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Left-Distributive Groupoids

A groupoid G = 〈G; ∗〉 is (left)-distributive if

G |= ∀xyz x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

The class of distributive groupoids will be denoted LD.

Example
Material implication⇒:

A⇒ (B ⇒ C) ≡ (A⇒ B)⇒ (A⇒ C)

is a distributive operation on {T ,F}.

In this talk, we will be interested in monogenerated LD
groupoids (MLDs). For example, since F ⇒ F = T , the
example above is generated by F (but not by T ).
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Nonidempotent LD groupoids I

LD groupoids encountered in the wild (i.e. in knot theory) are
frequently idempotent:

∀x x ∗ x = x

Idempotent 1-generated groupoids, however, are boring, so
we’ll ignore them.

I

n this talk, FLD(1) denotes the free (nonidempotent)
LD-groupoid on one generator.
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Theorem (Dehornoy 1992)
1 (ZFC) There exists a concrete representation of FLD(1) by

Bω (the group of braids on finitely many strands).
2 (ZFC) The coloring of Bω above induces a linear ordering

compatible with the group multiplication.
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Nonidempotent LD groupoids II

Now, what on earth was “(ZFC)” doing in the previous theorem?

Theorem (Laver 1989)
If a certain large cardinal axiom holds, then

1 there exists a “concrete” representation of FLD(1) as a set
of elementary embeddings;

2 FLD(1) is residually finite.

Open Problem

(ZFC) Show that FLD(1) is residually finite.
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Finite Quotients

Laver actually showed more: he exhibited a set of finite
groupoids {LT n : n ≥ 0} of cardinality 2n, such that FLD(1) is
residually {LT n} under the same large cardinal assumptions.
These groupoids (called Laver Tables) generalize the example
of 〈{T ,F};⇒〉 given above.

Open Problem
Call the stronger residual statement above (L).

(Optimist’s version) (L) is a theorem of ZFC
(Cautious Optimist’s version) Residual finiteness of FLD(1)
is a theorem of ZFC
(Pessimist’s version) (L) is not provable in ZFC alone
(Ultrapessimist’s version) ¬(L) is a theorem of ZFC
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Slender MLD groupoids

We say G has Laver dimension n if

G
π
� LT n but G 6� LT n+1

and is slender if

a ≡π b ⇒ ∀x a ∗ x = b ∗ x

Fact
If terms t1(x), t2(x) have different right branch depths, then
there exists a finite zero-dimensional MLD in which they
evaluate differently.
If LT n |= t1(x) = t2(x) and the terms’ right branch depths
are equal, then G |= t1(x) = t2(x) for every finite slender
n-dimensional MLD G.
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Isomorphism Classification – Slender Case

Theorem (Many authors, see S. 2013)

The family {LT n : n ≥ 0} is a chain with respect to the
homomorphism order (in particular, this family is inverse
directed).
The family of (finite) slender MLDs is classified up to
isomorphism by n and two function parameters
ρ, ν : 2n → ω, which can be chosen independently of each
other.
Slender MLDs admit a dense subfamily parametrized by
integers n ≥ 0, r ≥ 1, v ≥ 0, inverse directed by the usual
ordering in n, v and by divisibility in r .
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Isomorphism Classification – Nonslender Case

Theorem (Drápal 1997)
The family of all finite MLDs is classified up to isomorphism by
n and seven function parameters.

This classification is great for theory but of little practical use on
its own, since the parameters are highly interdependent. (The
full statement of the classification theorem takes about a page.)
Virtually every author discussing MLD groupoids restricts most
of their attention to the slender case; the nonslender family’s
Homeric epithet is “combinatorially chaotic”.
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Main Theorem

Since it isn’t a good idea to go sifting through all finite MLDs
looking for a disproof of t1(x) ≡LD t2(x), we need better tools.

Theorem (S.)
There exists a family

F = {F (n, r , v ,w1,w2) : n ≥ 0, r ≥ 1, v ≥ 2,w1 ≥ 0,w2 ≥ 1}

of finite MLD groupoids, such that
Every finite MLD groupoid G is a quotient of a member of
F , and finding one which does so is tractably computable
from the multiplication table of G;
F is inverse-directed by the usual ordering on n, v ,w1 and
by divisibility in r ,w2.
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Well-behaved?

I refer to the groupoids F as “well-behaved” for a couple of
reasons:

The five parameters are integers and can be chosen
independently of each other.
Each of the seven function parameters in Drápal’s
classification is chosen in “the most natural possible” way,
to identify as few elements as possible.
F is inverse-directed, and it is easy to determine whether
one member of F is a quotient of another.
F “automatically” separates all terms of different right
branch depths.
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Well-behaved?

The “combinatorial chaos” in LD involves basically terms of
right branch depth 1 and 2. One way of thinking about the
groupoids F is to take a slender groupoid with v ≥ 2 and split
some of its elements, obtained from the generator by terms of
right branch depth 1 or 2, up into pieces in a uniform way.
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Room for cautious optimism

Open Problem (ZFC)

Is FLD(1) residually finite?

Example (Dougherty & Jech)

The function

f (m) = min{n : LT n |= 1 ∗ 1 6= 1 ∗ 1[2m+1]}

grows faster than any primitive recursive function. For example,
when m = 4, f (m) ≥ Ack(9,Ack(8,Ack(8,254)))

However, these two terms are clearly not LD-equivalent (they
have different right branch lengths).
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Room for cautious optimism

Example
Let

t1(x) = x[5] ∗ (x[2] ∗ x) t2(x) = x ∗ ((x ∗ x[3]) ∗ x)

We have

LT 2 |= t1 ≈ t2 and dr (t1) = dr (t2) = 2

Hence t1 and t2 evaluate identically in every slender MLD
groupoid of dimension 2. However we have

F (2,3,2,0,1) |= t1 6≈ t2
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Problems

The groupoids F provide some level of control or upper bound
on the combinatorial explosion present in terms of right branch
length ≤ 2.

Open Problem

Use F to improve Dehornoy’s normal form result for LD
terms in one variable.
Use F to prove residual finiteness of FLD(1).
Inverse limits in F , where at least one of the five
parameters is bounded, should provide many new
examples of infinite nonfree LD groupoids. Do these
groupoids represent naturally (e.g. as injection brackets
[Dehornoy 2000]) on familiar spaces?
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Problems

Open Problem
Does there exist a (manageable, useful) presentation for
F (n, r , v ,w1,w2) by generator and relations? (Drápal showed
the existence of such a presentation for the slender MLD
groupoids; we have some idea what this would need to look
like, but no complete description even for the smallest actual
examples.)
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Problems

Open Problem
It is known that the equational theory of the variety LD is
decidable (this is the same thing as the word problem for the
free algebras FLD(n));

1 is the first-order theory of LD decidable?
2 is LD axiomatized by the equations which hold in FLD(1)?
3 does there exist a first-order formula which does not hold

throughout LD, but which does hold in every finite LD
groupoid?
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