1i qj) (from the loop matrix under left division). If Q is a
group this case has been the subject of a lot of analysis, and
especially important is that (XQ(p))2 = XQ(p ∗ p), where p ∗ p
denotes convolution. If Q is nonassociative then it is not so easy
to describe (XQ(p))2 but the analysis of the walk involves the
calculation of (XQ(p))r for arbitrary r .
It is easiest if XQ(p) is similar to a diagonal matrix, and this is
always the case if p is constant on conjugacy classes. It might be
an interesting project to analyse a random walk on Chein loops
constructed from, say, families of simple groups.



Fusion

Fusion of the character table of a loop to that of another loop was
discussed in papers (CFQI...)of JDH Smith and KWJ beginning in
the 1980’s as part of the project to construct a character theory of
quasigroups. Often a character table of a loop is most easily
obtained by fusing that of a group. More recently work of
Humphries and KWJ discussed the class of groups whose character
table fuses from a cyclic group, the methods used being mainly
those of S-rings. The results with Smith in a special case were
rediscovered in a paper by Diaconis and Isaacs (Supercharacters)
and then applied to the problem of random walks on Un(q). The
calculation of the conjugacy classes of Un(q) is wild, but if the
classes are fused in a certain way the new classes, the superclasses,
can be described. More recently it was shown that the superclasses
form a Hopf algebra which is isomorphic to the Hopf algebra of
non-commutative symmetric functions.



The talk of Michael Munywoki indicated how a loop can be
constructed on Un(q) in such a way that the classes of the loop are
almost equal to the superclasses.
Questions:
(1) Is it possible to change the multiplication of the loop such that
the classes are exactly the same as the superclasses?
(2) Is there a natural Hopf algebra on the conjugacy classes of the
loops constructed on Un(q)?
(3) Which loops have character tables which fuse fom those of
groups?
(4) Which loops have character tables which fuse fom those of
abelian groups?



Fission
Consider the loop Q of order 6 whose group matrix is[

C (1, 3, 2) C (4, 5, 6)
C (4, 6, 5) C (1, 3, 2)

]
.

It has classes {1}, {2, 3}, {4, 5, 6}, and a random walk with
probability p on the loop has diagonalisable XQ(p) if p is constant
on these classes. However, either of the following ”fissions” of
classes are used, then XQ(p) remains diagonalisable.
(a) {1}, {2}, {3}, {4, 5, 6}, (b) {1}, {2, 3}, {4}, {5, 6}.
Question: what is the maximum number of classes in a fission of
Q for which XQ(p) is diagonalisable whenever p is constant on
these classes?
Answer for groups (Humphries). The maximum number is
τ(G ) =

∑
χ∈Irr(Q) deg(χ).

(This may not be attained, but is attained for all groups of orders
< 54).
Answer for loops-no idea.



Strange fact: the Jucy’s Murphy elements in the group ring of the
symmetric group produce a commutative subring of the group ring
of dimension τ(G ), but this is not an S-ring



Latin squares

Suppose we take a collection {Li}ri=1 of orthogonal latin squares
on {1, .., n}. Consider the array A whose {i , j , k}th element is
Lk(i , j). Then consider the array obtained by replacing each i by a
variable xi .
There is a wonderful book by Gelfand, Kapranov, Zelevinsky:
Hyperdeterminants, resultants...
(see Bull AMS for a review). They go back to papers of Cayley.
Questions:
(1) What are the properties of the hyperdeterminant of A?
(2) Special case: suppose {Li}ni=1 is a collection of orthogonal latin
squares arising from a projective plane. But: Beware of ET!!!






