Towards a Characterization of Left Quasigroup Polynomials of Small Degree Over $\mathbb{F}_{2^{k}}$

Simona Samardjiska (joint work with Danilo Gligoroski)
Department of Telematics, NTNU, Norway
simonas@item.ntnu.no, danilog@item.ntnu.no
MileHigh, August 11 - 17, 2013, Denver

Introduction - Permutation Polynomials (PP)

A polynomial $f(x) \in \mathbb{F}_{q}[x]$ is called a permutation polynomial $(P P)$ of \mathbb{F}_{q} if the induced function $f: c \rightarrow f(c)$ from \mathbb{F}_{q} to itself is a permutation of \mathbb{F}_{q}.

- Hermite criterion
$f(x) \in \mathbb{F}_{q}[x]$ is a PP of \mathbb{F}_{q} iff - f has a unique root in \mathbb{F}_{q} - $\forall n, 1 \leq n \leq q-2,(n, q)=1, \operatorname{Deg}\left(f^{n}\right) \leq q-2\left(\bmod x^{q}-x\right)$
- A small amount of classes known
- Characterization- onen nroblem
- In characteristic 2

■ Dickson (1896) - up to degree 5
■ Li et al. (2010)- degrees 6, 7

Introduction - Permutation Polynomials (PP)

A polynomial $f(x) \in \mathbb{F}_{q}[x]$ is called a permutation polynomial $(P P)$ of \mathbb{F}_{q} if the induced function $f: c \rightarrow f(c)$ from \mathbb{F}_{q} to itself is a permutation of \mathbb{F}_{q}.

- Hermite criterion $f(x) \in \mathbb{F}_{q}[x]$ is a PP of \mathbb{F}_{q} iff
- f has a unique root in \mathbb{F}_{q}
- $\forall n, 1 \leq n \leq q-2,(n, q)=1, \operatorname{Deg}\left(f^{n}\right) \leq q-2\left(\bmod x^{q}-x\right)$
- A small amount of classes known
- Characterization- open problem
- In characteristic 2
- Dickson (1896) - up to degree 5

■ Li et al. (2010) - degrees 6, 7

Introduction - Permutation Polynomials (PP)

A polynomial $f(x) \in \mathbb{F}_{q}[x]$ is called a permutation polynomial $(P P)$ of \mathbb{F}_{q} if the induced function $f: c \rightarrow f(c)$ from \mathbb{F}_{q} to itself is a permutation of \mathbb{F}_{q}.

- Hermite criterion $f(x) \in \mathbb{F}_{q}[x]$ is a $P P$ of \mathbb{F}_{q} iff
- f has a unique root in \mathbb{F}_{q}
- $\forall n, 1 \leq n \leq q-2,(n, q)=1, \operatorname{Deg}\left(f^{n}\right) \leq q-2\left(\bmod x^{q}-x\right)$
- A small amount of classes known
- Characterization- open problem
- In characteristic 2
- Dickson (1896) - up to degree 5

■ Li et al. (2010) - degrees 6, 7

Permutation Polynomials of Degree ≤ 5 over $\mathbb{F}_{2^{k}}$

[Dickson]

All normalized PP:

$$
\begin{aligned}
& x \\
& x^{2} \\
& x^{3} \\
& x^{4}+a x^{2}+b x \\
& x^{5} \\
& x^{5}+a x^{3}+a^{2} x
\end{aligned}
$$

all k
all k
$\left(2^{k}-1,3\right)=1$
$x=0$ is the only root
$\left(2^{k}-1,5\right)=1$
$2^{k}= \pm 2(\bmod 5)$

Permutation Polynomials of Degree 6 over $\mathbb{F}_{2^{k}}$ [Li et al.]

