Octonionic Ovoids

G. Eric Moorhouse

Department of Mathematics
University of Wyoming

Third Mile High Conference on Nonassociative Mathematics 15 August 2013

Some ovoids in the $O_{6}^{+}(p)$ quadric (Klein quadric)

Consider a prime $p \equiv 1 \bmod 4$. Let \mathcal{S} be the set of all $x=\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{Z}^{6}$ such that
(1) $x_{i} \equiv 1 \bmod 4$; and
(2) $\sum_{i} x_{i}^{2}=6 p$.

\mathcal{S} contains 6 vectors of shape ($5,1,1,1,1,1$); 20 vectors of shape ($-3,-3,-3,1,1,1$).

Example $\left(p=13, S=13^{2}+1=170\right)$
\mathcal{S} contains 20 vectors of shape ($5,5,5,1,1,1$); 30 vectors of shape ($-7,-5,1,1,1,1$); 60 vectors of shape $(5,5,-3,-3,-3,1)$; 60 vectors of shape $(-7,-3,-3,-3,1,1)$.

Some ovoids in the $O_{6}^{+}(p)$ quadric (Klein quadric)

Consider a prime $p \equiv 1 \bmod 4$. Let \mathcal{S} be the set of all $x=\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{Z}^{6}$ such that
(1) $x_{i} \equiv 1 \bmod 4$; and
(2) $\sum_{i} x_{i}^{2}=6 p$.

Then $|\mathcal{S}|=p^{2}+1$; and for all $x \neq y$ in $\mathcal{S}, x \cdot y \not \equiv 0 \bmod p$.
\square
Example ($p=13,|\mathcal{S}|=13^{2}+1=170$)
\mathcal{S} contains 20 vectors of shape $(5,5,5,1,1,1)$ 30 vectors of shape $(-7,-5,1,1,1,1)$;
60 vectors of shape $(5,5,-3,-3,-3,1)$; 60 vectors of shape $(-7,-3,-3,-3,1,1)$.

Some ovoids in the $O_{6}^{+}(p)$ quadric (Klein quadric)

Consider a prime $p \equiv 1 \bmod 4$. Let \mathcal{S} be the set of all $x=\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{Z}^{6}$ such that
(1) $x_{i} \equiv 1 \bmod 4$; and
(2) $\sum_{i} x_{i}^{2}=6 p$.

Then $|\mathcal{S}|=p^{2}+1$; and for all $x \neq y$ in $\mathcal{S}, x \cdot y \not \equiv 0 \bmod p$.
Example ($p=5,|\mathcal{S}|=5^{2}+1=26$)
\mathcal{S} contains 6 vectors of shape $(5,1,1,1,1,1)$;
20 vectors of shape $(-3,-3,-3,1,1,1)$.
\mathcal{S} contains 20 vectors of shape $(5,5,5,1,1,1)$;
30 vectors of shape ($-7,-5,1,1,1,1$);
60 vectors of shape $(5,5,-3,-3,-3,1)$;
60 vectors of shape $(-7,-3,-3,-3,1,1)$.

Some ovoids in the $O_{6}^{+}(p)$ quadric (Klein quadric)

Consider a prime $p \equiv 1 \bmod 4$. Let \mathcal{S} be the set of all $x=\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{Z}^{6}$ such that
(1) $x_{i} \equiv 1 \bmod 4$; and
(2) $\sum_{i} x_{i}^{2}=6 p$.

Then $|\mathcal{S}|=p^{2}+1$; and for all $x \neq y$ in $\mathcal{S}, x \cdot y \not \equiv 0 \bmod p$.
Example ($p=5,|\mathcal{S}|=5^{2}+1=26$)
\mathcal{S} contains 6 vectors of shape $(5,1,1,1,1,1)$;
20 vectors of shape ($-3,-3,-3,1,1,1$).
Example ($p=13,|\mathcal{S}|=13^{2}+1=170$)
\mathcal{S} contains 20 vectors of shape ($5,5,5,1,1,1$);
30 vectors of shape ($-7,-5,1,1,1,1$);
60 vectors of shape ($5,5,-3,-3,-3,1$); 60 vectors of shape ($-7,-3,-3,-3,1,1$).

