Quasigroup Actions and Approximate Symmetry

Jonathan D.H. Smith
Department of Mathematics,
Iowa State University,
Ames, IA 50011, U.S.A.
email: jdhsmith@iastate.edu
http://orion.math.iastate.edu/jdhsmith/homepage.html

Homogeneous spaces

Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q,

Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q, the relative left multiplication group $\mathrm{LMlt}_{Q} P$ of P in Q

Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q, the relative left multiplication group $\mathrm{LMlt}_{Q} P$ of P in Q
is $\langle L(p): Q \rightarrow Q ; x \mapsto p x \mid p \in P\rangle_{Q!}$.

Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q, the relative left multiplication group $\mathrm{LMlt}_{Q} P$ of P in Q is $\langle L(p): Q \rightarrow Q ; x \mapsto p x \mid p \in P\rangle_{Q!}$.

Definition: The (right) homogeneous space $P \backslash Q$
is the set of orbits of $\mathrm{LMlt}_{Q} P$ on Q.

Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q, the relative left multiplication group $\mathrm{LMlt}_{Q} P$ of P in Q
is $\langle L(p): Q \rightarrow Q ; x \mapsto p x \mid p \in P\rangle_{Q!}$.

Definition: The (right) homogeneous space $P \backslash Q$
is the set of orbits of $\mathrm{LMlt}_{Q} P$ on Q.

If Q is a group, then $P \backslash Q$
is the set $\{P x \mid x \in Q\}$ of right cosets of P in Q.

Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q, the relative left multiplication group $\mathrm{LMlt}_{Q} P$ of P in Q
is $\langle L(p): Q \rightarrow Q ; x \mapsto p x \mid p \in P\rangle_{Q!}$.

Definition: The (right) homogeneous space $P \backslash Q$
is the set of orbits of $\mathrm{LMlt}_{Q} P$ on Q.

If Q is a group, then $P \backslash Q$
is the set $\{P x \mid x \in Q\}$ of right cosets of P in Q.

Recall that $P x=P y$ or $P x \cap P y=\varnothing$ in a group Q.

Quasigroup actions

Quasigroup actions

If Q is finite, each element q of Q
has a $|P \backslash Q| \times|P \backslash Q|$ row-stochastic
(right) action matrix $R_{P \backslash Q}(q)$ with (X, Y)-entry
$\left[R_{P \backslash Q}(q)\right]_{X Y}=|X q \cap Y| /|X|$
for orbits X, Y in $P \backslash Q$.

Quasigroup actions

If Q is finite, each element q of Q
has a $|P \backslash Q| \times|P \backslash Q|$ row-stochastic
(right) action matrix $R_{P \backslash Q}(q)$ with (X, Y)-entry
$\left[R_{P \backslash Q}(q)\right]_{X Y}=|X q \cap Y| /|X|$
for orbits X, Y in $P \backslash Q$.

If Q is a group,

Quasigroup actions

If Q is finite, each element q of Q
has a $|P \backslash Q| \times|P \backslash Q|$ row-stochastic
(right) action matrix $R_{P \backslash Q}(q)$ with (X, Y)-entry
$\left[R_{P \backslash Q}(q)\right]_{X Y}=|X q \cap Y| /|X|$
for orbits X, Y in $P \backslash Q$.

If Q is a group,
then each entry $\left[R_{P \backslash Q}(q)\right]_{X Y} \in\{0,1\}$,

Quasigroup actions

If Q is finite, each element q of Q
has a $|P \backslash Q| \times|P \backslash Q|$ row-stochastic
(right) action matrix $R_{P \backslash Q}(q)$ with (X, Y)-entry
$\left[R_{P \backslash Q}(q)\right]_{X Y}=|X q \cap Y| /|X|$
for orbits X, Y in $P \backslash Q$.

If Q is a group,
then each entry $\left[R_{P \backslash Q}(q)\right]_{X Y} \in\{0,1\}$,
and the action matrix is just the usual permutation matrix.

Quasigroup actions

If Q is finite, each element q of Q
has a $|P \backslash Q| \times|P \backslash Q|$ row-stochastic
(right) action matrix $R_{P \backslash Q}(q)$ with (X, Y)-entry
$\left[R_{P \backslash Q}(q)\right]_{X Y}=|X q \cap Y| /|X|$
for orbits X, Y in $P \backslash Q$.

If Q is a group,
then each entry $\left[R_{P \backslash Q}(q)\right]_{X Y} \in\{0,1\}$,
and the action matrix is just the usual permutation matrix.

