# The Structure of (Power Associative) Conjugacy Closed Loops 

J.D. Phillips

Northern Michigan University

Mile High Conference, Denver, 15 August 2013

## Associator:

$$
x y \cdot z=(x \cdot y z) \cdot(x, y, z)
$$

## Associator:

$$
x y \cdot z=(x \cdot y z) \cdot(x, y, z)
$$

## Nuclei:

Left Nucleus: $\mathrm{N}_{\lambda}(Q)=\{a: a \cdot x y=a x \cdot y\}$
Middle Nucleus: $\mathrm{N}_{\mu}(Q)=\{a: x \cdot a y=x a \cdot y\}$
Right Nucleus: $\mathrm{N}_{\rho}(Q)=\{a: x \cdot y a=x y \cdot a\}$

## Associator:

$$
x y \cdot z=(x \cdot y z) \cdot(x, y, z)
$$

## Nuclei:

Left Nucleus: $\mathrm{N}_{\lambda}(Q)=\{a: a \cdot x y=a x \cdot y\}$
Middle Nucleus: $\mathrm{N}_{\mu}(Q)=\{a: x \cdot a y=x a \cdot y\}$
Right Nucleus: $\mathrm{N}_{\rho}(Q)=\{a: x \cdot y a=x y \cdot a\}$

Nucleus: $\mathrm{N}(Q)=\mathrm{N}_{\lambda}(Q) \cap \mathrm{N}_{\mu}(Q) \cap \mathrm{N}_{\rho}(Q)$

## Left Conjugacy Closed (LCC):

$$
z \cdot y x=((z y) / z) \cdot z x
$$

## Left Conjugacy Closed (LCC):

$$
z \cdot y x=((z y) / z) \cdot z x
$$

Right Conjugacy Closed (RCC):

$$
x y \cdot z=x z \cdot(z \backslash(y z))
$$

## Left Conjugacy Closed (LCC):

$$
z \cdot y x=((z y) / z) \cdot z x
$$

Right Conjugacy Closed (RCC):

$$
x y \cdot z=x z \cdot(z \backslash(y z))
$$

Conjugacy Closed (CC):
LCC + RCC

## Power Associativity in CC-loops (PACC):

## Power Associativity in CC-loops (PACC):

Element-wise: $a$ is power-associative means $<a>$ is a group.

## Power Associativity in CC-loops (PACC):

Element-wise: $a$ is power-associative means $<a>$ is a group. In PACC loops, $a$ is a power-assocaitive precisely when $a \cdot a a=a a \cdot a$.

## Power Associativity in CC-loops (PACC):

Element-wise: $a$ is power-associative means $<a>$ is a group. In PACC loops, $a$ is a power-assocaitive precisely when $a \cdot a a=a a \cdot a$.

## Weak Inverse Property (WIP):

## Power Associativity in CC-loops (PACC):

Element-wise: $a$ is power-associative means $<a>$ is a group. In PACC loops, $a$ is a power-assocaitive precisely when $a \cdot a a=a a \cdot a$.

## Weak Inverse Property (WIP):

Element-wise: $a(x a)^{-1}=x^{-1}$

## Power Associativity in CC-loops (PACC):

Element-wise: $a$ is power-associative means $<a>$ is a group. In PACC loops, $a$ is a power-assocaitive precisely when $a \cdot a a=a a \cdot a$.

## Weak Inverse Property (WIP):

Element-wise: $a(x a)^{-1}=x^{-1}$

Extra: $x(y \cdot z x)=(x y \cdot z) x$

## Chain of CC varieties:

## Chain of CC varieties:

## CC-loops

## Chain of CC varieties:

CC-loops<br>PACC-loops

## Chain of CC varieties:

CC-loops<br>PACC-loops<br>WIP PACC-loops

## Chain of CC varieties:



## Chain of CC varieties:



## The Result that Motivated this Work:

## The Result that Motivated this Work:

Theorem (Kinyon, Kunen, '06)
In PACC-loops, $x^{12}$ is nuclear.

## The Result that Motivated this Work:

Theorem (Kinyon, Kunen, '06)
In PACC-loops, $x^{12}$ is nuclear.

