Loop matrices, loop determinants and S-rings on loops Ken Johnson
Penn State Abington College

Outline

- 1) Group matrices and group determinant, Loop matrices and loop determinants (latin square determinants)
- 2) Some properties of group matrices.
- 3) The group matrix modulo p
- 4) The loop matrix $\bmod p$
- 5) the k-S-ring of a group and a corresponding "ring" for a loop
- 6) The connection with harmonic analysis
- 7) Fusion for loop classes
- 8) Fission for loop classes
- 9) Further ideas

Group matrices

Let G be a finite group of order n with a listing of elements $\left\{g_{1}=e, g_{2}, \ldots, g_{n}\right\}$ and let $\left\{x_{g_{1}}, x_{g_{2}}, \ldots, x_{g_{n}}\right\}$ be a set of independent commuting variables indexed by the elements of G.

Definition

The (full) group matrix X_{G} is the matrix whose rows and columns are indexed by the elements of G and whose $(g, h)^{\text {th }}$ entry is $x_{g h^{-1}}$. The group matrix is a patterned matrix: it is determined by its first row (or column)

Example

The group matrix of C_{3} is (abbreviating $x_{g_{i}}$ by i) the circulant

$$
C(1,2,3)=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right]
$$

Further example

Example

The group matrix of S_{3} is the matrix

$$
\left[\begin{array}{llllll}
1 & 3 & 2 & 4 & 5 & 6 \\
2 & 1 & 3 & 6 & 4 & 5 \\
3 & 2 & 1 & 5 & 6 & 4 \\
4 & 6 & 5 & 1 & 2 & 3 \\
5 & 4 & 6 & 3 & 1 & 2 \\
6 & 5 & 4 & 2 & 3 & 1
\end{array}\right]=\left[\begin{array}{ll}
C(1,2,3) & C(4,6,5) \\
C(4,5,6) & C(1,3,2)
\end{array}\right]
$$

The loop matrix

The loop matrix: Q is a loop of order n variables $\left\{x_{q_{i}}\right\}_{q_{i} \in Q}$ are taken. X_{Q} is the matrix with $(i, j)^{t h}$ element $x_{q_{i} / q_{j}}$. Most of the time think of this as $x_{q_{i} q_{j}^{-1}}$
This is the latin square matrix of the parastrophe. The loop determinant...

group matrices obtained from the cosets of an arbitrary subgroup

If $|G|=k r$ and H is any cyclic subgroup of order k then the elements of G can be listed such that X_{G} is a block matrix of the form

$$
\left[\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 r} \\
B_{21} & B_{22} & \ldots & B_{2 r} \\
\ldots & . . & \ldots & . . \\
B_{r 1} & B_{r 2} & \ldots & B_{r r}
\end{array}\right]
$$

where each $B_{i j}$ is a circulant of size $k \times k$. A corresponding result holds for any subgroup H. (Dickson 1907) If in the above H is arbitrary, X_{G} is as above, but the blocks are now all of the form $X_{H}\left(g_{i_{1}}, g_{i_{2}} \ldots g_{i_{k}}\right)$. Here elements in the vector $\left(g_{i_{1}}, g_{i_{2}} \ldots g_{i_{k}}\right)$ are elements in G, and not necessarily arising from any specific coset of H.

Dickson's results on the mod p case

The group determinant $\bmod p$ of a p-group.
Lemma
Let H be any p-group of order $r=p^{s}$. Let P be the upper triangular matrix of the form

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
& 1 & 2 & 3 & & r-1 \\
& & 1 & 3 & & (r-1)(r-2) / 2 \\
& & & 1 & & \cdots \\
& & & & \ldots & r-1 \\
& & & & & 1
\end{array}\right]
$$

Then a suitable ordering of H exists such that, modulo $p, P X_{H} P^{-1}$ is a lower triangular matrix with identical diagonal entries of the form $\alpha=\sum_{i=1}^{r} x_{h_{i}}$.
The group determinant Θ_{H} modulo p is thus α^{r}.

Example

$G=C_{5}$. Then $P=$

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
& 1 & 2 & 3 & 4 \\
& & 1 & 3 & 6 \\
& & & 1 & 4 \\
& & & & 1
\end{array}\right]
$$

and modulo 5

$$
P X_{G} P^{-1}=\left[\begin{array}{ccccc}
\alpha & 0 & 0 & 0 & 0 \\
\beta & \alpha & 0 & 0 & 0 \\
\gamma & \beta & \alpha & 0 & 0 \\
\delta & \gamma & \beta & \alpha & 0 \\
\mu & \delta & \gamma & \beta & \alpha
\end{array}\right]
$$

where $\alpha=\sum_{i=1}^{5} x_{g_{i}}, \beta=4 x_{2}+3 x_{3}+2 x_{4}+x_{5}, \gamma=x_{2}+3 x_{3}+x_{4}$, $\delta=4 x_{2}+x_{3}$ and $\mu=x_{2}$.
Question: does this have any relevance to the FFT?

