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x(yz)  ≠
(xy)z



Some ovoids in the O+
6 (p) quadric (Klein quadric)

Consider a prime p ≡ 1 mod 4. Let S be the set of all

x = (x1, . . . , x6) ∈ Z
6 such that

1 xi ≡ 1 mod 4; and
2

∑

i x2
i = 6p.

Then |S| = p2 + 1; and for all x 6= y in S, x · y 6≡ 0 mod p.

Example (p = 5, |S| = 52 + 1 = 26)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1);

20 vectors of shape (−3,−3,−3, 1, 1, 1).

Example (p = 13, |S| = 132 + 1 = 170)

S contains 20 vectors of shape (5, 5, 5, 1, 1, 1);

30 vectors of shape (−7,−5, 1, 1, 1, 1);
60 vectors of shape (5, 5,−3,−3,−3, 1);

60 vectors of shape (−7,−3,−3,−3, 1, 1).
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Ovoids in O+
2n(q) quadrics

Let V be a 2n-dimensional vector space over Fq with

nondegenerate quadratic form Q : V → Fq.

(Projective) points are 1-dimensional subspaces 〈v〉 < V ; such

a point is singular if Q(v) = 0. The associated quadric is the

set of all singular points. A subspace U 6 V is totally singular it

lies entirely in the quadric, i.e. each of its points is singular. A

generator is a maximal totally singular subspace. All

generators have dimension n, if Q is chosen appropriately.

An ovoid is a set O of points of the quadric, meeting each

generator exactly once. Equivalently, O is a set of qn−1 + 1

singular points, no two perpendicular.

The O+
4 (q) quadric is a (q + 1) × (q + 1) grid; ovoids are

transversals of the grid. Ovoids in the O+
6 (q) quadric exist for

all q. The lattice construction of ovoids in O+
6

(p) (above) can be

generalized to all primes p.
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The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra

is O = R ⊗Z O and O is isometric to a root lattice of type E8 in

O.

The set of units O× is a Moufang loop of order 240, consisting

of all elements of norm 1 in O.

For all n > 1, the number of elements v ∈ O of norm |v |2 = n is

240σ3(n) = 240
∑

16d|n

d3.

Reduction mod p gives maps Z → Fp and O → V := O/pO

denoted by . Equipped with the quadratic form

Q : V → Fp, Q(x) = |x |2 ,

V is an orthogonal space of type O+
8 (p).
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The ‘binary’ ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit u ∈ O×. Let S be the set of

vectors x ∈ Zu + 2O ⊂ O such that |x |2 = p. Then

|S| = 2(p3+1) and S consists of p3 + 1 pairs ±x. Reducing

these vectors mod pO gives

O = O2,p,u =
{

〈x〉 : ±x ∈ S
}

,

an ovoid in O/pO ' O+
8 (p).

The proof uses the most basic facts about the E8 root lattice.

Conway et al. also gave a construction of ‘ternary’ ovoids

(replacing the prime 2 by 3 above).
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The r -ary ovoids in O+
8 (p)

Theorem (M., 1993)

Let r 6= p be odd primes. Fix u ∈ O such that

(

−p|u|2

r

)

= +1.

Let S be the set of vectors x ∈ Zu + rO ⊂ O such that

|x |2 = k(r − k)p for some k ∈ {1, 2, . . . , r−1
2 }. Then

|S| = 2(p3+1) and S consists of p3+1 pairs ±x. Reducing

these vectors mod pO gives

O = Or ,p,u =
{

〈x〉 : ±x ∈ S
}

,

an ovoid in O/pO ' O+
8 (p). (Some degenerate cases occur for

r > p.)

The proof uses facts about E8 and the fact that E8 ⊕ E8 has

480σ7(n) elements of norm n > 1. (Or O and theorems on

factorization in O). Ovoids isomorphic to Or ,p,u (for primes

r 6= p, including r = 2) are the r -ary ovoids of octonionic type in

O+
8

(p).
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Open Questions

1 For each p, there are infinitely many choices of r , u to

choose in constructing Or ,p,u but only finitely many ovoids

in O+
8 (p). How many? How do we know when we have

found them all?