Have dual versions $\quad \operatorname{RMlt}_{Q} P, \quad Q / P, \quad L_{Q / P}(q)=|q X \cap Y| /|X|$,

Agenda

1. Lagrangian properties.
2. Burnside's Lemma.
3. Sylow theory.
4. A simple Bol loop acting on a projective line.
5. Approximately symmetric fractal-type objects.

Agenda

1. Lagrangian properties.

Lagrangean subquasigroups

Lagrangean subquasigroups

If P is a subgroup of a finite group Q,
then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.

Lagrangean subquasigroups

If P is a subgroup of a finite group Q, then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Lagrangean subquasigroups

If P is a subgroup of a finite group Q,
then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q if all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.

Lagrangean subquasigroups

If P is a subgroup of a finite group Q,
then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q
if all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.
Dual concept of left Lagrangean.

Lagrangean subquasigroups

If P is a subgroup of a finite group Q,
then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q if all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.

Dual concept of left Lagrangean.

Remark: Divisibility of $|Q|$ by $|P|$ is neither sufficient, nor necessary!

Lagrangean subquasigroups

If P is a subgroup of a finite group Q,
then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q if all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.

Dual concept of left Lagrangean.

Remark: Divisibility of $|Q|$ by $|P|$ is neither sufficient, nor necessary!
For $(\mathbb{Z} / 3,-)$, the subquasigroup $\{0\}$ is left, but not right Lagrangean:

Lagrangean subquasigroups

If P is a subgroup of a finite group Q,
then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q
if all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.
Dual concept of left Lagrangean.

Remark: Divisibility of $|Q|$ by $|P|$ is neither sufficient, nor necessary!
For $(\mathbb{Z} / 3,-)$, the subquasigroup $\{0\}$ is left, but not right Lagrangean: Note $0-1=2$.

Lagrangean subquasigroups

If P is a subgroup of a finite group Q, then all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$. Hence:

Lagrange's Theorem: If Q is a finite group and P is a subgroup, then $|P|$ divides $|Q|$.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q if all the orbits of $\mathrm{LMlt}_{Q} P$ have the same length $|P|$.

Dual concept of left Lagrangean.

Remark: Divisibility of $|Q|$ by $|P|$ is neither sufficient, nor necessary!
For $(\mathbb{Z} / 3,-)$, the subquasigroup $\{0\}$ is left, but not right Lagrangean: Note $0-1=2$.
On the other hand, the empty subquasigroup is both right and left Lagrangean.

Agenda

2. Burnside's Lemma.

Burnside's Lemma for group actions

Burnside's Lemma for group actions

number of orbits $=$ average number of fixed points

Burnside's Lemma for group actions

```
number of orbits = average number of fixed points
```

Suffices to consider homogeneous space actions.

Burnside's Lemma for group actions

```
number of orbits = average number of fixed points
```

Suffices to consider homogeneous space actions.
Then equivalent to $1=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q) \quad(*)$

Burnside's Lemma for group actions

```
number of orbits = average number of fixed points
```

Suffices to consider homogeneous space actions.
Then equivalent to $1=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q) \quad(*)$
since fixed points give ones on the diagonal of a permutation matrix.

Burnside's Lemma for group actions

```
number of orbits = average number of fixed points
```

Suffices to consider homogeneous space actions.
Then equivalent to $1=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q) \quad(*)$
since fixed points give ones on the diagonal of a permutation matrix.
E.g: $\quad R_{\langle(12)\rangle \backslash\{0,1,2\}!}\left(\left(\begin{array}{ll}(12))\end{array}\right)=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\right.$

Burnside's Lemma for group actions

```
number of orbits = average number of fixed points
```

Suffices to consider homogeneous space actions.
Then equivalent to $1=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q) \quad(*)$
since fixed points give ones on the diagonal of a permutation matrix.
E.g: $\quad R_{\langle(12)\rangle \backslash\{0,1,2\}!}\left(\left(\begin{array}{ll}(12))\end{array}\right)=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\right.$

To extend Burnside's Lemma to quasigroup actions, prove $(*)$.

The incidence matrix

The incidence matrix ...

$\ldots A_{P}$ or A for subquasigroup P of finite quasigroup Q

The incidence matrix ...