Lemma

Let G be a group of order n divisible by p and H be a Sylow- p subgroup of index k and order r. Then, an ordering of G exists such that, modulo p, X_{G} is similar to a matrix which has a block diagonal part of the form

$$
\operatorname{diag}(B, B, \ldots, B)(r \text { occurences of } B)
$$

with the upper triangular part above the diagonal 0 . Moreover B encodes the permutation representation of G on the cosets of H. This is proved by acting on the X_{G} obtained by ordering G by the left cosets of H and acting by $\operatorname{diag}(P, P, \ldots, P)$ and rearranging. Thus it follows that, modulo $p, \Theta_{G}=\operatorname{det}(B)^{r}$.
Question: is there an explanation of all this using the standard techniques of modular representation theory?
(a) M_{12} (smallest non-associative Moufang loop)

With a suitable ordering of the loop, the loop matrix is of the form (abbreviating x_{i} by i)

$$
\left[\begin{array}{cccc}
C(1,3,2) & C(4,5,6) & C(7,8,9) & C(10,11,12) \\
C(4,6,5) & C(1,2,3) & R(10,11,12) & R(7,8,9) \\
C(7,9,8) & R(10,11,12) & C(1,2,3) & R(4,5,6) \\
C(10,12,11) & R(4,5,6) & R(7,8,9) & C(1,2,3)
\end{array}\right] .
$$

Now, if P_{3} is the 3×3 Pascal matrix,

$$
P C(a, b, c) P^{-1} \equiv\left[\begin{array}{lll}
\alpha & 0 & 0 \\
\beta & \alpha & 0 \\
\gamma & \beta & \alpha
\end{array}\right], \quad P R(a, b, c) P^{-1}=\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
\beta & -\alpha & 0 \\
\gamma & \delta & \alpha
\end{array}\right]
$$

\mathbb{O}_{16} (the Octonion loop) The loop matrix can be put in the form

$$
\left[\begin{array}{cccc}
C_{(1,2,3,4)} & C_{(7,6,5,8)} & C_{(11,10,9,12)} & C_{(15,14,13,16)} \\
C_{(5,6,7,8)} & C_{(1,4,3,2)} & R_{(13,16,15,14)} & R_{(11,10,9,12)} \\
C_{(9,10,11,12)} & R_{(15,14,13,16)} & C_{(1,4,3,2)} & R_{(5,8,7,6)} \\
C_{(13,14,15,16)} & R_{(9,12,11,10)} & R_{(7,6,5,8)} & C_{(1,4,3,2)}
\end{array}\right] .
$$

Now, if $P=P_{4}$ is the 4×4 Pascal matrix,

$$
\begin{aligned}
P C(a, b, c, d) P^{-1} & \equiv\left[\begin{array}{llll}
\alpha & 0 & 0 & 0 \\
\beta & \alpha & 0 & 0 \\
\gamma & \beta & \alpha & 0 \\
\delta & \gamma & \beta & \alpha
\end{array}\right] \text { (modulo 2), } \\
P R(a, b, c, d) P^{-1} & =\left[\begin{array}{llll}
\alpha & 0 & 0 & 0 \\
* & \alpha & 0 & 0 \\
* & * & \alpha & 0 \\
* & * & * & \alpha
\end{array}\right] \text { (modulo 2) }
\end{aligned}
$$

Then, after conjugating by $\operatorname{diag}(P, P, P, P)$, rearranging and conjugating again, the loop matrix of \mathbb{O}_{16} is transformed, mod 2 , to a lower triangular matrix with diagonal entry $\sum_{i=1}^{16} x_{i}$. Thus the determinant of \mathbb{O}_{16} mod 2 is exactly the same as that of any group of order 16.
Questions: (1) When do loops of order a power of p loops Q which are of the form

$$
D \rightarrow Q \rightarrow C_{p}
$$

behave similarly?
(2) Is there a characterisation of loops whose loop matrix can be written as a block matrix of circulants and reverse circulants with respect to a cyclic subgroup? (they probably need to be power associative). (3) Commutative automorphic loops mod 2?

The k-class algebra

Let Q be a loop with inner mapping group $I Q$. The \mathbf{k}-class algebra of Q is defined as follows. Consider the orbits $\left\{\Delta_{i}\right\}$ of $I Q \times S_{k}$ acting on $Q^{(k)}$ by

$$
\sigma\left(q_{1}, \ldots, q_{k}\right)=\left(\sigma q_{1}, \ldots, \sigma q_{k}\right), \sigma \in \mathbb{I} Q
$$

and

$$
\tau\left(q_{1}, \ldots, q_{k}\right)=\left(q_{\tau(1)}, \ldots, q_{\tau(k)}\right)
$$

Let $\overline{\Delta_{i}}$ be the element of $\mathbb{C}\left(Q^{(k)}\right)$ which is the sum of the elements of Δ_{i}. These sums generate the k-class algebra of Q. Call this A_{k}. If Q is a group, then the k-class algebra is an S-ring over $Q^{(k)}$. It contains interesting information.
If Q is a loop, the 1 -class algebra is commutative and associative (and is an S-ring over Q).