■ k - odd: $\quad x^{6}$
■ $k=3$:

$$
\begin{array}{ll}
x^{6}+x^{5}+x^{3}+\alpha x^{2}+\alpha x & x^{6}+x^{5}+\alpha x^{3} \\
x^{6}+x^{5}+x^{3}+x^{2}+x & x^{6}+x^{5}+x^{4} \\
x^{6}+x^{5}+x^{4}+x^{3}+x^{2} & x^{6}+x^{3}+x^{2} \\
x^{6}+x^{5}+x^{4}+x^{3}+x & x^{6}+x^{5}+x^{4}+\alpha^{3} x^{3}+\alpha^{4} x^{2}+\alpha^{6} x
\end{array}
$$

and α is a root of $x^{3}+x+1$.
■ $k=4$:

$$
\begin{aligned}
& x^{6}+x^{5}+x^{3}+\beta^{3} x^{2}+\beta^{5} x \\
& x^{6}+x^{5}+\beta^{3} x^{4}+x^{3}+\beta x^{2}+\beta^{6} x \\
& x^{6}+x^{5}+\beta^{3} x^{4}+x^{3}+\beta^{8} x^{2}+\beta^{13} x
\end{aligned}
$$

and β is a root of $x^{4}+x+1$.
■ $k=5: \quad x^{6}+x^{5}+x^{2}$

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, \quad g(u, y)$ is a permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?

- Ex: Algebraic Degree 1

$$
g(x, y)=L_{1}(x)+L_{2}(y)
$$

L_{1}, L_{2} linearized polynomials, L_{2} - no other roots but 0 .

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, \quad g(u, y)$ is a. permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?

- Ex: Algebraic Degree 1
$g(x, y)=L_{1}(x)+L_{2}(y)$
L_{1}, L_{2} linearized polynomials, L_{2} - no other roots but 0 .

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, g(u, y)$ is a. permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?

- Ex: Algebraic Degree 1

$$
g(x, y)=L_{1}(x)+L_{2}(y)
$$

L_{1}, L_{2} linearized polynomials, L_{2} - no other roots but 0 .

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, g(u, y)$ is a. permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?
■ Focus on LQPs over $\mathbb{F}_{2^{k}}$ of algebraic degree 2

- notation $-{ }_{2}$ LQPs
- known as MQQs when defined over \mathbb{F}_{2}^{k}

$$
g(x, y)=h(x, y) y+f(x)
$$

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, g(u, y)$ is a. permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?
■ Focus on LQPs over $\mathbb{F}_{2^{k}}$ of algebraic degree 2

- notation $-{ }_{2}$ LQPs
- known as MQQs when defined over \mathbb{F}_{2}^{k}

$$
g(x, y)=h(x, y) y+f(x)
$$

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, \quad g(u, y)$ is a. permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?
■ Focus on LQPs over $\mathbb{F}_{2^{k}}$ of algebraic degree 2
Degree 2: $g(x, y)=a y^{2}+b x y, a b=0$

Left Quasigroup Polynomials (LQP) over $\mathbb{F}_{2^{k}}$

A polynomial $g(x, y) \in \mathbb{F}_{q}[x, y]$ is called a Left Quasigroup Polynomial $(L Q P)$ of \mathbb{F}_{q} if for all $u \in \mathbb{F}_{q}, \quad g(u, y)$ is a permutation polynomial of \mathbb{F}_{q}.

- Natural extension of PPs
- Natural question:

Can we characterize LQPs for small degrees?