Ovoids in $O_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<\mathrm{V}$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately. An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be generalized to all primes p.

Ovoids in $\mathrm{O}_{2 n}^{+}(\mathrm{q})$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately. An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be generalized to all primes p.

Ovoids in $O_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points.
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.
An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be generalized to all primes p.

Ovoids in $O_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular.
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.
An ovoid is a set \mathcal{O} of points of the quadric, meeting each
generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$
singular points, no two perpendicular.
The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are
transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for
all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be
generalized to all primes p.

Ovoids in $\mathrm{O}_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be generalized to all primes p.

Ovoids in $\mathrm{O}_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are
transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be

Ovoids in $\mathrm{O}_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are transversals of the grid.
all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be
generalized to all primes 0 .

Ovoids in $\mathrm{O}_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The $O_{4}^{+}(q)$ quadric is a $(q+1) \times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_{6}^{+}(q)$ quadric exist for all q. The lattice construction of ovoids in $O_{6}^{+}(p)$ (above) can be generalized to all primes p.

Ovoids in $\mathrm{O}_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

Ovoids in $O_{8}^{+}(q)$ are known for some values of q, including all $q=p$ prime (Conway et al., 1988).

Ovoids in $\mathrm{O}_{2 n}^{+}(q)$ quadrics

Let V be a $2 n$-dimensional vector space over \mathbb{F}_{q} with nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{q}$.
(Projective) points are 1-dimensional subspaces $\langle v\rangle<V$; such a point is singular if $Q(v)=0$. The associated quadric is the set of all singular points. A subspace $U \leqslant V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1}+1$ singular points, no two perpendicular.

Ovoids in $O_{8}^{+}(q)$ are known for some values of q, including all $q=p$ prime (Conway et al., 1988). No ovoids in $O_{2 n}^{+}(q)$ are known in dimension $2 n \geqslant 10$.

The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra is $\mathbb{O}=\mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_{8} in 0.

The set of units \mathbb{O}^{\times}is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geqslant 1$, the number of elements $v \in O$ of norm $|v|^{2}=n$ is $240 \sigma_{3}(n)=240$

Reduction mod p gives maps $\mathbb{Z} \rightarrow \mathbb{F}_{p}$ and $O \rightarrow V:=O / p O$ denoted by ${ }^{-}$. Equipped with the quadratic form

V is an orthogonal space of type $O_{8}^{+}(p)$.

The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra is $\mathbb{O}=\mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_{8} in 0.

The set of units $\mathbb{0}^{\times}$is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geqslant 1$, the number of elements $v \in O$ of norm $|v|^{2}=n$ is

Reduction mod p gives maps $\mathbb{Z} \rightarrow \mathbb{F}_{p}$ and $O \rightarrow V:=O / p O$ denoted by ${ }^{-}$. Equipped with the quadratic form $Q: V \rightarrow \mathbb{E} p, \quad Q(\bar{x})=\overline{|x|^{2}}$
V is an orthogonal space of type $O_{8}^{+}(p)$.

The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra is $\mathbb{O}=\mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_{8} in ©

The set of units \mathbb{O}^{\times}is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geqslant 1$, the number of elements $v \in O$ of norm $|v|^{2}=n$ is

$$
240 \sigma_{3}(n)=240 \sum_{1 \leqslant d \mid n} d^{3}
$$

Reduction mod p gives maps $\mathbb{Z} \rightarrow \mathbb{F}_{p}$ and $O \rightarrow V:=O / p O$ denoted by ${ }^{-}$. Equipped with the quadratic form $Q: V \rightarrow \mathbb{F}_{n} . \quad Q(\bar{x})=\overline{|x|^{2}}$
V is an orthogonal space of type $O_{8}^{+}(p)$.