$\ldots A_{P}$ or A for subquasigroup P of finite quasigroup Q is a $|Q| \times|P \backslash Q|$-matrix with

$$
A_{x X}=\left\{\begin{array}{ll}
1 & \text { if } x \in X ; \\
0 & \text { otherwise }
\end{array} \quad \text { for } x \in Q \text { and } X \in P \backslash Q\right.
$$

The incidence matrix ...

$\ldots A_{P}$ or A for subquasigroup P of finite quasigroup Q is a $|Q| \times|P \backslash Q|$-matrix with

$$
\begin{aligned}
& \qquad A_{x X}=\left\{\begin{array}{ll}
1 & \text { if } x \in X ; \\
0 & \text { otherwise }
\end{array} \quad \text { for } x \in Q \text { and } X \in P \backslash Q .\right. \\
& \text { Pseudoinverse } A^{+} \text {with } A_{X x}^{+}=\left\{\begin{array}{ll}
|X|^{-1} & \text { if } x \in X ; \\
0 & \text { otherwise }
\end{array} \quad \text { for } X \in P \backslash Q \text { and } x \in Q .\right.
\end{aligned}
$$

The incidence matrix ...

$\ldots A_{P}$ or A for subquasigroup P of finite quasigroup Q is a $|Q| \times|P \backslash Q|$-matrix with

$$
A_{x X}=\left\{\begin{array}{ll}
1 & \text { if } x \in X ; \\
0 & \text { otherwise }
\end{array} \quad \text { for } x \in Q \text { and } X \in P \backslash Q\right.
$$

Pseudoinverse A^{+}with $A_{X x}^{+}=\left\{\begin{array}{ll}|X|^{-1} & \text { if } x \in X ; \\ 0 & \text { otherwise }\end{array} \quad\right.$ for $X \in P \backslash Q$ and $x \in Q$.

Lemma: For $q \in Q$, have $R_{P \backslash Q}(q)=A_{P}^{+} R_{Q}(q) A_{P}$, where $R_{Q}(q)$ is the permutation matrix of $R(q)$ on Q.

Burnside's Lemma for quasigroup (and group) actions

Burnside's Lemma for quasigroup (and group) actions

$$
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q)
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{array}{r}
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
=\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X}
\end{array}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{aligned}
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} & R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} \sum_{y \in Q} A_{X x}^{+}\left[R_{Q}(q)\right]_{x y} A_{y X}
\end{aligned}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{aligned}
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} & R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} \sum_{y \in Q} A_{X x}^{+}\left[R_{Q}(q)\right]_{x y} A_{y X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} A_{X x}^{+} A_{(x q) X}
\end{aligned}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{aligned}
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} & R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} \sum_{y \in Q} A_{X x}^{+}\left[R_{Q}(q)\right]_{x y} A_{y X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} A_{X x}^{+} A_{(x q) X} \\
& =\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1} \sum_{q \in Q} A_{(x q) X}
\end{aligned}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{aligned}
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} & R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} \sum_{y \in Q} A_{X x}^{+}\left[R_{Q}(q)\right]_{x y} A_{y X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} A_{X x}^{+} A_{(x q) X} \\
& =\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1} \underbrace{\sum_{q \in Q} A_{(x q) X}} \\
& =\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1}|X|^{\swarrow}
\end{aligned}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{aligned}
\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} & R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} \sum_{y \in Q} A_{X x}^{+}\left[R_{Q}(q)\right]_{x y} A_{y X} \\
& =\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} A_{X x}^{+} A_{(x q) X} \\
& =\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1} \underbrace{\sum_{q \in Q} A_{(x q) X}} \\
& =\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1}|X|
\end{aligned}
$$

Burnside's Lemma for quasigroup (and group) actions

$$
\begin{aligned}
& \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \backslash Q}(q)=\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_{P}^{+} R_{Q}(q) A_{P} \\
& \quad=\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q}\left[A^{+} R_{Q}(q) A\right]_{X X} \\
& \quad=\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} \sum_{y \in Q} A_{X x}^{+}\left[R_{Q}(q)\right]_{x y} A_{y X} \\
& \quad=\frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \backslash Q} \sum_{x \in Q} A_{X x}^{+} A_{(x q) X} \\
& \\
& =\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1} \underbrace{\sum_{q \in Q} A_{(x q) X}} \\
& \quad=\frac{1}{|Q|} \sum_{X \in P \backslash Q} \sum_{x \in X}|X|^{-1}|X|^{\swarrow}=\frac{1}{|Q|} \sum_{x \in Q} 1=1 \quad(*)
\end{aligned}
$$

Agenda

3. Sylow theory.

Sylow theory: the Miller-Wielandt approach

Sylow theory: the Miller-Wielandt approach

In a quasigroup Q, the left multiplication group LMlt Q is $\operatorname{LMlt}_{Q} Q$.