- Focus on LQPs over $\mathbb{F}_{2^{k}}$ of algebraic degree 2

Degree 3: $g(x, y)=(x+y)^{3}, k$ - odd $g(x, y)=\left(x^{2}+x+b\right) y, x^{2}+x+b$ - irreducible

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

f_{1}, f_{2}, f_{3} - linearized polynomials
Degree 4:

$$
\begin{aligned}
g(x, y)= & a y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(f_{3}\right) \leq 2
\end{aligned}
$$

Degree 5:

$$
\begin{aligned}
g(x, y)= & a y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 1, \operatorname{deg}\left(f_{2}\right) \leq 2, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

Degree 6 :

$$
\begin{aligned}
g(x, y)= & a y^{6}+b y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case I:

Degree 4:

$$
\begin{aligned}
g(x, y)= & a y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(f_{3}\right) \leq 2
\end{aligned}
$$

Degree 5:

$$
\begin{aligned}
g(x, y)= & a y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 1, \operatorname{deg}\left(f_{2}\right) \leq 2, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

Degree 6 :

$$
\begin{aligned}
g(x, y)= & a y^{6}+b y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

$$
g(x, y)=c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y
$$

defines a ${ }_{2}$ LQP of deg ≤ 6, iff one of the following is true

- $g(x, y)=f_{3}(x) y$,
where $f_{3}(x)$ - linearized pol. without roots and $\operatorname{deg}\left(f_{3}\right) \leq 4$
- $g(x, y)=f_{2}(x) y^{2}+f_{3}(x) y$,
where
- $k=2, f_{2}(x)=\prod_{i=1}^{2}\left(x-\alpha_{i}\right), f_{3}(x)=\prod_{i=3}^{4}\left(x-\alpha_{i}\right)$
- $k=3, f_{2}(x)=\prod_{i=1}^{4}\left(x-\alpha_{i}\right), f_{3}(x)=\prod_{i=5}^{8}\left(x-\alpha_{i}\right)$ and α_{i} are all the elements of $\mathbb{F}_{2^{k}}$.
- $g(x, y)=\left(y+f_{2}(x)\right)^{3}$,
where k - odd, $\operatorname{deg}\left(f_{2}\right) \leq 2$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case II:

Degree 4:

$$
\begin{aligned}
g(x, y)= & a y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(f_{3}\right) \leq 2
\end{aligned}
$$

Degree 5:

$$
\begin{aligned}
g(x, y)= & \mathbf{a} y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 1, \operatorname{deg}\left(f_{2}\right) \leq 2, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

Degree 6 :

$$
\begin{aligned}
g(x, y)= & \mathbf{a} y^{6}+\mathbf{b} y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

$$
g(x, y)=y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y
$$

defines a ${ }_{2} \mathrm{LQP}$ of $d e g \leq 6$, iff one of the following is true

- $g(x, y)=\left(y+f_{1}(x)\right)^{5}$, where $\left(2^{k}-1,5\right)=1, \operatorname{deg}\left(f_{1}\right) \leq 2$
- $g(x, y)=\left(y+f_{1}(x)\right)^{5}+a\left(y+f_{1}(x)\right)^{3}+a^{2}\left(y+f_{1}(x)\right)$, where $2^{k}= \pm 2(\bmod 5), a$ - arbitrary, $\operatorname{deg}\left(f_{1}\right)=1$, $\left(\operatorname{deg}\left(f_{1}\right) \leq 2\right.$ for $\left.k=3\right)$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

$$
g(x, y)=y^{6}+b y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y
$$

defines a ${ }_{2} \mathrm{LQP}$ of $d e g=6$, iff one of the following is true

- $g(x, y)=\left(y+f_{1}(x)\right)^{6}$,
where $k-\operatorname{odd}, \operatorname{deg}\left(f_{1}\right)=1$
- $g(x, y)=p(y+f(x))$,
where $k=3, \operatorname{deg}\left(f_{1}\right)=1$, and p is one of
- $p(x)=x^{6}+x^{5}+\alpha x^{3}$
- $p(x)=x^{6}+x^{5}+x^{4}+\alpha^{3} x^{3}+\alpha^{4} x^{2}+\alpha^{6} x$
- $p(x)=x^{6}+x^{3}+x^{2}$
- $p(x)=x^{6}+x^{5}+x^{4}$
and α is a root of $x^{3}+x+1$.