The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra is $\mathbb{O}=\mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_{8} in ©

The set of units \mathbb{O}^{\times}is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geqslant 1$, the number of elements $v \in O$ of norm $|v|^{2}=n$ is

$$
240 \sigma_{3}(n)=240 \sum_{1 \leqslant d \mid n} d^{3}
$$

Reduction mod p gives maps $\mathbb{Z} \rightarrow \mathbb{F}_{p}$ and $O \rightarrow V:=O / p O$ denoted by ${ }^{-}$. Equipped with the quadratic form

$$
Q: V \rightarrow \mathbb{F}_{p}, \quad Q(\bar{x})=\overline{|x|^{2}}
$$

V is an orthogonal space of type $O_{8}^{+}(p)$.

The 'binary' ovoids

Theorem (Conway, Kleidman \& Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+2 O \subset O$ such that $|x|^{2}=p$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing
these vectors mod pO gives

an ovoid in $O / p O \simeq O_{8}^{+}(p)$.
The proof uses the most basic facts about the E_{8} root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

The 'binary' ovoids

Theorem (Conway, Kleidman \& Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+2 O \subset O$ such that $|x|^{2}=p$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing these vectors mod $p \mathrm{O}$ gives

$$
\mathcal{O}=\mathcal{O}_{2, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\}
$$

an ovoid in $O / p O \simeq O_{8}^{+}(p)$.
The proof uses the most basic facts about the E_{8} root lattice.
Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

The 'binary' ovoids

Theorem (Conway, Kleidman \& Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+2 O \subset O$ such that $|x|^{2}=p$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing these vectors mod $p \mathrm{O}$ gives

$$
\mathcal{O}=\mathcal{O}_{2, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\}
$$

an ovoid in $O / p O \simeq O_{8}^{+}(p)$.
The proof uses the most basic facts about the E_{8} root lattice.
Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

The r-ary ovoids in $O_{8}^{+}(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^{2}}{r}=+1$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z u}+r O \subset O$ such that $|x|^{2}=k(r-k) p$ for some $k \in\left\{1,2, \ldots, \frac{r-1}{2}\right\}$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing these vectors mod $p \mathrm{O}$ gives

$$
\mathcal{O}=\mathcal{O}_{r, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\}
$$

an ovoid in $O / p O \simeq O_{8}^{+}(p)$. (Some degenerate cases occur for $r>p$.)

The proof uses facts about E_{8} and the fact that $E_{8} \oplus E_{8}$ has $480 \sigma_{7}(n)$ elements of norm $n \geqslant 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $\mathcal{O}_{r, p, u}$ (for primes $r \neq p$, including $r=2$) are the r-ary ovoids of octonionic type in

The r-ary ovoids in $O_{8}^{+}(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p \mid u^{2}}{r}=+1$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+r O \subset O$ such that $|x|^{2}=k(r-k) p$ for some $k \in\left\{1,2, \ldots, \frac{r-1}{2}\right\}$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. these vectors mod pO gives $\mathcal{O}=\mathcal{O}_{r, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\}$
an ovoid in $O / p O \simeq O_{8}^{+}(p)$. (Some degenerate cases occur for $r>p$.)

The proof uses facts about E_{8} and the fact that $E_{8} \oplus E_{8}$ has $480 \sigma_{7}(n)$ elements of norm $n \geqslant 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $\mathcal{O}_{r, p, u}$ (for primes $r \neq p$, including $r=2$) are the r-ary ovoids of octonionic type in

The r-ary ovoids in $O_{8}^{+}(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p \mid u^{2}}{r}=+1$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+r O \subset O$ such that $|x|^{2}=k(r-k) p$ for some $k \in\left\{1,2, \ldots, \frac{r-1}{2}\right\}$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing these vectors mod $p \mathrm{O}$ gives

$$
\mathcal{O}=\mathcal{O}_{r, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\},
$$

an ovoid in $O / p O \simeq O_{8}^{+}(p)$. (Some degenerate cases occur for $r>p$.)

