Beyond the Complexes:
 Toward a lattice based number system.

Third Mile High Conference on Nonassociative Mathematics
August 11-17, 2013
University of Denver, Denver, Colorado

J. Köplinger, J. A. Shuster

"As time goes on, it becomes increasingly evident that the rules which the mathematicians find interesting are the same as those which Nature has chosen." Paul A. M. Dirac

In this talk

Intro: Research statement
Part 1: Lattice-numbers in one dimension
Part 2: Lattice-numbers in 2, 4, and 8 dimensions Outlook

Why any of this?

Fact (*): Although incompatible in principle, Quantum Mechanics and General Relativity model different aspects of the same reality.
(*) It is customary for scientific facts to change over time.
Speculation: A compatible model exists but hasn't been found yet.

Why any of this?

Fact: It is essentially impossible to model most quantum systems without Complex numbers.

Speculation: Quantum Mechanics and Complex numbers are like fish and water. Simple but powerful systems in mathematics and models of nature somehow relate both ways.

Very broad research statement: Find or develop a number system that enables or makes possible a compatible model for all aspects of Quantum Mechanics and General Relativity.

Guiding principle: Theoretical reductionism, to

 model these aspects similar to but simpler $\left(^{*}\right)$ than today's models. The number system to be found or developed must be similar to but simpler than arithmetic in use today.(*) Here, "simpler" means conceptually simpler, not necessarily simpler to calculate.

In this talk

Specific research statement: Develop an arithmetic/algebra and topology on a set of numbers represented by digits on lattice points.

Reference: Cashier's vision [1]: " $1+1=2$, a step in the wrong direction?". Number and arithmetic dual to one another, reflect dualities observed in Quantum Mechanics.

Part 1
Lattice-numbers in one dimension.

Notation

Real / 2-adic number representation

$$
\begin{aligned}
a & \equiv \ldots a_{2} \\
a_{1} & a_{0} \cdot \\
a_{-1} & a_{-2}
\end{aligned} \cdots
$$

One-dimensional lattice-number:

$$
\ldots \quad a_{2} \quad a_{1} \quad \overline{a_{0}} \quad a_{-1} \quad a_{-2} \quad \ldots
$$

($\bar{\square}$ is "origin").

Conventional addition

Decimal: $2+3=5$
Binary: $10+11=101$
Lattice: $1 \underline{\overline{0}}+1 \underline{\underline{1}}=10 \underline{\underline{1}}$

Lattice-number addition $\mathrm{AX}+1 \mathrm{D}$

Conventional addition is binary lattice-number morphism:

Argument: $1 \underline{\overline{0}}, 1 \underline{\overline{1}}$
Result: $10 \underline{\overline{1}}$
Notation: $A X+1 D$ on L1

- "A" addition type: same coordinates
- "X" pairwise XOR
- " +1 D " carry-over to next neighbor (directed)

AX +1D on L1

Unique additive inverse exists, e.g.:

$$
1 \underline{\overline{0}}+\ldots 1 \ldots 11 \underline{\overline{0}}=\underline{\overline{0}}
$$

(see 2-adics). In general, additive inverse is the dual number, e.g.:

$$
\left.\begin{array}{rl}
1 \underline{\overline{0}} & +\ldots \\
& =\overline{0} \\
& \\
& \ldots \\
& 1
\end{array}\right)
$$

Requires existence of infinite limits.

Conventional multiplication

Decimal: $2 * 3=6$
Binary: $10 * 11=110$
Lattice: $1 \underline{\overline{0}} * 1 \underline{\overline{1}}=1 \underline{\underline{0}}$

Lattice-number multiplication MX+1D

Conventional multiplication is binary lattice-number morphism " $\mathrm{MX}+1 \mathrm{D}$ on L1":
Argument: $1 \underline{\overline{0}}, 1 \underline{\overline{1}}$
Result: $11 \underline{\overline{0}}$

- "M" multplication type: pair coordinate addition
- "X" XOR at image coordinate
- "+1D" carry-over to next neighbor (directed)
$M X+1 D$ is not well-defined for infinite nonrepeating sequences $\left(a_{k}\right)_{k \in \mathbb{N}}$:
$\ldots\left(a_{k}\right) \ldots \underline{\overline{0}} * \underline{\overline{0}} \ldots\left(a_{k}\right) \ldots=? ?$
One way out: Bounded lattice numbers with finite n where

$$
k>n \Longrightarrow a_{k}=a_{k+1}
$$

Examples: Real or 2-adic numbers.