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

$$
g(x, y)=y^{6}+b y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y
$$

defines a ${ }_{2} \mathrm{LQP}$ of $d e g=6$, iff one of the following is true

- $g(x, y)=p(y+f(x))$,
where $k=4, \operatorname{deg}\left(f_{1}\right)=1$, and p is one of
- $p(x)=x^{6}+x^{5}+x^{3}+\beta^{3} x^{2}+\beta^{5} x$
- $p(x)=x^{6}+x^{5}+\beta x^{4}+x^{3}+\beta x^{2}+\beta^{6} x$
- $p(x)=x^{6}+x^{5}+\beta x^{4}+x^{3}+\beta^{8} x^{2}+\beta^{13} x$
and β is a root of $x^{4}+x+1$.
- $g(x, y)=p(y+f(x))$,
where $k=5, \operatorname{deg}\left(f_{1}\right)=1$, and $p(x)=x^{6}+x^{5}+x^{2}$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

- $g(x, y)=y^{6}+y^{5}+f_{1}(x) y^{4}+y^{3}+f_{2}(x) y^{2}+f_{3}(x) y$,
$k=3, \operatorname{deg}\left(f_{1}\right)=1$ and
- $f_{1}(x)=0$, $f_{2}(x)=g\left(x+u_{1}\right)\left(x+u_{2}\right)\left(x+u_{3}\right)\left(x+u_{4}\right)+1$, $f_{3}(x)=f_{2}(x), C=\alpha$, or
- $f_{1}(x)=1$,
$f_{2}(x)=g\left(x+u_{1}\right)\left(x+u_{2}\right)\left(x+u_{3}\right)\left(x+u_{4}\right)$, $f_{3}(x)=f_{2}(x)+1, C=0$,
where $\alpha^{3}+\alpha+1$, and $u_{i}, g \in \mathbb{F}_{2^{k}}$ satisfy

$$
\begin{aligned}
& g\left(x+u_{1}\right)\left(x+u_{2}\right)\left(x+u_{3}\right)\left(x+u_{4}\right)+ \\
& g\left(x+u_{5}\right)\left(x+u_{6}\right)\left(x+u_{7}\right)\left(x+u_{8}\right)=1+C
\end{aligned}
$$

for every $x \in \mathbb{F}_{2^{k}}$.

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case III:

Degree 4:

$$
\begin{aligned}
g(x, y)= & a y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(f_{3}\right) \leq 2
\end{aligned}
$$

Degree 5:

$$
\begin{aligned}
g(x, y)= & a y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 1, \operatorname{deg}\left(f_{2}\right) \leq 2, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

Degree 6 :

$$
\begin{aligned}
g(x, y)= & a y^{6}+b y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case III:

Degree 4:

$$
\begin{aligned}
g(x, y)= & a y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(f_{3}\right) \leq 2
\end{aligned}
$$

Degree 5:

$$
\begin{aligned}
g(x, y)= & a y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 1, \operatorname{deg}\left(f_{2}\right) \leq 2, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

Degree 6 :

$$
\begin{aligned}
g(x, y)= & a y^{6}+b y^{5}+f_{1}(x) y^{4}+c y^{3}+f_{2}(x) y^{2}+f_{3}(x) y \\
& \operatorname{deg}\left(f_{1}\right) \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4
\end{aligned}
$$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case III: f_{1}, f_{2}, f_{3} - linearized polynomials

$$
\begin{aligned}
\operatorname{deg}\left(f_{1}\right) & \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4 \\
g(x, y) & =f_{1}(x) y^{4}+f_{2}(x) y^{2}+f_{3}(x) y
\end{aligned}
$$

$g(x, y)$ is a ${ }_{2}$ LQP iff $\frac{g(x, y)}{y}$ has no roots in $\mathbb{F}_{2^{k}}, \forall x \in \mathbb{F}_{2^{k}}$.