The proof uses facts about E_{8} and the fact that $E_{8} \oplus E_{8}$ has $480 \sigma_{7}(n)$ elements of norm $n \geqslant 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $\mathcal{O}_{r, p, u}$ (for primes $r \neq p$, including $r=2$) are the r-ary ovoid's of octonionic type in

The r-ary ovoids in $O_{8}^{+}(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-\left.p| |\right|^{2}}{r}=+1$. Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+r O \subset O$ such that $|x|^{2}=k(r-k) p$ for some $k \in\left\{1,2, \ldots, \frac{r-1}{2}\right\}$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing these vectors mod $p \mathrm{O}$ gives

$$
\mathcal{O}=\mathcal{O}_{r, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\},
$$

an ovoid in $O / p O \simeq O_{8}^{+}(p)$. (Some degenerate cases occur for $r>p$.)

The proof uses facts about E_{8} and the fact that $E_{8} \oplus E_{8}$ has $480 \sigma_{7}(n)$ elements of norm $n \geqslant 1$. (Or O and theorems on factorization in O).

Ovoids isomorphic to Or,p,u (for primes

$r \neq p$, including $r=2$) are the r-ary ovoids of octonionic type in

The r-ary ovoids in $O_{8}^{+}(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^{2}}{r}=+1$.
Let \mathcal{S} be the set of vectors $x \in \mathbb{Z} u+r O \subset O$ such that $|x|^{2}=k(r-k) p$ for some $k \in\left\{1,2, \ldots, \frac{r-1}{2}\right\}$. Then $|\mathcal{S}|=2\left(p^{3}+1\right)$ and \mathcal{S} consists of $p^{3}+1$ pairs $\pm x$. Reducing these vectors mod $p \mathrm{O}$ gives

$$
\mathcal{O}=\mathcal{O}_{r, p, u}=\{\langle\bar{x}\rangle: \pm x \in \mathcal{S}\}
$$

an ovoid in $O / p O \simeq O_{8}^{+}(p)$. (Some degenerate cases occur for $r>p$.)

The proof uses facts about E_{8} and the fact that $E_{8} \oplus E_{8}$ has $480 \sigma_{7}(n)$ elements of norm $n \geqslant 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $\mathcal{O}_{r, p, u}$ (for primes $r \neq p$, including $r=2$) are the r-ary ovoids of octonionic type in $O_{8}^{+}(p)$.

Open Questions

(1) For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r, p, u}$ but only finitely many ovoids in $O_{8}^{+}(p)$. How many? How do we know when we have found them all?

(2)
Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_{8}^{+}(p)$. Does $w(p) \rightarrow \infty$ as $p \rightarrow \infty$? (By Conway et al. (1988), w(p) $\geqslant 1$.)
(3) r,p don't really have to be primes. Does anything comparable work in $\mathrm{O}_{8}^{+}(q)$?
(4) Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $\mathrm{PGO}_{8}^{+}(p)$; but no rigid ovoids in $\mathrm{O}_{8}^{+}(q)$ have been found.
(5) What is really going on in the construction of octonionic ovoids?

Open Questions

(1) For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r, p, u}$ but only finitely many ovoids in $O_{8}^{+}(p)$. How many? How do we know when we have found them all?
(2) Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_{8}^{+}(p)$. Does $w(p) \rightarrow \infty$ as $p \rightarrow \infty$? (By Conway et al. (1988), w(p) $\geqslant 1$.)
r, p don't really have to be primes. Does anything comparable work in $\mathrm{O}_{8}^{+}(q)$?
(4) Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $\mathrm{PGO}_{8}^{+}(p)$; but no rigid ovoids in $\mathrm{O}_{8}^{+}(q)$ have been found.
(5) What is really going on in the construction of octonionic ovoids?