Sylow theory: the Miller-Wielandt approach

In a quasigroup Q, the left multiplication group LMlt Q is $\operatorname{LMlt}_{Q} Q$.
If Q is a group, then $\mathrm{LMlt} Q$ coincides with $L(Q)=\{L(q) \mid q \in Q\}$.

Sylow theory: the Miller-Wielandt approach

In a quasigroup Q, the left multiplication group $\mathrm{LMlt} Q$ is $\mathrm{LMlt}_{Q} Q$.
If Q is a group, then LMIt Q coincides with $L(Q)=\{L(q) \mid q \in Q\}$.

For a divisor d of the order of a finite quasigroup Q, consider the action of $\operatorname{LMlt} Q$ or $L(Q)$ on $\binom{Q}{d}$ - the set of subsets of size d.

Sylow theory: the Miller-Wielandt approach

In a quasigroup Q, the left multiplication group LMlt Q is $\operatorname{LMlt}_{Q} Q$.
If Q is a group, then $\mathrm{LMlt} Q$ coincides with $L(Q)=\{L(q) \mid q \in Q\}$.

For a divisor d of the order of a finite quasigroup Q,
consider the action of $\operatorname{LMlt} Q$ or $L(Q)$ on $\binom{Q}{d}$ - the set of subsets of size d.

An orbit is good if its elements do not overlap.

Sylow theory: the Miller-Wielandt approach

In a quasigroup Q, the left multiplication group LMlt Q is $\operatorname{LMlt}_{Q} Q$.
If Q is a group, then $\mathrm{LMlt} Q$ coincides with $L(Q)=\{L(q) \mid q \in Q\}$.

For a divisor d of the order of a finite quasigroup Q,
consider the action of $\operatorname{LMlt} Q$ or $L(Q)$ on $\binom{Q}{d}$ - the set of subsets of size d.

An orbit is good if its elements do not overlap.

Sylow's Theorem (part): If d is a prime power divisor of $|Q|$ for a finite group Q, then good orbits exist, and each contains a (Lagrangean) subquasigroup.

Classifying divisors

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists; "Just a good orbit, nothing more"

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup; "At least I good orbit"

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup; "EacH good orbit ..."

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;
G: Each subquasigroup in a good orbit is (right) Lagrangean;

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;
G: Each subquasigroup in a good orbit is (right) Lagrangean;

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;
G: Each subquasigroup in a good orbit is (right) Lagrangean;

Use plain for LMlt Q-action, and starred for $L(Q)$-action.

Classifying divisors

Successively restrictive classes for $d||Q|<\infty$:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;
G: Each subquasigroup in a good orbit is (right) Lagrangean;

Use plain for LMlt Q-action, and starred for $L(Q)$-action.

Containments:

Sample divisor classifications

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.
Both 2 and 3 have type I^{*}, but not H^{*} or I .

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.
Both 2 and 3 have type I^{*}, but not H^{*} or I .
While 2 has type J^{*}, it does not have type J.

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.
Both 2 and 3 have type I^{*}, but not H^{*} or I .
While 2 has type J^{*}, it does not have type J.
Note 5 does not have type J or J*.

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types \mathbf{G} and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.
Both 2 and 3 have type I^{*}, but not H^{*} or I .
While 2 has type J^{*}, it does not have type J .
Note 5 does not have type J or J*.
(Indeed, there are no subloops of order 5.)

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.
Both 2 and 3 have type I^{*}, but not H^{*} or I .
While 2 has type J^{*}, it does not have type J .
Note 5 does not have type J or J*.
(Indeed, there are no subloops of order 5.)

Under the action of $L\left(\mathrm{PSL}_{1,3}(2)\right)$,
Klein 4 -subgroups "of positive type" have orbits of length $120-18$,

Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G^{*}.

Example: Paige loop $\mathrm{PSL}_{1,3}(2)$, of order $120=2^{3} \cdot 3 \cdot 5$.
Both 2 and 3 have type I^{*}, but not H^{*} or I .
While 2 has type J^{*}, it does not have type J .
Note 5 does not have type J or J*.
(Indeed, there are no subloops of order 5.)

