Finite commutative automorphic loops

Gábor Péter Nagy

University of Szeged (Hungary)

3rd Mile High Conference, Denver, August 11-17, 2013

Overview

- 2 Finite simple commutative A-loops
- 3 Centerless finite commutative A-loops of exponent 2

Basic concepts

- Left and right multiplication maps: L_x , R_x
- Multiplication group, inner mapping group: Mlt(Q), Inn(Q)
- Normal subloop, center, factor loop
- Solvable loop, simple loop
- Automorphic loop (A-loop): $Inn(Q) \leq Aut(Q)$
- Power-associativity, *p*-loop
- Anti-automorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$

Problem setting

😵 🞅 🗊 Problems in loop theory and quasigroup theory - Wikipedia, the free encyclopedia - Goog	
W Problems in loop theory a ×	
← → ሮ 🏠	🕒 en.wikipedia.org/wiki/Problems_in_loop_theory_and_c 🔍 🏠 🔩 🕇 💌 🗎 🗧
Nagy Gábor ho 📄 Other Bookmarks	
	Proposed: by Warren D. Smith
	Comments: There are infinite alternative loops without 2-sided inverses, cf. (Ormes and Vojtěchovský, 2007)
	Finite simple A-loop [edit source edit beta]
	Find a nonassociative finite simple A-loop, if such a loop exists.
	 Proposed: by Michael Kinyon at Loops '03, Prague 2003 Comments: It is known that if the order of such a loop is odd, the loop must
	have exponent p for some prime p.
	Moufang theorem in non-Moufang loops [edit source edit beta]
	We say that a variety V of loops satisfies the Moufang theorem if
	for every loop Q in V the following implication holds: for every x, y,
	z in Q, if $x(yz) = (xy)z$ then the subloop generated by x, y, z is a
	in the variety of Moufang loops?

Previous work done by

Přemysl

Michael

Petr

Ken

J. D.

Piroska

Previous results

Theorem (Albert 1943)

Q is simple if and only if Mlt(Q) acts primitively on Q.

Proposition

Let Q be a finite, commutative automorphic loop.

• $Q \cong O(Q) \times E(Q)$ where |O(Q)| is odd and E(Q) is a 2-loop.

2 If |Q| is odd, then Q is solvable.

 \bigcirc If Q is simple, then Q has exponent 2.

Proposition

Every A-loop has the anti-automorphic inverse property: $JL_XJ = R_X^{-1}$.

Main result

Main theorem (Grishkov, Kinyon, N 2012)

- Every finite, commutative automorphic loop is solvable.
- **2** Every automorphic 2-loop is solvable.

Main strategies:

- Heavy equational computations, by hand and Prover9.
- Deep results from the theory of finite groups.
- Deep results from the theory of Lie rings.

Proposition

Every finite simple, automorphic 2-loop is commutative of exponent 2.

Commutative A-loops of exponent 2 and Lie rings

- Let (Q, ○) be a finite simple commutative A-loop of exponent
 2.
- Using deep group theory, we show that Mlt(Q) is a primitive group of affine type.
- This defines an elementary abelian 2-group operation (Q, +).
- Define the bracket $[x, y] = x + y + x \circ y$.
- (Wright 1969) (Q, +, [·, ·]) is a simple nonassociative algebra over 𝔽₂.

Proposition

 $(Q, +, [\cdot, \cdot])$ is a simple Lie algebra over \mathbb{F}_2 satisfying ad(u) ad([u, w]) = 0

for all $u, w \in Q$.

The "crust of a thin sandwich"

Efim Zel'manov

Grishkov at LOOPS'03

Theorem (Zel'manov,Kostrikin 1990)

Let \mathfrak{g} be a Lie ring generated by a finite collection of elements a satisfying $\operatorname{ad}(a)^2 = 0$ and $\operatorname{ad}(a) \operatorname{ad}(x) \operatorname{ad}(a) = 0$ for all $x \in \mathfrak{g}$. Then \mathfrak{g} is nilpotent.

Proof of the Main Theorem. Some more juggling with equations shows that ZK applies for $(Q, +, [\cdot, \cdot])$, a contradiction.

Automorphic *p*-loops and nilpotency

Previous results (Jedlička, Kinyon, Vojtěchovský, Csörgő 2010/11)

- For p > 2, commutative automorphic *p*-loops are nilpotent.
- 2 There are nonnilpotent automorphic p-loops for p > 2.
- There are nonnilpotent commutative automorphic 2-loops.

The construction

Theorem 1

Let n, m be positive integers, $\beta : \mathbb{F}_2^m \to \mathbb{F}_2^{n \times n}$ a linear map such that $y, y' \in \mathbb{F}_2^m$

• $I + \beta(y)$ is nonsingular, and

2
$$\beta(y)$$
, $\beta(y')$ commute.

Define the operation \circ on \mathbb{F}_2^{n+m} by

 $(x_1, y_1) \circ (x_2, y_2) = (x_1 + x_2 + \beta(y_1)x_2 + \beta(y_2)x_1, y_1 + y_2).$ (1)

Then $(\mathbb{F}_2^{n+m}, \circ, 0)$ is a commutative A-loop of exponent 2.

Note that with

$$[(x_1, y_1), (x_2, y_2)] = [\beta(y_1)x_2 + \beta(y_2)x_1, 0],$$

 $(\mathbb{F}_2^{n+m}, +, [\cdot, \cdot])$ is a solvable Lie algebra of characteristic 2.

Centerless commutative A-loops of exponent 2

Theorem 2

 $(\mathbb{F}_2^{n+m}, \circ)$ has trivial center if and only if $\beta(y)$ is nonsingular for all $y \in \mathbb{F}_2^m$. In particular, in the centerless case m < n.

Example

Let $m < n, m \mid n$ and fix $\alpha \in \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^m}$. Define β by

 $\beta(\mathbf{y})\mathbf{x} = \alpha \mathbf{x}\mathbf{y}.$

Then the corresponding comm. *A*-loop of exp. 2 has trivial center.

Remarks.

- Additively closed subsets of GL(n, p) ∪ {0} are interesting on their own. [~ partial additive spreads]
- **PROBLEM:** ∃ infinite simple comm. A-loops of exp. 2 ???

THANK YOU FOR YOUR ATTENTION!