The Sabinin product in loops and quasigroups

Peter Plaumann Universität Erlangen–Nürnberg, Germany / UABJO, Oaxaca, Mexico

3rd Mile High Conference on Nonassociative Mathematics Denver, Colorado

August 11-17, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This talk is dedicated to the memory of

Lev Vasil'evich Sabinin

21 June 1932 - 4 June 2004

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

- 1. Left loops and their multiplication group
- 2. Loops and transitive permutation groups
- 3. The holomorph
- 3. Loops and transitive permutation groups
- 4. Sabinin's product
- 5. Groups with a triality

These pages are just a guide for a spoken text. From a certain point on the presentation switches from left multiplications to right multiplications.

Left loops

A magma¹ (M, \circ) is a set M with a multiplication \circ and a left loop is a universal algebra

 $L = \langle L, \backslash, \circ, \mathbf{1}_r \rangle$

of type (2,0,1) satisfying the identities

 $a \circ (a \setminus b) = b,$ $a \setminus (a \circ b) = b,$ $a \circ \mathbf{1}_r = a.$

In a left loop Q the **left translations** defined by $L_a(x) = ax$ are bijections. Call the group LMult(Q) generated by the set $T_{\ell}(Q)$ of all left translations of Q the **left multiplication group** of Q.

Note: $(L_a)^{-1}(x) = a \setminus x$.

¹The name "groupoid" is taboo.

The associant of a left loop

If Q is a left loop, we have the transitive action of the group LMult(Q)on the set Q. In Sabinin's terminology the stabilizer $\mathcal{I}_{\ell}(Q) = \text{Stab}_{\text{LMult}(Q)}(\mathbf{1}_r) = \{X \in \text{LMult}(Q) \mid X(\mathbf{1}_r) = \mathbf{1}_r\}$ is called the **left associant** of Q. Others call $\mathcal{I}_{\ell}(Q)$ the left inner mapping group of Q.

Note that for any $a \in Q$ one has

$$\mathsf{Stab}_{\mathsf{LMult}(Q)}(a) = L_a \mathsf{Stab}_{\mathsf{LMult}(Q)}(\mathbf{1}_r) L_a^{-1}. \tag{1}$$

Right loops

Given a right loop $L=\langle\circ,/,\mathbf{1}_\ell
angle$ we have

- Right multiplications R_b
- The set of all right translations $T_r(Q)$
- The right multiplication group $\mathsf{RMult}(Q) = \langle \mathsf{T}_r(Q) \rangle$

• The right associant $\mathcal{I}_r(Q) = \mathsf{Stab}_{\mathsf{RMult}(Q)}(\mathbf{1}_\ell)$

Loops

A **loop** is at the same time a left and a right loop. Note that left and right neutral element coincide. So in a loop $L = \langle \circ, \backslash, /, \mathbf{1} \rangle$ we have

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\mathsf{T}_{\ell}(Q), \mathsf{LMult}(Q), \mathcal{I}_{\ell}(Q)$
- ▶ $T_r(Q)$, RMult(Q), $\mathcal{I}_r(Q)$
- The multiplication group Mult(Q)
- The associant $\mathcal{I}(Q) = \mathsf{Stab}_{\mathsf{RMult}(Q)}(\mathbf{1})$

For left, right or twosided quasigroup Q in the definiton of the associants one chooses an arbitrary base point $x_0 \in Q$ and observes equation 1.

(ロ)、(型)、(E)、(E)、 E) の(の)

I will not follow that path in my talk.

Permutation groups

R. Baer, Nets and groups. Trans. Amer. Math. Soc. 46, 110-141 (1939)

Given a transitive action $\eta : G \times X \to X$ of a group G on a set X put $H = H_{\eta,x_0} = \operatorname{Stab}_G(x_0)$ for an arbitrary base point $x_0 \in X$. Now identify X with coset space G/H via $g_1x_0 = g_2x_0 \Leftrightarrow x_0 = g_1^{-1}g_2x_0 \Leftrightarrow g_1^{-1}g_2 \in H \Leftrightarrow g_1H = g_2H$ and choose a coset representative system K of H in G. We consider triples $\mathcal{B} = (G, H, K)$ - group, subgroup, transversal – and call them **Baer triples**.

Now one defines a multiplication $\diamond_{\mathcal{B}}$ on the set K by

$$(xH)(yH) = (x \diamond_{\mathcal{B}} y)H.$$

(日) (同) (三) (三) (三) (○) (○)

Theorem [BAER] For a Baer triple \mathcal{B} the magma $(K, \diamond_{\mathcal{B}})$ is a left loop.