## A Strengthening:

## The Result that Motivated this Work:

Theorem (Kinyon, Kunen, '06)
In PACC-loops, $x^{12}$ is nuclear.

## A Strengthening:

Theorem (Kinyon, P.)
In PACC-loops, $x^{6}$ is nuclear.

Lemma (Kinyon, P.)
In PACC-loops, $\left\{a: a^{n}\right.$ is nuclear $\}$ is a subloop.

In PACC-loops, $\left\{a: a^{n}\right.$ is nuclear $\}$ is a subloop.

We focus on the subloops given by $n=2$ and $n=3$ :

In PACC-loops, $\left\{a: a^{n}\right.$ is nuclear $\}$ is a subloop.

We focus on the subloops given by $n=2$ and $n=3$ :

$$
\begin{aligned}
& S(L)=\left\{a \in L: a^{2} \in \mathrm{~N}(L)\right\} \\
& C(L)=\left\{a \in L: a^{3} \in \mathrm{~N}(L)\right\}
\end{aligned}
$$

## Lemma (Kinyon, P.)

In PACC-loops, $\left\{a: a^{n}\right.$ is nuclear $\}$ is a subloop.

We focus on the subloops given by $n=2$ and $n=3$ :

$$
\begin{aligned}
& S(L)=\left\{a \in L: a^{2} \in \mathrm{~N}(L)\right\} \\
& C(L)=\left\{a \in L: a^{3} \in \mathrm{~N}(L)\right\}
\end{aligned}
$$

Theorem (Kinyon, P.)
$L$ factorizes: $L=S(L) C(L)$.

## Lemma (Kinyon, P.)

In PACC-loops, $\left\{a: a^{n}\right.$ is nuclear $\}$ is a subloop.

We focus on the subloops given by $n=2$ and $n=3$ :

$$
\begin{aligned}
& S(L)=\left\{a \in L: a^{2} \in \mathrm{~N}(L)\right\} \\
& C(L)=\left\{a \in L: a^{3} \in \mathrm{~N}(L)\right\}
\end{aligned}
$$

## Theorem (Kinyon, P.)

$L$ factorizes: $L=S(L) C(L)$.
Proof. $a=a^{3} \cdot a^{-2}$, and since sixth powers are nuclear, $a^{3} \in S(L)$, and $a^{2} \in C(L)$.

## Lemma (Kinyon, P.)

In PACC-loops, $\left\{a: a^{n}\right.$ is nuclear $\}$ is a subloop.

We focus on the subloops given by $n=2$ and $n=3$ :

$$
\begin{aligned}
& S(L)=\left\{a \in L: a^{2} \in \mathrm{~N}(L)\right\} \\
& C(L)=\left\{a \in L: a^{3} \in \mathrm{~N}(L)\right\}
\end{aligned}
$$

## Theorem (Kinyon, P.)

$L$ factorizes: $L=S(L) C(L)$.
Proof. $a=a^{3} \cdot a^{-2}$, and since sixth powers are nuclear, $a^{3} \in S(L)$, and $a^{2} \in C(L)$.

Note: $S(L) \cap C(L)=\mathrm{N}(L)$.

## Lemma (Kinyon, P.)

Let $L$ be a PACC-loop, then $S(L)$ is the set of WIP elements.

## Lemma (Kinyon, P.)

Let $L$ be a PACC-loop, then $S(L)$ is the set of WIP elements.

## Theorem (Kinyon, P.)

Let $L$ be a PACC-loop.
(i) If $a$ is in $S(L)$, then $(a, x, y)^{4}=1$
(ii) If $b$ is in $C(L)$, then $(b, x, y)^{3}=1$
(iii) $(x, y, z)^{12}=1$

## Lemma (Kinyon, P.)

Let $L$ be a PACC-loop, then $S(L)$ is the set of WIP elements.

## Theorem (Kinyon, P.)

Let $L$ be a PACC-loop.
(i) If $a$ is in $S(L)$, then $(a, x, y)^{4}=1$
(ii) If $b$ is in $C(L)$, then $(b, x, y)^{3}=1$
(iii) $(x, y, z)^{12}=1$

Note: We do not know if the 4 in $(i)$ is sharp.

## Theorem (Kinyon, P.)

Sylow p-subloops exist for finite PACC-loops.