Under the action of $L\left(\mathrm{PSL}_{1,3}(2)\right)$,
Klein 4 -subgroups "of positive type" have orbits of length $120-18$,
while Klein 4 -subgroups "of negative type" have orbits of length $120-6$.

Agenda

4. A simple Bol loop acting on a projective line.

The projective group $\mathrm{PGL}_{2}(5)$

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \dot{\cup} \mathrm{GF}(5)=\{\infty, 0,1,2,3,4\}$.

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$,

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$, generated by the shift $\lambda: x \mapsto x+1$,

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$, generated by the shift $\lambda: x \mapsto x+1$, doubler $\mu: x \mapsto 2 x$,

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$, generated by the shift $\lambda: x \mapsto x+1$, doubler $\mu: x \mapsto 2 x$, and negated inversion $\nu: x \mapsto-x^{-1}$.

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$, generated by the shift $\lambda: x \mapsto x+1$, doubler $\mu: x \mapsto 2 x$, and negated inversion $\nu: x \mapsto-x^{-1}$.

Have elements $0_{1}=(\infty 0)(12)(34): x \mapsto 2 x^{-1}$

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$, generated by the shift $\lambda: x \mapsto x+1$, doubler $\mu: x \mapsto 2 x$, and negated inversion $\nu: x \mapsto-x^{-1}$.

Have elements $0_{1}=(\infty 0)(12)(34): x \mapsto 2 x^{-1}$
and $0_{2}=(\infty 0)(13)(24): x \mapsto 3 x^{-1}$

The projective group $\mathrm{PGL}_{2}(5)$

The projective line $\mathrm{PG}_{1}(5)$ of order 5 is the disjoint union $\{\infty\} \cup \dot{\cup} G(5)=\{\infty, 0,1,2,3,4\}$.

The image of the group homomorphism

$$
\mathrm{GL}_{2}(5) \rightarrow \mathrm{PG}_{1}(5)!;\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left(x \mapsto \frac{a x+c}{b x+d}\right)
$$

is the projective group $\mathrm{PGL}_{2}(5)$ of order $120=6 \cdot 5 \cdot 4$, generated by the shift $\lambda: x \mapsto x+1$, doubler $\mu: x \mapsto 2 x$, and negated inversion $\nu: x \mapsto-x^{-1}$.

Have elements $0_{1}=(\infty 0)(12)(34): x \mapsto 2 x^{-1}$
and $0_{2}=(\infty 0)(13)(24): x \mapsto 3 x^{-1}$
along with successive conjugates $0_{1}, 0_{2}, 1_{1}, 1_{2}, 2_{1}, 2_{2}, 3_{1}, 3_{2}, 4_{1}, 4_{2}$ by the shift.

The right Bol loop N

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$ and quotient $J=\mathcal{P}\left(\mathrm{PG}_{1}(5)\right) /\left\langle\mathrm{PG}_{1}(5)\right\rangle$.

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$ and quotient $J=\mathcal{P}\left(\mathrm{PG}_{1}(5)\right) /\left\langle\mathrm{PG}_{1}(5)\right\rangle$.

The nub N_{∞} is the 16 -element set of even subsets in J.

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$ and quotient $J=\mathcal{P}\left(\mathrm{PG}_{1}(5)\right) /\left\langle\mathrm{PG}_{1}(5)\right\rangle$.

The nub N_{∞} is the 16 -element set of even subsets in J.

For $x \in \mathrm{GF}(5)$, have $N_{\infty}=\infty_{x} \dot{\cup} \bar{\infty}_{x}$, where $\bar{\infty}_{x}$ contains 8 doubletons with just one of x or ∞.

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$ and quotient $J=\mathcal{P}\left(\mathrm{PG}_{1}(5)\right) /\left\langle\mathrm{PG}_{1}(5)\right\rangle$.

The nub N_{∞} is the 16 -element set of even subsets in J.

For $x \in \mathrm{GF}(5)$, have $N_{\infty}=\infty_{x} \dot{\cup} \bar{\infty}_{x}$, where $\bar{\infty}_{x}$ contains 8 doubletons with just one of x or ∞.

For $x \in \mathrm{GF}(5)$ and $d \in\{1,2\}$,
define formal coset $N_{x, d}=\infty_{x} \cdot x_{d}$ and $N_{x}=N_{x, 1} \dot{\cup} N_{x, 2}$.