- Hard to characterize
- Many open questions
- Some necessary conditions
- Sieving approach
- Some classes excluded
- Small fields feasible

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case III: f_{1}, f_{2}, f_{3} - linearized polynomials

$$
\begin{aligned}
\operatorname{deg}\left(f_{1}\right) & \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4 \\
g(x, y) & =f_{1}(x) y^{4}+f_{2}(x) y^{2}+f_{3}(x) y
\end{aligned}
$$

$g(x, y)$ is a ${ }_{2}$ LQP iff $\frac{g(x, y)}{y}$ has no roots in $\mathbb{F}_{2^{k}}, \forall x \in \mathbb{F}_{2^{k}}$.

- Hard to characterize
- Many open questions
- Some necessary conditions
- Sieving approach
- Some classes excluded
- Small fields feasible

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Case III: f_{1}, f_{2}, f_{3} - linearized polynomials

$$
\begin{aligned}
\operatorname{deg}\left(f_{1}\right) & \leq 2, \operatorname{deg}\left(f_{2}\right) \leq 4, \operatorname{deg}\left(f_{3}\right) \leq 4 \\
g(x, y) & =f_{1}(x) y^{4}+f_{2}(x) y^{2}+f_{3}(x) y
\end{aligned}
$$

$g(x, y)$ is a ${ }_{2}$ LQP iff $\frac{g(x, y)}{y}$ has no roots in $\mathbb{F}_{2^{k}}, \forall x \in \mathbb{F}_{2^{k}}$.

- Hard to characterize
- Many open questions
- Some necessary conditions
- Sieving approach
- Some classes excluded
- Small fields feasible

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Sieving condition 1

Let

$$
g(x, y)=f_{1}(x) y^{4}+f_{2}(x) y^{2}+f_{3}(x) y
$$

be an ${ }_{2} \mathrm{LQP}$. Then the following holds:
k - odd
If for a given $i \in\{1,2,3\}, f_{i}(u)=0, u \in \mathbb{F}_{2^{k}}$ then $f_{j}(u)=0$ for exactly one $j \in\{1,2,3\} \backslash\{i\}$
k - even

$$
\begin{aligned}
f_{1}(u)=0 & \Rightarrow \quad\left(f_{2}(u)=0 \underline{\vee} f_{3}(u)=0\right) \\
f_{3}(u)=0 & \Rightarrow \quad\left(f_{1}(u)=0 \underline{\vee} f_{2}(u)=0\right) \\
f_{2}(u)=0 & \Rightarrow \quad\left(f_{1}(u)=0 \underline{\vee} f_{3}(u)=0\right) \underline{\vee} \frac{f_{3}(u)}{f_{1}(u)} \text { is non - cube }
\end{aligned}
$$

Bluher polynomials

Gao \& Mullen, Dobbertin,
Bluher, Helleseth \& Kholosha, Charpin et al....

$$
P_{a}(x)=D_{3}(x)+a, \quad a \in \mathbb{F}_{2^{k}}^{*}
$$

Bluher polynomials

Gao \& Mullen, Dobbertin,
Bluher, Helleseth \& Kholosha, Charpin et al....

$$
P_{a}(x)=x^{3}+x+a, \quad a \in \mathbb{F}_{2^{k}}^{*}
$$

- Conditions for number of roots

Bluher polynomials

Gao \& Mullen, Dobbertin,
Bluher, Helleseth \& Kholosha, Charpin et al....

$$
P_{a}(x)=x^{3}+x+a, \quad a \in \mathbb{F}_{2^{k}}^{*}
$$

- Conditions for number of roots

Bluher polynomials

Gao \& Mullen, Dobbertin,
Bluher, Helleseth \& Kholosha, Charpin et al....

$$
P_{a}(x)=x^{3}+x+a, \quad a \in \mathbb{F}_{2^{k}}^{*}
$$

- Conditions for number of roots
M_{i} - the number of a s.t. $P_{a}(x)$ has i roots.
- k - odd: $M_{0}=\frac{2^{k}+1}{3}, \quad M_{1}=2^{k-1}-1, \quad M_{3}=\frac{2^{k-1}-1}{3}$