2 Let w(p) be the number of isomorphism classes of

octonionic ovoids in O+
8 (p). Does w(p) → ∞ as p → ∞?

(By Conway et al. (1988), w(p) > 1.)

3 r , p don’t really have to be primes. Does anything

comparable work in O+
8 (q)?

4 Most octonionic ovoids should be rigid, i.e. having trivial

stabilizer in PGO+
8 (p); but no rigid ovoids in O+

8 (q) have

been found.

5 What is really going on in the construction of octonionic

ovoids?
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4 Most octonionic ovoids should be rigid, i.e. having trivial

stabilizer in PGO+
8 (p); but no rigid ovoids in O+

8 (q) have

been found.

5 What is really going on in the construction of octonionic

ovoids?
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Conjectured number of octonionic ovoids

Let O1,O2, . . . ,Ow be representatives for the isomorphism

types of octonionic ovoids in O+
8

(p), under G = PGO+
8

(p). The

number of ovoids isomorphic to Oi is [G : GOi
]; note that

|G| = |PGO+
8 (p)| = 2

d
p12(p6 − 1)(p4 − 1)2(p2 − 1)

where d = gcd(p − 1, 2).

The subgroup W (E8)/{±I} ∼= PGO+
8

(2) 6 G has order

|PGO+
8

(2)| = 348,364,800.
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Conjectured number of octonionic ovoids

Conjectured Mass Formula

For p > 5,
w(p)
∑

i=1

[G : GOi
] =

|G|(p4 + 239)

4|PGO+
8 (2)|

;

i.e.

|PGO+
8 (2)|

|GO1
|

+
|PGO+

8 (2)|

|GO2
|

+ · · ·+
|PGO+

8 (2)|

|GOw |
=

p4 + 239

4
.

The stabilizers GOi
are not necessarily subgroups of PGO+

8 (2).
I am not claiming that the terms in this sum are always integers

(but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the

octonionic ovoids lie in hyperplanes.)
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The abundance of ovoids

Corollary

Let n(p) be the number of isomorphism types of ovoids in

O+
8 (p). If the Mass Formula holds, then for some absolute

constant C > 0, n(p) > Cp4 → ∞ as p → ∞.

Currently it is known that n(p) > 1 (Conway et al., 1988).
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Verifying the Mass Formula for small p

p w(p) Mass Formula

5 2 96+120 = 216 = 54+239
4

7 2 120+540 = 660 = 74+239
4

11 4 120+120+960+2520 = 3720 = 114+239
4

13 4 120+1080+1680+4320 = 7200 = 134+239
4

17 7 120+120+540+960+3360+4320+11520 = 20940 = 174+239
4

19 6 120+120+1080+7560+8640+15120 = 32640 = 194+239
4

23 10
120+120+120+540+960+2520+3360

+7560+20160+34560 = 70020 = 234+239
4

Strictly speaking, these terms are lower bounds found by

enumerating r -ary ovoids in O+
8 (p) for small r and testing for

isomorphism. To compute Aut(O), use nauty to determine

Aut(∆(O)) where ∆(O) is the associated two-graph. In general

Aut(O) ⊆ Aut(∆(O)), and we check that equality holds in all

cases.
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Canonical bijections between octonionic ovoids in

O+
8 (p)

Fix odd primes r 6= p and u ∈ O such that

(

−p|u|2

r

)

= +1.

Denote the binary ovoid

O2,p,1 =
{

〈x〉 : ±x ∈ Z + 2O, |x |2 = p
}

.

An alternative construction of the r -ary ovoid Or ,p,u is via the

canonical bijection

f : Or ,p,u → O2,p,1

constructed as follows. Given w ∈ Zu + rO with

|x |2 = k(r − k)p, 1 6 k 6
r−1

2
, we have

w = xy

for some x , y ∈ O such that |x |2 = p and |y |2 = k(r − k). If we

also require x ∈ Z + 2O, then this factorization is unique up to a

±1 factor and our bijection is

f : 〈w〉 7→ 〈x〉.
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Thank You!

Questions?
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