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Introduction - Permutation Polynomials (PP)

A polynomial f(x) ∈ Fq[x] is called a permutation polynomial
(PP) of Fq if the induced function f : c→ f(c) from Fq to itself
is a permutation of Fq.

Hermite criterion
f(x) ∈ Fq[x] is a PP of Fq iff

f has a unique root in Fq

∀n, 1 ≤ n ≤ q− 2, (n, q) = 1, Deg(fn) ≤ q− 2 (mod xq−x)

A small amount of classes known
Characterization- open problem
In characteristic 2

Dickson (1896) - up to degree 5
Li et al. (2010) - degrees 6, 7
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Permutation Polynomials of Degree ≤ 5 over F2k

[Dickson]

All normalized PP:

x all k
x2 all k
x3 (2k − 1, 3) = 1
x4 + ax2 + bx x = 0 is the only root
x5 (2k − 1, 5) = 1
x5 + ax3 + a2x 2k = ±2 (mod 5)
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Permutation Polynomials of Degree 6 over F2k [Li et al.]

k - odd: x6

k = 3:

x6 + x5 + x3 + αx2 + αx x6 + x5 + αx3

x6 + x5 + x3 + x2 + x x6 + x5 + x4

x6 + x5 + x4 + x3 + x2 x6 + x3 + x2

x6 + x5 + x4 + x3 + x x6 + x5 + x4 + α3x3 + α4x2 + α6x

and α is a root of x3 + x+ 1.

k = 4:
x6 + x5 + x3 + β3x2 + β5x
x6 + x5 + β3x4 + x3 + βx2 + β6x
x6 + x5 + β3x4 + x3 + β8x2 + β13x

and β is a root of x4 + x+ 1.

k = 5: x6 + x5 + x2
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Left Quasigroup Polynomials (LQP) over F2k

A polynomial g(x, y) ∈ Fq[x, y] is called a Left Quasigroup
Polynomial (LQP) of Fq if for all u ∈ Fq, g(u, y) is a
permutation polynomial of Fq.

Natural extension of PPs
Natural question:

Can we characterize LQPs for small degrees?

Ex: Algebraic Degree 1

g(x, y) = L1(x) + L2(y)

L1, L2 linearized polynomials, L2 - no other roots but 0.
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Left Quasigroup Polynomials (LQP) over F2k

A polynomial g(x, y) ∈ Fq[x, y] is called a Left Quasigroup
Polynomial (LQP) of Fq if for all u ∈ Fq, g(u, y) is a
permutation polynomial of Fq.

Natural extension of PPs
Natural question:

Can we characterize LQPs for small degrees?

Focus on LQPs over F2k of algebraic degree 2

Degree 2: g(x, y) = ay2 + bxy, ab = 0
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Left Quasigroup Polynomials (LQP) over F2k

A polynomial g(x, y) ∈ Fq[x, y] is called a Left Quasigroup
Polynomial (LQP) of Fq if for all u ∈ Fq, g(u, y) is a
permutation polynomial of Fq.

Natural extension of PPs
Natural question:

Can we characterize LQPs for small degrees?

Focus on LQPs over F2k of algebraic degree 2

Degree 3: g(x, y) = (x+ y)3, k - odd
g(x, y) = (x2 + x+ b)y, x2 + x+ b - irreducible
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2LQPs over F2k

f1, f2, f3 - linearized polynomials

Degree 4 :

g(x, y) = ay4 + cy3 + f2(x)y
2 + f3(x)y

deg(f2), deg(f3) ≤ 2

Degree 5 :

g(x, y) = ay5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 1, deg(f2) ≤ 2, deg(f3) ≤ 4

Degree 6 :

g(x, y) = ay6 + by5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 2, deg(f2) ≤ 4, deg(f3) ≤ 4
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2LQPs over F2k

Case I:

Degree 4 :

g(x, y) = ay4+ cy3 + f2(x)y
2 + f3(x)y

deg(f2), deg(f3) ≤ 2

Degree 5 :

g(x, y) = ay5 + f1(x)y
4+ cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 1, deg(f2) ≤ 2, deg(f3) ≤ 4