Lattice-number exponentiation EX+1D

New lattice-number exponentiation
"EX +1 D on $\mathrm{L1}$ " (${ }^{\vee}$) defined like $\mathrm{MX}+1 \mathrm{D}$ but using lattice coordinate multiplication ("E" exponentiation type).

> Lattice: $1 \overline{\overline{0}}^{\vee} 1 \underline{\overline{1}}=1 \underline{\overline{1}}$
> Binary:
> Decimal: $20^{\vee} 3=3=11$

Lattice: $\begin{array}{llllllll}1 & 0 & \underline{0} & \vee & 1 & 0 & 0 & \underline{0} \\ 1 & 0 & 0 & 0 & 0 & 0 & \underline{0}\end{array}$

Binary: $100^{\vee} 1000=1000000$
Decimal: $4^{\vee} 8=64$
$E X+1 D$ on $L 1$ has subspace as conventional

$$
a^{\vee} b:=2^{\wedge}\left[\left(\log _{2} a\right)\left(\log _{2} b\right)\right]
$$

But generally is different.

Summary so far

AX +1 D : real and 2 -adic addition
$M X+1 D$: real or 2-adic multiplication
$E X+1 D$: subspace exist with real or 2-adic

$$
2^{\wedge}\left[\left(\log _{2} a\right)\left(\log _{2} b\right)\right]
$$

Note

Invertibility of EX+1D depends on invertibility of underlying lattice coordinate (vector) multiplication.

Part 2
Lattice-numbers in 2, 4, and 8 dimensions

Rays

$\operatorname{Ray}(F):=F \mathbb{N}_{0}$

$$
\{F\}:=\{(a, b) \mid
$$

$$
\operatorname{gcd}(a, b)=1\}
$$

Example (right):

$$
F=(2,1)
$$

Directed rays, directed lines

Directed ray, directed line:

Direction of
carry-over by convention (*)

Morphisms
$A X+1 D, M X+1 D$
and $E X+1 D$
work on any lattice.

(*) There is an edge case for carry-overs through the origin.

Example of $\mathrm{AX}+1 \mathrm{D}$ on L 2

Example of $A X+1 D$ on $L 2$:

Invertible, commutative, nonassociative (and generally nonalternative) due to carry-over through the origin.

Example of $\mathrm{MX}+1 \mathrm{D}$ on L 2

Example of $M X+1 D$ on $L 2$:

Invertible, commutative, nonassociative / nonalternative.

Example of $\mathrm{EX}+1 \mathrm{D}$ on L 2

Example of $E X+1 D$ on $L 2$:

Here: Lattice (vector) coordinate multiplication is integral \mathbb{C}.

Integral Octonions

$A X+1 D, M X+1 D$, and $E X+1 D$ are invertible on lattices over integral normed division algebras.
Straightforward in two (\mathbb{C}) and four (\mathbb{H}) dimensions.
In 8D (O) Geoffrey Dixon's integral octonions [2]:

- Two dual E_{8} lattices in \mathbb{R}^{8} : Iodd $^{\text {and }}$ even
- $X \in$ Eodd $^{\text {od }}, A, B \in \bar{E}^{\text {even }} \Rightarrow\left(A X^{\dagger}\right)(X B) \in$ Eeven $^{\text {eve }}$

E8 lattice-numbers are simple!

Similar to, but simpler than, conventional octonions. Morphisms $\overline{\text { odd }}$ and numbers $\overline{\text { even }}$ are duals. Rich configuration space.

Lattice coordinates $\left\{c_{i}\right\}$, lattice-numbers A, B with digits $\left\{a_{c_{i}}\right\},\left\{b_{c_{i}}\right\}$. Then:

$$
\begin{aligned}
d_{i}(A, B) & :=\left(a_{c_{i}} \oplus b_{c_{i}}\right) \exp \left(-\left|c_{i}\right|\right), \\
d(A, B) & :=\sum_{i} d_{i}(A, B)
\end{aligned}
$$

- Metric space, Hausdorff
- ε neighborhood is essentially the entire lattice
- Many other $d(A, B)$ possible
- Normed "vector space" ??

Challenges and outlook

- Many different morphisms, algebraic properties
- Many, many formal proofs to do
- Nonrepeating sequences
- Carry-over through the origin on nonchiral lattices
- Chiral lattices, e.g., Leech lattice?
- Differential calculus
- Norm?

Thank you!

References

[1] J. Köplinger, J. A. Shuster, " $1+1=2$; A step in the wrong direction?", FQXi essay contest (2012),
http://www.fqxi.org/community/forum/topic/1449
[2] G. M. Dixon, "Division Algebras, Lattices, Physics, Windmill Tilting", CreateSpace (2011).