■ k - even: $M_{0}=\frac{2^{k}-1}{3}, \quad M_{1}=2^{k-1}, \quad M_{3}=\frac{2^{k-1}-2}{3}$

Bluher polynomials

Gao \& Mullen, Dobbertin,
Bluher, Helleseth \& Kholosha, Charpin et al....

$$
P_{a}(x)=x^{3}+x+a, \quad a \in \mathbb{F}_{2^{k}}^{*}
$$

- Conditions for number of roots
- $P_{a}(x)$ has exactly one root iff $\operatorname{Tr}\left(a^{-1}+1\right)=1$
- $P_{a}(x)$ is irreducible iff:
- k - even: $a=\xi+\xi^{-1}$, where ξ is a non-cube in $\mathbb{F}_{2^{k}}$
- k - odd: $a=\xi^{\frac{2^{k}-1}{2}}+\xi^{-\frac{2^{k}-1}{2}}$, where ξ is a non-cube in $\mathbb{F}_{2^{2 k}}$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

$$
g(x, y)=f_{1}(x) y^{4}+f_{2}(x) y^{2}+f_{3}(x) y
$$

Let $R=\left\{x \in \mathbb{F}_{2^{k}} \mid f_{1}(x) \neq 0, f_{2}(x) \neq 0, f_{3}(x) \neq 0\right\}$

- Sieving condition 1 for $x \in \mathbb{F}_{2^{k}} \backslash R$
- For $x \in R$,
$h_{R}(x, y)=\left.\frac{g(x, y)}{y}\right|_{R}$ has no roots in $\mathbb{F}_{2^{k}}, \forall x \in R$ iff

$$
P_{R}(x, y)=y^{3}+y+\frac{f_{3}(x)\left(f_{1}(x)\right)^{1 / 2}}{\left(f_{2}(x)\right)^{3 / 2}}
$$

has no roots in $\mathbb{F}_{2^{k}}, \forall x \in R$.

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Reduce the problem to:
Find properties of the value set of $\frac{f_{1}(x)\left(f_{3}(x)\right)^{2}}{\left(f_{2}(x)\right)^{3}}$ for $x \in R$

- In general, not an easy task
- Sieving conditions:

$$
\begin{aligned}
& \text { - If }\left|V S\left(\frac{f_{1}(x)\left(f_{3}(x)\right)^{2}}{\left(f_{2}(x)\right)^{3}}\right)\right| \geq M_{0}, g(x, y) \text { is not an }{ }_{2} \text { LQP. } \\
& \text { - If } \exists x_{0} \in R \text {, s.t. } \operatorname{Tr}\left(\frac{\left(f_{2}\left(x_{0}\right)\right)^{3}}{f_{1}\left(x_{0}\right)\left(f_{3}\left(x_{0}\right)\right)^{2}}+1\right)=1 \text {, } \\
& g(x, y) \text { is not a }{ }_{2} \mathrm{LQP} \text {. }
\end{aligned}
$$

${ }_{2}$ LQPs over $\mathbb{F}_{2^{k}}$

Reduce the problem to:
Find properties of the value set of $\frac{f_{1}(x)\left(f_{3}(x)\right)^{2}}{\left(f_{2}(x)\right)^{3}}$ for $x \in R$

- In general, not an easy task
- Sieving conditions:
- If $\left|V S\left(\frac{f_{1}(x)\left(f_{3}(x)\right)^{2}}{\left(f_{2}(x)\right)^{3}}\right)\right| \geq M_{0}, g(x, y)$ is not an ${ }_{2}$ LQP.
- If $\exists x_{0} \in R$, s.t. $\operatorname{Tr}\left(\frac{\left(f_{2}\left(x_{0}\right)\right)^{3}}{f_{1}\left(x_{0}\right)\left(f_{3}\left(x_{0}\right)\right)^{2}}+1\right)=1$,
$g(x, y)$ is not a ${ }_{2} \mathrm{LQP}$.