Degree 6 :

g(x, y) = ay6 + by5 + f1(x)y
4+ cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 2, deg(f2) ≤ 4, deg(f3) ≤ 4
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2LQPs over F2k

g(x, y) = cy3 + f2(x)y
2 + f3(x)y

defines a 2LQP of deg ≤ 6, iff one of the following is true

g(x, y) = f3(x)y,
where f3(x) - linearized pol. without roots and deg(f3) ≤ 4

g(x, y) = f2(x)y
2 + f3(x)y,

where
k = 2, f2(x) =

∏2
i=1(x− αi), f3(x) =

∏4
i=3(x− αi)

k = 3, f2(x) =
∏4

i=1(x− αi), f3(x) =
∏8

i=5(x− αi)
and αi are all the elements of F2k .

g(x, y) = (y + f2(x))
3,

where k - odd, deg(f2) ≤ 2
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2LQPs over F2k

Case II:

Degree 4 :

g(x, y) = ay4 + cy3 + f2(x)y
2 + f3(x)y

deg(f2), deg(f3) ≤ 2

Degree 5 :

g(x, y) = ay5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 1, deg(f2) ≤ 2, deg(f3) ≤ 4

Degree 6 :

g(x, y) = ay6 + by5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 2, deg(f2) ≤ 4, deg(f3) ≤ 4
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2LQPs over F2k

g(x, y) = y5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

defines a 2LQP of deg ≤ 6, iff one of the following is true

g(x, y) = (y + f1(x))
5,

where (2k − 1, 5) = 1, deg(f1) ≤ 2

g(x, y) = (y + f1(x))
5 + a(y + f1(x))

3 + a2(y + f1(x)),
where 2k = ±2 (mod 5), a - arbitrary, deg(f1) = 1,
(deg(f1) ≤ 2 for k = 3)
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2LQPs over F2k

g(x, y) = y6 + by5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

defines a 2LQP of deg = 6, iff one of the following is true

g(x, y) = (y + f1(x))
6,

where k - odd, deg(f1) = 1

g(x, y) = p(y + f(x)),
where k = 3, deg(f1) = 1, and p is one of

p(x) = x6 + x5 + αx3

p(x) = x6 + x5 + x4 + α3x3 + α4x2 + α6x
p(x) = x6 + x3 + x2

p(x) = x6 + x5 + x4

and α is a root of x3 + x+ 1.
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2LQPs over F2k

g(x, y) = y6 + by5 + f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

defines a 2LQP of deg = 6, iff one of the following is true

g(x, y) = p(y + f(x)),
where k = 4, deg(f1) = 1, and p is one of

p(x) = x6 + x5 + x3 + β3x2 + β5x
p(x) = x6 + x5 + βx4 + x3 + βx2 + β6x
p(x) = x6 + x5 + βx4 + x3 + β8x2 + β13x

and β is a root of x4 + x+ 1.

g(x, y) = p(y + f(x)),
where k = 5, deg(f1) = 1, and p(x) = x6 + x5 + x2
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2LQPs over F2k

g(x, y) = y6 + y5 + f1(x)y
4 + y3 + f2(x)y

2 + f3(x)y,

k = 3, deg(f1) = 1 and
f1(x) = 0,
f2(x) = g(x+ u1)(x+ u2)(x+ u3)(x+ u4) + 1,
f3(x) = f2(x), C = α, or

f1(x) = 1,
f2(x) = g(x+ u1)(x+ u2)(x+ u3)(x+ u4),
f3(x) = f2(x) + 1, C = 0,

where α3 + α+ 1, and ui, g ∈ F∗
2k

satisfy
g(x+ u1)(x+ u2)(x+ u3)(x+ u4) +

g(x+ u5)(x+ u6)(x+ u7)(x+ u8) = 1 + C

for every x ∈ F2k .
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2LQPs over F2k

Case III:

Degree 4 :

g(x, y) = ay4 + cy3 + f2(x)y
2 + f3(x)y

deg(f2), deg(f3) ≤ 2

Degree 5 :

g(x, y) = ay5+ f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 1, deg(f2) ≤ 2, deg(f3) ≤ 4

Degree 6 :

g(x, y) = ay6 + by5+ f1(x)y
4 + cy3 + f2(x)y

2 + f3(x)y

deg(f1) ≤ 2, deg(f2) ≤ 4, deg(f3) ≤ 4
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2LQPs over F2k

Case III: f1, f2, f3 - linearized polynomials
deg(f1) ≤ 2, deg(f2) ≤ 4, deg(f3) ≤ 4

g(x, y) = f1(x)y
4 + f2(x)y

2 + f3(x)y

g(x, y) is a 2LQP iff
g(x, y)

y
has no roots in F2k , ∀x ∈ F2k .