Open Questions

(1) For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r, p, u}$ but only finitely many ovoids in $O_{8}^{+}(p)$. How many? How do we know when we have found them all?
(2) Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_{8}^{+}(p)$. Does $w(p) \rightarrow \infty$ as $p \rightarrow \infty$? (By Conway et al. (1988), $w(p) \geqslant 1$.)
(3) r, p don't really have to be primes. Does anything comparable work in $O_{8}^{+}(q)$?
(1) Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $\mathrm{PGO}_{8}^{+}(p)$; but no rigid ovoids in $\mathrm{O}_{8}^{-}(q)$ have been found.
(6) What is really going on in the construction of octonionic ovoids?

Open Questions

(1) For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r, p, u}$ but only finitely many ovoids in $O_{8}^{+}(p)$. How many? How do we know when we have found them all?
(2) Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_{8}^{+}(p)$. Does $w(p) \rightarrow \infty$ as $p \rightarrow \infty$? (By Conway et al. (1988), $w(p) \geqslant 1$.)
(3) r, p don't really have to be primes. Does anything comparable work in $O_{8}^{+}(q)$?
(1) Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $\mathrm{PGO}_{8}^{+}(p)$; but no rigid ovoids in $\mathrm{O}_{8}^{-}(q)$ have been found.
(6) What is really going on in the construction of octonionic ovoids?

Open Questions

(1) For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r, p, u}$ but only finitely many ovoids in $O_{8}^{+}(p)$. How many? How do we know when we have found them all?
(2) Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_{8}^{+}(p)$. Does $w(p) \rightarrow \infty$ as $p \rightarrow \infty$? (By Conway et al. (1988), w(p) $\geqslant 1$.)
(3) r, p don't really have to be primes. Does anything comparable work in $O_{8}^{+}(q)$?
(4) Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $\mathrm{PGO}_{8}^{+}(p)$; but no rigid ovoids in $O_{8}^{+}(q)$ have been found.
(5) What is really going on in the construction of octonionic ovoids?

Open Questions

(1) For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r, p, u}$ but only finitely many ovoids in $O_{8}^{+}(p)$. How many? How do we know when we have found them all?
(2) Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_{8}^{+}(p)$. Does $w(p) \rightarrow \infty$ as $p \rightarrow \infty$? (By Conway et al. (1988), w(p) $\geqslant 1$.)
(3) r, p don't really have to be primes. Does anything comparable work in $O_{8}^{+}(q)$?
(4) Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $\mathrm{PGO}_{8}^{+}(p)$; but no rigid ovoids in $O_{8}^{+}(q)$ have been found.
(5) What is really going on in the construction of octonionic ovoids?

Conjectured number of octonionic ovoids

Let $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{w}$ be representatives for the isomorphism types of octonionic ovoids in $O_{8}^{+}(p)$, under $G=P G O_{8}^{+}(p)$. The number of ovoids isomorphic to \mathcal{O}_{i} is $\left[G: G_{\left.\mathcal{O}_{i}\right]}\right.$; note that

$$
|G|=\left|P G O_{8}^{+}(p)\right|=\frac{2}{d} p^{12}\left(p^{6}-1\right)\left(p^{4}-1\right)^{2}\left(p^{2}-1\right)
$$

where $d=\operatorname{gcd}(p-1,2)$.
The subgroup $W\left(E_{8}\right) /\{ \pm /\} \cong P G O_{8}^{+}(2) \leqslant G$ has order

$$
\left|P G O_{8}^{+}(2)\right|=348,364,800 .
$$

Conjectured number of octonionic ovoids

Let $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{w}$ be representatives for the isomorphism types of octonionic ovoids in $O_{8}^{+}(p)$, under $G=P G O_{8}^{+}(p)$. The number of ovoids isomorphic to \mathcal{O}_{i} is $\left[G: G_{\mathcal{O}_{i}}\right]$; note that