Baers construction

We denote the left loop defined in the last theorem by $Q_{\mathcal{B}}$. Note that we are not planning to discuss its dependence on the transversal K. However, there are some useful observations.

(B.1) $\bigcap_{g \in G} H^g = 1$ if and only if the action of G is faithful.

(B.2) In $Q_{\mathcal{B}}$ there is a twosided neutral element if $1_{\mathcal{G}} \in K$.

(B.3) $Q_{\mathcal{B}}$ is a loop if and only if K is a transversal of H^g for all $g \in G$.

(B.4) $G = \text{LMult}(Q_{\mathcal{B}})$ if and only if K is a generating set of the group G.

Theorem

[BAER] For a left loop Q and the Baer triple $\mathcal{B} = (\text{LMult}(Q), \mathcal{I}_{\ell}(Q), \mathsf{T}_{\ell}(Q))$ the left loop $Q_{\mathcal{B}}$ isomorphic to Q.

The torsor of a group

- H. PRÜFER, Theorie der Abelschen Gruppen, Math. Zeit. 20, 166-187 (1924).
- R. BAER, Zur Einführung des Scharbegriffs. J. Reine Angew. Mathematik, (160, 199-207 (1929).
- W. BERTRAM, M. KINYON, Associative geometries. J. Lie Theory 20, no. 2, 215-252 (2010)

For group G one calls the ternary operation

 $\tau_G(a,b,c) = ab^{-1}c$

the torsor of G. One easily sees

Proposition

If X is a coset of some subgroup of a group G, then $\tau_G(X, X, X) \subseteq X$.

An origin of the notion of the torsor lies in affine geometry.

The holomorph of a group

Let G be a group. Then a bijection $\beta : G \to G$ is called a **holomorphism** if $\tau_G(a^\beta, b^\beta, c^\beta) = \tau_G(a, b, c)^\beta$ for all $a, b, c \in G$. The set Hol(G) of all holomorphisms of G forms a group, the **holomorph** of G.

Theorem

For any group G one has LMult(G), $RMult(G) \triangleleft Hol(G)$ and $Aut(G) \leq Hol(G)$. Furthermore, $Inn(G) \leq Mult(G)$ and

 $Hol(G) = Aut(G) \ltimes LMult(G) = Aut(G) \ltimes RMult(G) \cong Aut(G) \ltimes G.$

The holomorph of a loop

Theorem

For a loop (Q, \cdot) and a group Θ acting – not necessarily faithfully – as a group of permutations on the set Q by

$$(A, x) * (B, y) = (AB, xB \cdot y)$$
⁽²⁾

a multiplication is defined on the set $\Theta \times Q$. One has: (i) $(\Theta \times Q, *)$ is a quasigroup with the left neutral element $(id_Q, 1_Q)$. If $1_Q T = 1_Q$ for all $T \in \Theta$ then the following statements are true (ii) $(\Theta \times Q, *)$ is a loop, (iii) $N = \{(id_Q, x) \mid x \in Q\}$ is a normal subloop of $(\Theta \times Q, *)$ (iv) $H = \{(T, 1_Q) \mid T \in \Theta\}$ is a subloop of $(\Theta \times Q, *)$, (v) $\Theta \times Q = H * N$ and $H \cap N = \{(id_Q, 1_Q)\}$.

Denoting the quasigroup $(\Theta \times Q, *)$ by $Hol_{\Theta}(Q)$ for any group G one has $Hol(G) = Hol_{AutG}(G)$.

Pseudoautomorphisms

For a loop Q a bijection $A: Q \rightarrow Q$ is called a *right pseudo-automorphic* if there exists an element $a \in Q$, called a *companion* of A, such that

$$((xy)A)a = ((xA)((yA)a))$$

for all $x, y \in Q$. We denote by PsAut(Q) the set of all pseudo-automorphic mappings of a loop Q. For $A \in PsAut(Q)$ we put

 $C(A) = \{a \in Q \mid a \text{ is a companion of } A\}.$

Proposition

For any loop Q the inclusion $\mathcal{I}_r(Q) \subseteq \mathsf{PsAut}(Q)$ holds.

Pseudoautomorphisms/2

((xA)(yA)a) = ((xy)A)a

Proposition

Let Q be a loop. Then

(1) Every automorphism of Q is a pseudo-automorphic mapping of Q.

(2) If
$$A \in \mathsf{PsAut}(Q)$$
, then $1_QA = 1_QA$

(3) For $A, B \in PsAut(Q), a \in C(A), b \in C(b)$ one has $AB \in PsAut(Q)$ and $aB \cdot b \in C(AB)$

(4) If $A \in PsAut(Q)$ and $a \in C(A)$, then $A^{-1} \in PsAut(Q)$ has a companion c for which $aA^{-1} \cdot c = 1_Q$.