Benefits from the sieving conditions

k - odd:
Degree 4: There are no ${ }_{2}$ LQPs for Case III, except possibly when f_{2}, f_{3} are irreducible of degree 2 .

■ open for f_{2}, f_{3} - irreducible
■ Conjecture: There are no ${ }_{2}$ LQPs of degree 4 for Case III ???
■ Checked for small values of k

> Degree 5: 12 different possible types for g. ■ for $\mathrm{k}=3,7$ of them are ${ }_{2} \mathrm{LQPs}$

\square
Degree 6: 34 different possible types for g. - for $\mathrm{k}=3$, 27 of them are ${ }_{2} \mathrm{LQPs}$

Benefits from the sieving conditions

k - odd:
Degree 4: There are no ${ }_{2}$ LQPs for Case III, except possibly
when f_{2}, f_{3} are irreducible of degree 2 .

- open for f_{2}, f_{3} - irreducible

■ Conjecture: There are no ${ }_{2}$ LQPs of degree 4 for Case III ???
■ Checked for small values of k

Degree 5: 12 different possible types for g.

- for $\mathrm{k}=3,7$ of them are ${ }_{2} \mathrm{LQPs}$

Degree 6: 34 different possible types for g.
■ for $\mathrm{k}=3,27$ of them are ${ }_{2} \mathrm{LQPs}$

Characterization of ${ }_{2} \mathrm{LQPs}$ for $k=3$

Sieving conditions + Hermite criterion \Rightarrow All ${ }_{2}$ LQPs of $\operatorname{Deg} \leq 6$
Degree 5:
$g(x, y)$ defines an ${ }_{2} \mathrm{LQP}$ only if it is one of:

- f_{1}, f_{2} - const., $\operatorname{deg}\left(f_{3}\right)=4, f_{3}$ has no roots
- f_{1} - const., $f_{2}(x)=x(x+u), f_{3}(x)=t\left(f_{2}(x)\right)^{2}$
- f_{1} - const., $f_{2}(x)=x(x+u), f_{3}(x)=f_{2}(x) f_{3}^{\prime}(x)$, $\operatorname{deg}\left(f_{3}^{\prime}\right)=2, f_{3}^{\prime}$ has no roots
- f_{1} - const., $\operatorname{deg}\left(f_{2}\right)=2, \operatorname{deg}\left(f_{3}\right)=4, f_{2}, f_{3}$ have no roots
- $f_{1}(x)=x, f_{2}(x)=t_{1}(x+u), f_{3}(x)=t_{2}\left(f_{1}(x) f_{2}(x)\right)^{2}$
- $f_{1}(x)=x, f_{2}(x)=t_{1} x(x+u), f_{3}(x)=t(x+u)^{2}$
- $f_{1}(x)=x, f_{2}(x)=t_{1}(x+u)^{2}, f_{3}(x)=t x(x+u) f_{3}^{\prime}(x)$,
$\operatorname{deg}\left(f_{3}^{\prime}\right)=2, f_{3}^{\prime}$ has no roots

Characterization of ${ }_{2} \mathrm{LQPs}$ for $k=3$

Degree 6:
$g(x, y)$ defines an ${ }_{2} \mathrm{LQP}$ only if it is one of:

- f_{1}, f_{3} - const., $\operatorname{deg}\left(f_{2}\right)=4, f_{2}$ has no roots
- f_{1} - const., $f_{2}(x)=x(x+u) f_{2}^{\prime}(x), f_{3}(x)=t x(x+u) f_{3}^{\prime}(x)$, $\operatorname{deg}\left(f_{2}^{\prime}\right)=2, \operatorname{deg}\left(f_{3}^{\prime}\right)=2, f_{2}^{\prime}, f_{3}^{\prime}$ have no roots
- f_{1} - const., $\operatorname{deg}\left(f_{2}\right)=4, \operatorname{deg}\left(f_{3}\right)=2,4, f_{2}, f_{3}$ have no roots
- f_{1} - const., $f_{2}(x)=x(x+u) f_{2}^{\prime}(x), f_{3}(x)=t x(x+u)$, $\operatorname{deg}\left(f_{2}^{\prime}\right)=4, f_{3}^{\prime}$ has no roots
- f_{1} - const., $f_{2}(x)=x(x+u) f_{2}^{\prime}(x), f_{3}(x)=t(x(x+u))^{2}$, $\operatorname{deg}\left(f_{2}^{\prime}\right)=4, f_{2}^{\prime}$ has no roots
- f_{1} - const., $f_{2}(x)=(x(x+u))^{2}, f_{3}(x)=t x(x+u) f_{3}^{\prime}(x)$, $\operatorname{deg}\left(f_{3}^{\prime}\right)=2, f_{3}^{\prime}$ has no roots
- f_{1} - const., $f_{2}(x)=x\left(x+u_{1}\right)\left(x+u_{2}\right)\left(x+u_{3}\right)$, $f_{3}(x)=t f_{2}(x)$

Characterization of ${ }_{2}$ LQPs for $k=3$

Degree 6:
$g(x, y)$ defines an ${ }_{2} \mathrm{LQP}$ only if it is one of:

- $f_{1}(x)=x, f_{2}(x)=t_{1}(x+u)^{4}, f_{3}(x)=t_{2} x(x+u)$
- $f_{1}(x)=x, f_{2}(x)=t_{1} x(x+u) f_{2}^{\prime}(x), f_{3}(x)=t_{2}(x+u)^{4}$, $\operatorname{deg}\left(f_{2}^{\prime}\right)=2, f_{2}^{\prime}$ has no roots
- $f_{1}(x)=x, f_{2}(x)=t_{1}(x(x+u))^{2}, f_{3}(x)=t_{2}(x+u)^{4}$
- $f_{1}(x)=x, f_{2}(x)=t_{1}(x(x+u))^{2}, f_{3}(x)=t(x+u)$
- $f_{1}(x)=x, f_{3}(x)=t x f_{3}^{\prime}(x), \operatorname{deg}\left(f_{2}\right)=4, \operatorname{deg}\left(f_{3}^{\prime}\right)=3, f_{2}, f_{3}^{\prime}$ have no roots
- $f_{1}(x)=x, f_{2}(x)=t x f_{2}^{\prime}(x), \operatorname{deg}\left(f_{2}^{\prime}\right)=3, \operatorname{deg}\left(f_{3}^{\prime}\right)=4, f_{2}, f_{3}^{\prime}$ have no roots
... 14 more cases ...
... and complicated if conditions ...

Open questions and future work

- How close can we get to characterisation of ${ }_{2}$ LQPs of degree $4,5,6, \ldots$?
- Closer look at the value sets of the possible rational functions
- Complete characterization for degree 4

■ k - even
$-1 .=3$: More unified look of the long list of cases

- Apply the sieving to bigger fields

■ some tried - not ${ }_{2} \mathrm{LQPs}$
■ we expect "less" ${ }_{2}$ LQPs

- feasibility issues

Open questions and future work

■ How close can we get to characterisation of ${ }_{2}$ LQPs of degree $4,5,6, \ldots$?

■ Closer look at the value sets of the possible rational functions

■ Complete characterization for degree 4
■ k - even
■ $k=3$: More unified look of the long list of cases

- Apply the sieving to bigger fields

■ some tried - not ${ }_{2} \mathrm{LQPs}$
■ we expect "less" ${ }_{2}$ LQPs

- feasibility issues

Thank you for listening!