$$
|G|=\left|P G O_{8}^{+}(p)\right|=\frac{2}{d} p^{12}\left(p^{6}-1\right)\left(p^{4}-1\right)^{2}\left(p^{2}-1\right)
$$

where $d=\operatorname{gcd}(p-1,2)$.
The subgroup $W\left(E_{8}\right) /\{ \pm l\} \cong P G O_{8}^{+}(2) \leqslant G$ has order

$$
\left|P G O_{8}^{+}(2)\right|=348,364,800
$$

Conjectured number of octonionic ovoids

Conjectured Mass Formula

For $p \geqslant 5$,
i.e.

$$
\sum_{i=1}^{w(p)}\left[G: G_{\mathcal{O}_{i}}\right]=\frac{|G|\left(p^{4}+239\right)}{4\left|P G O_{8}^{+}(2)\right|}
$$

$$
\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{1}}\right|}+\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{O_{2}}\right|}+\cdots+\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{w}}\right|}=\frac{p^{4}+239}{4} .
$$

The stabilizers $\mathrm{G}_{\mathcal{O}_{;}}$are not necessarily subgroups of $\mathrm{PGO}_{8}^{+}(2)$ I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p=2,3$ are genuine exceptions. (When $p=3$ the octonionic ovoids lie in hyperplanes.)

Conjectured number of octonionic ovoids

Conjectured Mass Formula

For $p \geqslant 5$,
i.e.

$$
\sum_{i=1}^{w(p)}\left[G: G_{\mathcal{O}_{i}}\right]=\frac{|G|\left(p^{4}+239\right)}{4\left|P G O_{8}^{+}(2)\right|}
$$

$$
\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{1}}\right|}+\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{2}}\right|}+\cdots+\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{w}}\right|}=\frac{p^{4}+239}{4} .
$$

The stabilizers $G_{\mathcal{O}_{i}}$ are not necessarily subgroups of $P G O_{8}^{+}(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p=2,3$ are genuine exceptions. (When $p=3$ the octonionic ovoids lie in hyperplanes.)

Conjectured number of octonionic ovoids

Conjectured Mass Formula

For $p \geqslant 5$,
i.e.

$$
\sum_{i=1}^{w(p)}\left[G: G_{\mathcal{O}_{i}}\right]=\frac{|G|\left(p^{4}+239\right)}{4\left|P G O_{8}^{+}(2)\right|}
$$

$$
\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{O_{1}}\right|}+\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{2}}\right|}+\cdots+\frac{\left|P G O_{8}^{+}(2)\right|}{\left|G_{\mathcal{O}_{w}}\right|}=\frac{p^{4}+239}{4} .
$$

The stabilizers $G_{\mathcal{O}_{i}}$ are not necessarily subgroups of $P G O_{8}^{+}(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p=2,3$ are genuine exceptions. (When $p=3$ the octonionic ovoids lie in hyperplanes.)

The abundance of ovoids

Corollary

Let $n(p)$ be the number of isomorphism types of ovoids in $\mathrm{O}_{8}^{+}(p)$. If the Mass Formula holds, then for some absolute constant $C>0, n(p) \geqslant C p^{4} \rightarrow \infty$ as $p \rightarrow \infty$.

Currently it is known that $n(p) \geqslant 1$ (Conway et al., 1988).

Verifying the Mass Formula for small p

p	$w(p)$	Mass Formula
5	2	$96+120=216=\frac{5^{4}+239}{4}$
7	2	$120+540=660=\frac{7^{4}+239}{4}$
11	4	$120+120+960+2520=3720=\frac{11^{4}+239}{4}$
13	4	$120+1080+1680+4320=7200=\frac{13^{4}+239}{4}$
17	7	$120+120+540+960+3360+4320+11520=20940=\frac{17^{4}+239}{4}$
19	6	$120+120+1080+7560+8640+15120=32640=\frac{19^{4}+239}{4}$ 23
10	$120+120+120+540+960+2520+3360$	
$+7560+20160+34560=70020=\frac{23^{4}+239}{4}$		