Hard to characterize
Many open questions

Some necessary conditions
Sieving approach
Some classes excluded
Small fields feasible
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2LQPs over F2k

Sieving condition 1

Let g(x, y) = f1(x)y
4 + f2(x)y

2 + f3(x)y

be an 2LQP. Then the following holds:

k - odd
If for a given i ∈ {1, 2, 3}, fi(u) = 0, u ∈ F2k

then fj(u) = 0 for exactly one j ∈ {1, 2, 3} \ {i}

k - even

f1(u) = 0 ⇒ (f2(u) = 0 Y f3(u) = 0)

f3(u) = 0 ⇒ (f1(u) = 0 Y f2(u) = 0)

f2(u) = 0 ⇒ (f1(u) = 0 Y f3(u) = 0) Y
f3(u)

f1(u)
is non− cube
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Bluher polynomials

Gao & Mullen, Dobbertin,
Bluher, Helleseth & Kholosha, Charpin et al....

Pa(x) = D3(x) + a, a ∈ F∗2k

Conditions for number of roots

www.ntnu.no S. Samardjiska, LQPs of small degree over F
2k



17
Bluher polynomials

Gao & Mullen, Dobbertin,
Bluher, Helleseth & Kholosha, Charpin et al....

Pa(x) = x3 + x+ a, a ∈ F∗2k

Conditions for number of roots

www.ntnu.no S. Samardjiska, LQPs of small degree over F
2k



17
Bluher polynomials

Gao & Mullen, Dobbertin,
Bluher, Helleseth & Kholosha, Charpin et al....

Pa(x) = x3 + x+ a, a ∈ F∗2k

Conditions for number of roots

www.ntnu.no S. Samardjiska, LQPs of small degree over F
2k



17
Bluher polynomials

Gao & Mullen, Dobbertin,
Bluher, Helleseth & Kholosha, Charpin et al....

Pa(x) = x3 + x+ a, a ∈ F∗2k

Conditions for number of roots

Mi - the number of a s.t. Pa(x) has i roots.

k - odd: M0 =
2k + 1

3
, M1 = 2k−1 − 1, M3 =

2k−1 − 1

3

k - even: M0 =
2k − 1

3
, M1 = 2k−1, M3 =

2k−1 − 2

3
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Bluher polynomials

Gao & Mullen, Dobbertin,
Bluher, Helleseth & Kholosha, Charpin et al....

Pa(x) = x3 + x+ a, a ∈ F∗2k

Conditions for number of roots

Pa(x) has exactly one root iff Tr(a−1 + 1) = 1

Pa(x) is irreducible iff:
k - even: a = ξ + ξ−1, where ξ is a non-cube in F2k

k - odd: a = ξ
2k−1

2 + ξ−
2k−1

2 , where ξ is a non-cube in F22k
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2LQPs over F2k

g(x, y) = f1(x)y
4 + f2(x)y

2 + f3(x)y

Let R = {x ∈ F2k |f1(x) 6= 0, f2(x) 6= 0, f3(x) 6= 0}

Sieving condition 1 for x ∈ F2k \R
For x ∈ R,

hR(x, y) =
g(x, y)

y
|R has no roots in F2k , ∀x ∈ R iff

PR(x, y) = y3 + y +
f3(x)(f1(x))

1/2

(f2(x))3/2

has no roots in F2k , ∀x ∈ R.
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2LQPs over F2k

Reduce the problem to:

Find properties of the value set of
f1(x)(f3(x))

2

(f2(x))3
for x ∈ R

In general, not an easy task

Sieving conditions:

If |V S(f1(x)(f3(x))
2

(f2(x))3
)| ≥M0, g(x, y) is not an 2LQP.