Questions: (1) for an arbitrary loop, when is A_{k} an S-ring over $Q^{(k)}$?
If Q is an A-loop- yes.
(2) For which loops is A_{k} commutative?
(3) For which loops is A_{k} associative?

Harmonic analysis

Suppose that a random walk on a loop Q proceeds as follows. There is given a probability p on Q, i.e. p is a function $Q \rightarrow \mathbb{R} \succeq 0$ such that $\sum_{q \in Q} p(q)=1$. If the walk is at element q_{1} at the $r^{t h}$ stage, it moves to the element $q_{1} s$ with probability $p(s)$. This is a Markov chain with transition matrix $X_{Q}(p)$ with (i, j) entry $p\left(q_{i}^{-1} q_{j}\right)$ (from the loop matrix under left division). If Q is a group this case has been the subject of a lot of analysis, and especially important is that $\left(X_{Q}(p)\right)^{2}=X_{Q}(p * p)$, where $p * p$ denotes convolution. If Q is nonassociative then it is not so easy to describe $\left(X_{Q}(p)\right)^{2}$ but the analysis of the walk involves the calculation of $\left(X_{Q}(p)\right)^{r}$ for arbitrary r.
It is easiest if $X_{Q}(p)$ is similar to a diagonal matrix, and this is always the case if p is constant on conjugacy classes. It might be an interesting project to analyse a random walk on Chein loops constructed from, say, families of simple groups.

Fusion

Fusion of the character table of a loop to that of another loop was discussed in papers (CFQI...) of JDH Smith and KWJ beginning in the 1980's as part of the project to construct a character theory of quasigroups. Often a character table of a loop is most easily obtained by fusing that of a group. More recently work of Humphries and KWJ discussed the class of groups whose character table fuses from a cyclic group, the methods used being mainly those of S-rings. The results with Smith in a special case were rediscovered in a paper by Diaconis and Isaacs (Supercharacters) and then applied to the problem of random walks on $U_{n}(q)$. The calculation of the conjugacy classes of $U_{n}(q)$ is wild, but if the classes are fused in a certain way the new classes, the superclasses, can be described. More recently it was shown that the superclasses form a Hopf algebra which is isomorphic to the Hopf algebra of non-commutative symmetric functions.

The talk of Michael Munywoki indicated how a loop can be constructed on $U_{n}(q)$ in such a way that the classes of the loop are almost equal to the superclasses.
Questions:
(1) Is it possible to change the multiplication of the loop such that the classes are exactly the same as the superclasses?
(2) Is there a natural Hopf algebra on the conjugacy classes of the loops constructed on $U_{n}(q)$?
(3) Which loops have character tables which fuse fom those of groups?
(4) Which loops have character tables which fuse fom those of abelian groups?

Fission
Consider the loop Q of order 6 whose group matrix is

$$
\left[\begin{array}{ll}
C(1,3,2) & C(4,5,6) \\
C(4,6,5) & C(1,3,2)
\end{array}\right]
$$

It has classes $\{1\},\{2,3\},\{4,5,6\}$, and a random walk with probability p on the loop has diagonalisable $X_{Q}(p)$ if p is constant on these classes. However, either of the following "fissions" of classes are used, then $X_{Q}(p)$ remains diagonalisable.
(a) $\{1\},\{2\},\{3\},\{4,5,6\}$, (b) $\{1\},\{2,3\},\{4\},\{5,6\}$.

Question: what is the maximum number of classes in a fission of Q for which $X_{Q}(p)$ is diagonalisable whenever p is constant on these classes?
Answer for groups (Humphries). The maximum number is $\tau(G)=\sum_{\chi \in \operatorname{Irr}(Q)} \operatorname{deg}(\chi)$.
(This may not be attained, but is attained for all groups of orders <54).
Answer for loops-no idea.

Strange fact: the Jucy's Murphy elements in the group ring of the symmetric group produce a commutative subring of the group ring of dimension $\tau(G)$, but this is not an S-ring

Latin squares

Suppose we take a collection $\left\{L_{i}\right\}_{i=1}^{r}$ of orthogonal latin squares on $\{1, . ., n\}$. Consider the array A whose $\{i, j, k\}^{\text {th }}$ element is $L_{k}(i, j)$. Then consider the array obtained by replacing each i by a variable x_{i}.
There is a wonderful book by Gelfand, Kapranov, Zelevinsky: Hyperdeterminants, resultants...
(see Bull AMS for a review). They go back to papers of Cayley.
Questions:
(1) What are the properties of the hyperdeterminant of A ?
(2) Special case: suppose $\left\{L_{i}\right\}_{i=1}^{n}$ is a collection of orthogonal latin squares arising from a projective plane. But: Beware of ET!!!