Pseudoautomorphisms/3

((xA)(yA)a) = ((xy)A)a

Assume: Q a loop, $A \in PsAut(Q)$, $a \in C(A)$. One calls (A, a) an **extended pseudo-automorphism** of Q and denote by EPsAut(Q) the set of all pseudo-automorphisms of Q.

For (A, a), (B, b) one defines

$$(A,a)\circ (B,b)=(A\circ B,(Ba)b).$$

From Proposition 3 follows

Theorem If Q is loop, then $(EPsAut(Q), \circ)$ is a group.

Note that for a group G one has $\text{EPsAut}(G) = \text{Aut}(G) \ltimes G$.

The torsor of a group

- H. PRÜFER, Theorie der Abelschen Gruppen, Math. Zeit. 20, 166-187 (1924).
- R. BAER, Zur Einführung des Scharbegriffs. J. Reine Angew. Mathematik, (160, 199-207 (1929).
- R. B. BRUCK, L. J. PAIGE, Loops whose inner mappings are automorphisms. Ann. Math. 63, 308–323 (1956).

W. Bertram, M. Kinyon, Associative geometries. I: torsors, linear relations and Grassmannians. J. Lie Theory 20, no. 2, 215–252 (2010)

For group G calls the ternary operation

$$\tau_{\mathsf{G}}(\mathsf{a},\mathsf{b},\mathsf{c})=\mathsf{a}\mathsf{b}^{-1}\mathsf{c}$$

the **torsor** of G. One easily sees

Proposition

If X is a coset of some subgroup of a group G, then $\tau_G(X, X, X) \subseteq X$.

An origin of the notion of the torsor lies in affine geometry.

The holomorph of a group

Let G be a group. Then a bijection $\beta : G \to G$ is called a **holomorphism** if $\tau_G(a^\beta, b^\beta, c^\beta) = \tau_G(a, b, c)^\beta$ for all $a, b, c \in G$. The set Hol(G) of all holomorphisms of G forms a group, the **holomorph** of G.

Theorem

For any group G one has LMult(G), $RMult(G) \triangleleft Hol(G)$ and $Aut(G) \leq Hol(G)$. Furthermore, $Inn(G) \leq Mult(G)$ and

 $Hol(G) = Aut(G) \ltimes LMult(G) = Aut(G) \ltimes RMult(G) \cong Aut(G) \ltimes G.$

The holomorph of a loop

Theorem

For a loop (Q, \cdot) and a group Θ acting – not necessarily faithfully – as a group of permutations on the set Q defined by

$$(A, x) * (B, y) = (AB, xB \cdot y)$$
(3)

a multiplication is defined on the set $\Theta \times Q$. One has: (i) $(\Theta \times Q, *)$ is a quasigroup with the left neutral element $(id_Q, 1_Q)$. If $1_Q T = 1_Q$ for all $T \in \Theta$ then the following statements are true (ii) $(\Theta \times Q, *)$ is a loop, (iii) $N = \{(id_Q, x) \mid x \in Q\}$ is a normal subloop of $(\Theta \times Q, *)$ (iv) $H = \{(T, 1_Q) \mid T \in \Theta\}$ is a subloop of $(\Theta \times Q, *)$, (v) $\Theta \times Q = H * N$ and $H \cap N = \{(id_Q, 1_Q)\}$.

Denoting the quasigroup $(\Theta \times Q, *)$ by $Hol_{\Theta}(Q)$ for any group G one has $Hol(G) = Hol_{AutG}(G)$.

The Sabinin product

L. V. SABININ, On the equivalence of category of loops and the category of homogeneous spaces. (Russian) Dokl. Akad. Nauk SSSR **205**, no. 4, 970–974 (1972); translation in Soviet Math. Dokl. **13**, no. 4, 970–974 (1972) P. O. MIKHEEV, L. V. SABININ, *Quasigroups and differential geometry*. Quasigroups and loops: theory and applications, pp. 357–430, Sigma Ser. Pure Math., 8, Heldermann, Berlin, 1990. [Chapter 12]

L. V. Sabinin, Smooth quasigroups and loops. Mathematics and its Applications, Kluwer Academic Publishers 1999.

In 1972 Sabinin described a construction of the group Mult(Q) from a given loop structure on the set Q and the group $\mathcal{I}_r(Q)$.