Strictly speaking, these terms are lower bounds found by enumerating r-ary ovoids in $O_{8}^{+}(p)$ for small r and testing for isomorphism. To compute $\operatorname{Aut}(\mathcal{O})$, use nauty to determine Aut $(\triangle(\mathcal{O}))$ where $\Delta(\mathcal{O})$ is the associated two-graph. In general $\operatorname{Aut}(\mathcal{O}) \subseteq \operatorname{Aut}(\Delta(\mathcal{O})$), and we check that equality holds in all

Verifying the Mass Formula for small p

p	$w(p)$	Mass Formula
5	2	$96+120=216=\frac{5^{4}+239}{4}$
7	2	$120+540=660=\frac{7^{4}+239}{4}$
11	4	$120+120+960+2520=3720=\frac{11^{4}+239}{4}$
13	4	$120+1080+1680+4320=7200=\frac{13^{4}+239}{4}$
17	7	$120+120+540+960+3360+4320+11520=20940=\frac{17^{4}+239}{4}$
19	6	$120+120+1080+7560+8640+15120=32640=\frac{19^{4}+239}{4}$ 23
10	$120+120+120+540+960+2520+3360$	
$+7560+20160+34560=70020=\frac{23^{4}+239}{4}$		

Strictly speaking, these terms are lower bounds found by enumerating r-ary ovoids in $O_{8}^{+}(p)$ for small r and testing for isomorphism. To compute $\operatorname{Aut}(\mathcal{O})$, use nauty to determine $\operatorname{Aut}(\Delta(\mathcal{O}))$ where $\Delta(\mathcal{O})$ is the associated two-graph. In general $\operatorname{Aut}(\mathcal{O}) \subseteq \operatorname{Aut}(\Delta(\mathcal{O})$), and we check that equality holds in all cases.

Canonical bijections between octonionic ovoids in $O_{8}^{+}(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\binom{-p \mid u^{2}}{r}=+1$.
Denote the binary ovoid

$$
\mathcal{O}_{2, p, 1}=\left\{\langle\bar{x}\rangle: \pm x \in \mathbb{Z}+2 O,|x|^{2}=p\right\}
$$

An alternative construction of the r-ary ovoid $\mathcal{O}_{r, p, u}$ is via the canonical bijection

$$
f: \mathcal{O}_{r, p, u} \rightarrow \mathcal{O}_{2, p, 1}
$$

constructed as follows.

for some $x, y \in O$ such that $|x|^{2}=p$ and $|y|^{2}=k(r-k)$. If we also require $x \in \mathbb{Z}+20$, then this factorization is unique up to a ± 1 factor and our bijection is

Canonical bijections between octonionic ovoids in $O_{8}^{+}(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\binom{-p \mid u^{2}}{r}=+1$.
Denote the binary ovoid

$$
\mathcal{O}_{2, p, 1}=\left\{\langle\bar{x}\rangle: \pm x \in \mathbb{Z}+2 O,|x|^{2}=p\right\} .
$$

An alternative construction of the r-ary ovoid $\mathcal{O}_{r, p, u}$ is via the canonical bijection

$$
f: \mathcal{O}_{r, p, u} \rightarrow \mathcal{O}_{2, p, 1}
$$

constructed as follows. Given $w \in \mathbb{Z} u+r O$ with $|x|^{2}=k(r-k) p, 1 \leqslant k \leqslant \frac{r-1}{2}$, we have

$$
w=x y
$$

for some $x, y \in O$ such that $|x|^{2}=p$ and $|y|^{2}=k(r-k)$. If we also require $x \in \mathbb{Z}+20$, then this factorization is unique up to a ± 1 factor and our bijection is

$$
f:\langle\bar{W}\rangle \mapsto\langle\bar{x}\rangle .
$$

Thank You!

Questions?

