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“As time goes on, it becomes increasingly evident that the rules which the
mathematicians find interesting are the same as those which Nature has chosen.”

Paul A. M. Dirac
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Why any of this?

Fact (*): Although incompatible in principle,

Quantum Mechanics and General Relativity model

different aspects of the same reality.

(*) It is customary for scientific facts to change over time.

Speculation: A compatible model exists but hasn’t
been found yet.
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Why any of this?

Fact: It is essentially impossible to model most
quantum systems without Complex numbers.

Speculation: Quantum Mechanics and Complex
numbers are like fish and water. Simple but powerful
systems in mathematics and models of nature
somehow relate both ways.
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Research statement

Very broad research statement: Find or
develop a number system that enables or makes
possible a compatible model for all aspects of
Quantum Mechanics and General Relativity.
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Research statement

Guiding principle: Theoretical reductionism, to

model these aspects similar to but simpler (*) than

today’s models. The number system to be found or

developed must be similar to but simpler than

arithmetic in use today.

(*) Here, “simpler” means conceptually simpler, not necessarily
simpler to calculate.
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In this talk

Specific research statement: Develop an
arithmetic/algebra and topology on a set of numbers
represented by digits on lattice points.

Reference: Cashier’s vision [1]: “1 + 1 = 2, a step
in the wrong direction?”. Number and arithmetic
dual to one another, reflect dualities observed in
Quantum Mechanics.
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Part 1

Lattice-numbers in one dimension.



Notation

Real / 2-adic number representation

a ≡ . . . a2 a1 a0. a−1 a−2 . . .

≡
∑

i

ai2i

One-dimensional lattice-number:

. . . a2 a1 a0 a−1 a−2 . . .

(� is “origin”).
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Conventional addition

Decimal: 2 + 3 = 5
Binary: 10 + 11 = 101
Lattice: 1 0 + 1 1 = 1 0 1
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Lattice-number addition AX+1D

Conventional addition is binary lattice-number
morphism:

Argument: 1 0 , 1 1
Result: 1 0 1

Notation: AX+1D on L1

“A” addition type: same coordinates
“X” pairwise XOR
“+1D” carry-over to next neighbor (directed)
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AX+1D on L1

Unique additive inverse exists, e.g.:

1 0 + . . . 1 . . . 1 1 0 = 0

(see 2-adics). In general, additive inverse is the dual
number, e.g.:

1 0 + . . . 1 . . . 1 0 1 1 . . . 1 . . .

= 0

Requires existence of infinite limits.
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Conventional multiplication

Decimal: 2 ∗ 3 = 6
Binary: 10 ∗ 11 = 110
Lattice: 1 0 ∗ 1 1 = 1 1 0
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Lattice-number multiplication MX+1D

Conventional multiplication is binary lattice-number
morphism “MX+1D on L1”:

Argument: 1 0 , 1 1
Result: 1 1 0

“M” multplication type: pair coordinate addition
“X” XOR at image coordinate
“+1D” carry-over to next neighbor (directed)
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MX+1D on L1 set limitation

MX+1D is not well-defined for infinite nonrepeating
sequences (ak)k∈N:

. . . (ak) . . . 0 ∗ 0 . . . (ak) . . . = ??

One way out: Bounded lattice numbers with finite n
where

k > n =⇒ ak = ak+1.

Examples: Real or 2-adic numbers.
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Lattice-number exponentiation EX+1D

New lattice-number exponentiation
“EX+1D on L1” (∨) defined like MX+1D but using
lattice coordinate multiplication (“E” exponentiation
type).

Lattice: 1 0 ∨ 1 1 = 1 1
Binary: 10 ∨ 11 = 11

Decimal: 2 ∨ 3 = 3

J. Köplinger, J. A. Shuster Beyond the Complexes: Toward a lattice based number system. 16 / 28



EX+1D on L1

Lattice: 1 0 0 ∨ 1 0 0 0 =
1 0 0 0 0 0 0

Binary: 100 ∨ 1000 = 1000000
Decimal: 4 ∨ 8 = 64

EX+1D on L1 has subspace as conventional

a ∨ b := 2ˆ [(log2 a) (log2 b)]

But generally is different.
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Summary so far

AX+1D: real and 2-adic addition
MX+1D: real or 2-adic multiplication
EX+1D: subspace exist with real or 2-adic

2ˆ [(log2 a) (log2 b)]

Note
Invertibility of EX+1D depends on invertibility of
underlying lattice coordinate (vector) multiplication.
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Part 2

Lattice-numbers in 2, 4, and 8 dimensions



Rays

Ray (F ) := FN0

{F} := {(a, b)|

gcd (a, b) = 1}

Example (right):

F = (2, 1)
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Directed rays, directed lines

Directed ray,
directed line:

Direction of
carry-over by
convention (*)

Morphisms
AX+1D, MX+1D
and EX+1D
work on any
lattice.

(*) There is an edge case for carry-overs through the origin.
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Example of AX+1D on L2

Example of AX+1D on L2:

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

+

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

=

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Invertible, commutative, nonassociative (and generally
nonalternative) due to carry-over through the origin.
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Example of MX+1D on L2

Example of MX+1D on L2:

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

∗

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

=

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Invertible, commutative, nonassociative / nonalternative.
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Example of EX+1D on L2

Example of EX+1D on L2:

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

∨

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

=

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Here: Lattice (vector) coordinate multiplication is integral C.
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Integral Octonions

AX+1D, MX+1D, and EX+1D are invertible on
lattices over integral normed division algebras.
Straightforward in two (C) and four (H) dimensions.

In 8D (O) Geoffrey Dixon’s integral octonions [2]:

Two dual E8 lattices in R8: Ξodd and Ξeven

X ∈ Ξodd , A,B ∈ Ξeven ⇒
(
AX †

)
(XB) ∈ Ξeven

E8 lattice-numbers are simple!
Similar to, but simpler than, conventional octonions.
Morphisms Ξodd and numbers Ξeven are duals. Rich
configuration space.
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Example of a Hausdorff topology

Lattice coordinates {ci}, lattice-numbers A,B with
digits {aci} , {bci}. Then:

di (A,B) := (aci ⊕ bci ) exp (− |ci |) ,
d (A,B) :=

∑
i

di (A,B) .

Metric space, Hausdorff
ε neighborhood is essentially the entire lattice
Many other d (A,B) possible
Normed “vector space” ??
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Challenges and outlook

Many different morphisms, algebraic properties
Many, many formal proofs to do
Nonrepeating sequences
Carry-over through the origin on nonchiral lattices
Chiral lattices, e.g., Leech lattice?
Differential calculus
Norm?

Thank you!

J. Köplinger, J. A. Shuster Beyond the Complexes: Toward a lattice based number system. 27 / 28



References

[1] J. Köplinger, J. A. Shuster, “1 + 1 = 2; A step in the wrong
direction?”, FQXi essay contest (2012),
http://www.fqxi.org/community/forum/topic/1449
[2] G. M. Dixon, “Division Algebras, Lattices, Physics, Windmill
Tilting”, CreateSpace (2011).

J. Köplinger, J. A. Shuster Beyond the Complexes: Toward a lattice based number system. 28 / 28


	Beyond the Complexes: Toward a lattice based number system
	Part 1: Lattice-numbers in one dimension
	Part 2: Two, four, and eight dimensional lattice-numbers
	References