Given a loop (Q, \cdot) and a subgroup $\Theta \leq \text{Sym}_0(Q)$, the stabilezer of 1_Q in Sym(Q) we consider the set $S = \Theta \times Q$ and the injections and projections

$$\begin{split} \iota_1 : \Theta \to S, \, \vartheta \mapsto (\vartheta, 1_Q), & \iota_2 : Q \to S, \, x \mapsto (\mathrm{id}_Q, x) \\ \pi_1 : S \to \Theta, \, (\vartheta, x) \mapsto \vartheta, & \pi_2 : S \to Q, \, (\vartheta, x) \mapsto x. \end{split}$$

The Sabinin product/2

Definition

For an arbitrary mapping $\varphi : (\Theta \times Q) \times (\Theta \times Q) \rightarrow \Theta$ define on $S = \Theta \times Q$ a multiplication \star_{φ} by

$$s_1 \star_{\varphi} s_2 = (\vartheta_1, x_1) \star_{\varphi} (\vartheta_2, x_2) = (\varphi((\vartheta_1, x_1), (\vartheta_2, x_2)), x_1 \vartheta_2 \cdot x_2), \quad (4)$$

using the notation $s_i = (\vartheta_i, q_i)$.

We call this multiplication \star_{φ} the Sabinin multiplication. One sees that

$$\pi_2((\vartheta_1, x_1) \star_{\varphi} (\vartheta_2, x_2)) = x_1 \vartheta_2 \cdot x_2.$$
(5)

for all $(\vartheta_1, x_1), (\vartheta_2, x_2) \in \Theta \times Q$. It follows that in the special case

$$\varphi((\vartheta_1, x_1), (\vartheta_2, x_2)) = \vartheta_1 \vartheta_2 \tag{6}$$

the Sabinin magma $(\Theta \times Q, \star_{\varphi})$ coincides with the loop $\operatorname{Hol}_{\Theta}(Q)$ (Theorem 7).

The Sabinin product/3

 $s_1 \star_{\varphi} s_2 = (\vartheta_1, x_1) \star_{\varphi} (\vartheta_2, x_2) = (\varphi((\vartheta_1, x_1), (\vartheta_2, x_2)), x_1 \vartheta_2 \cdot x_2)$

It is not difficult to give conditions that the magma $(\Theta \times Q, \star_{\varphi})$ has a neutral element, associativity is somewhat harder.

Proposition

Given Θ , Q, φ put $s_i = (\vartheta_i, q_i)$ and $\varphi(s_i, s_j) = \varphi((\vartheta_i, q_i), (\vartheta_j, q_j))$. Then the multiplication \star_{φ} is a associative if and only if the identities

$$\varphi\Big(\big(\varphi(s_1,s_2),q_1\vartheta_2\cdot q_2\big),s_3\Big)=\varphi\Big(s_1,\big(\varphi(s_2,s_3),q_2\vartheta_3\cdot q_3\big)\Big),\qquad(7)$$

$$(q_1\vartheta_2\cdot q_2)\vartheta_3\cdot q_3 = q_1\varphi(s_2,s_3)\cdot (q_2\vartheta_3\cdot q_3).$$
(8)

Sabinins Theorem

Using Proposition 5 one shows in the special case that $\Theta = \mathcal{I}_r(Q)$ for a suitable

$$\rho: (\mathcal{I}_r(Q) \times Q) \times (\mathcal{I}_r(Q) \times Q) \to \mathcal{I}_r(Q \times Q)$$

Sabinin's Theorem:

Theorem

For a loop Q the magma $(\mathcal{I}_r(Q) \times Q, \star_{\rho})$ is a group isomorphic to $\mathsf{RMult}(Q)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The story continues (Groups with triality)

S. DORO, Simple Moufang loops. Math. Proc. Cambridge Philos. Soc. 83, no. 3, 377-392 (1978)

 $\rm P.$ O. MIKHEEV, Moufang loops and their enveloping groups. Webs and quasigroups, pp. 33–43, Tver. Gos. Univ. (1993)

J. I. HALL, On Mikheev's construction of enveloping groups. Comment. Math. Univ. Carolin. ${\bf 51},$ no. 2, 245–252 (2010)

Now one had to speak about Moufang loops², groups with a triality³, pseudo-automorphisms, autotopisms ...

Mikheev used the concepts described in this talk to construct for a given Moufang loop M and its group ot pseudo-automorphisms EPsAut(M) a mapping

 $\mu: (\mathsf{EPsAut}(M) \times M) \times (\mathsf{EPsAut}(M) \times M) :\to \mathsf{EPsAut}(M)$

such that the group $\mathcal{G}(M) = (\text{EPsAut}(M) \times M, \star_{\mu})$ is a group with triality that "coordinizes" M.

 $^{2}z(x(zy)) = ((zx)z)y$

³a group on which the symmetric group Σ_3 acts as automorphisms satisfying a particular identity The story continues,

... but for today we stop here.

Thank you for your patience - see you later

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