If ∃x0 ∈ R, s.t. T r(
(f2(x0))

3

f1(x0)(f3(x0))2
+ 1) = 1,

g(x, y) is not a 2LQP.
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Benefits from the sieving conditions

k - odd:

Degree 4: There are no 2LQPs for Case III, except possibly
when f2, f3 are irreducible of degree 2.

open for f2, f3 - irreducible
Conjecture: There are no 2LQPs of degree 4 for Case III ???
Checked for small values of k

Degree 5: 12 different possible types for g.
for k=3, 7 of them are 2LQPs

Degree 6: 34 different possible types for g.
for k=3, 27 of them are 2LQPs
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Characterization of 2LQPs for k = 3

Sieving conditions + Hermite criterion ⇒ All 2LQPs of Deg ≤ 6

Degree 5:
g(x, y) defines an 2LQP only if it is one of:

f1, f2 - const., deg(f3) = 4, f3 has no roots
f1 - const., f2(x) = x(x+ u), f3(x) = t(f2(x))

2

f1 - const., f2(x) = x(x+ u), f3(x) = f2(x)f
′
3(x),

deg(f ′3) = 2, f ′3 has no roots
f1 - const., deg(f2) = 2, deg(f3) = 4, f2, f3 have no roots
f1(x) = x, f2(x) = t1(x+ u), f3(x) = t2(f1(x)f2(x))

2

f1(x) = x, f2(x) = t1x(x+ u), f3(x) = t(x+ u)2

f1(x) = x, f2(x) = t1(x+ u)2, f3(x) = tx(x+ u)f ′3(x),
deg(f ′3) = 2, f ′3 has no roots
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Characterization of 2LQPs for k = 3

Degree 6:
g(x, y) defines an 2LQP only if it is one of:

f1, f3 - const., deg(f2) = 4, f2 has no roots
f1 - const., f2(x) = x(x+ u)f ′2(x), f3(x) = tx(x+ u)f ′3(x),
deg(f ′2) = 2, deg(f ′3) = 2, f ′2, f ′3 have no roots
f1 - const., deg(f2) = 4, deg(f3) = 2, 4, f2, f3 have no roots
f1 - const., f2(x) = x(x+ u)f ′2(x), f3(x) = tx(x+ u),
deg(f ′2) = 4, f ′3 has no roots
f1 - const., f2(x) = x(x+ u)f ′2(x), f3(x) = t(x(x+ u))2,
deg(f ′2) = 4, f ′2 has no roots
f1 - const., f2(x) = (x(x+ u))2, f3(x) = tx(x+ u)f ′3(x),
deg(f ′3) = 2, f ′3 has no roots
f1 - const., f2(x) = x(x+ u1)(x+ u2)(x+ u3),
f3(x) = tf2(x)
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Characterization of 2LQPs for k = 3

Degree 6:
g(x, y) defines an 2LQP only if it is one of:

f1(x) = x, f2(x) = t1(x+ u)4, f3(x) = t2x(x+ u)
f1(x) = x, f2(x) = t1x(x+ u)f ′2(x), f3(x) = t2(x+ u)4,
deg(f ′2) = 2, f ′2 has no roots
f1(x) = x, f2(x) = t1(x(x+ u))2, f3(x) = t2(x+ u)4

f1(x) = x, f2(x) = t1(x(x+ u))2, f3(x) = t(x+ u)
f1(x) = x, f3(x) = txf ′3(x), deg(f2) = 4, deg(f ′3) = 3, f2, f ′3
have no roots
f1(x) = x, f2(x) = txf ′2(x), deg(f ′2) = 3, deg(f ′3) = 4, f2, f ′3
have no roots

. . . 14 more cases . . .

. . . and complicated if conditions . . .
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Open questions and future work

How close can we get to characterisation of
2LQPs of degree 4, 5, 6, ...?

Closer look at the value sets of the possible rational
functions

Complete characterization for degree 4
k - even
k = 3: More unified look of the long list of cases
Apply the sieving to bigger fields

some tried - not 2LQPs
we expect “less” 2LQPs
feasibility issues
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Thank you for listening!
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