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$ and quotient $J=\mathcal{P}\left(\mathrm{PG}_{1}(5)\right) /\left\langle\mathrm{PG}_{1}(5)\right\rangle$.

The nub N_{∞} is the 16 -element set of even subsets in J.

For $x \in \mathrm{GF}(5)$, have $N_{\infty}=\infty_{x} \dot{\cup} \bar{\infty}_{x}$, where $\bar{\infty}_{x}$ contains 8 doubletons with just one of x or ∞.

For $x \in \mathrm{GF}(5)$ and $d \in\{1,2\}$,
define formal coset $N_{x, d}=\infty_{x} \cdot x_{d}$ and $N_{x}=N_{x, 1} \dot{\cup} N_{x, 2}$.

Define $N=N_{\infty} \dot{\cup} N_{0} \dot{U} N_{1} \dot{\cup} N_{2} \dot{\cup} N_{3} \dot{\cup} N_{4}$,

The right Bol loop N

Boolean groups $\mathcal{P}\left(\mathrm{PG}_{1}(5)\right)$ and quotient $J=\mathcal{P}\left(\mathrm{PG}_{1}(5)\right) /\left\langle\mathrm{PG}_{1}(5)\right\rangle$.

The nub N_{∞} is the 16 -element set of even subsets in J.

For $x \in \mathrm{GF}(5)$, have $N_{\infty}=\infty_{x} \dot{\cup} \bar{\infty}_{x}$, where $\bar{\infty}_{x}$ contains 8 doubletons with just one of x or ∞.

For $x \in \mathrm{GF}(5)$ and $d \in\{1,2\}$,
define formal coset $N_{x, d}=\infty_{x} \cdot x_{d}$ and $N_{x}=N_{x, 1} \dot{\cup} N_{x, 2}$.

Define $N=N_{\infty} \dot{\cup} N_{0} \dot{\cup} N_{1} \dot{\cup} N_{2} \dot{\cup} N_{3} \dot{\cup} N_{4}$, a simple right Bol loop of order $96=16 \cdot 6$.

Right action on the projective line

Right action on the projective line

The right and left homogeneous spaces of the nub take the form

$$
N_{\infty} \backslash N=N / N_{\infty}=\left\{N_{\infty}, N_{0}, N_{1}, N_{2}, N_{3}, N_{4}\right\}
$$

Right action on the projective line

The right and left homogeneous spaces of the nub take the form

$$
N_{\infty} \backslash N=N / N_{\infty}=\left\{N_{\infty}, N_{0}, N_{1}, N_{2}, N_{3}, N_{4}\right\}
$$

which is readily identified with the projective line $\mathrm{PG}_{1}(5)$.

Right action on the projective line

The right and left homogeneous spaces of the nub take the form
$N_{\infty} \backslash N=N / N_{\infty}=\left\{N_{\infty}, N_{0}, N_{1}, N_{2}, N_{3}, N_{4}\right\}$,
which is readily identified with the projective line $\mathrm{PG}_{1}(5)$.

In the right action of N on the projective line $\mathrm{PG}_{1}(5)$,
each nub element acts trivially.

Right action on the projective line

The right and left homogeneous spaces of the nub take the form
$N_{\infty} \backslash N=N / N_{\infty}=\left\{N_{\infty}, N_{0}, N_{1}, N_{2}, N_{3}, N_{4}\right\}$,
which is readily identified with the projective line $\mathrm{PG}_{1}(5)$.

In the right action of N on the projective line $\mathrm{PG}_{1}(5)$, each nub element acts trivially.

For $x \in \mathrm{GF}(5)$ and $d \in\{1,2\}$,
each element $p \cdot x_{d}$ of $N_{x, d}$ (with p in ∞_{x})
acts on $\mathrm{PG}_{1}(5)$ as the permutation x_{d}.

Left action on the projective line

Left action on the projective line

In the left action of N on the projective line $\mathrm{PG}_{1}(5)$, nub elements again act trivially.

Left action on the projective line

In the left action of N on the projective line $\mathrm{PG}_{1}(5)$, nub elements again act trivially.

For $p \in \infty_{0}$ and $d \in\{1,2\}$,

$$
L_{N / N_{\infty}}\left(p \cdot 0_{d}\right)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

Left action on the projective line

In the left action of N on the projective line $\mathrm{PG}_{1}(5)$, nub elements again act trivially.

For $p \in \infty_{0}$ and $d \in\{1,2\}$,
$L_{N / N_{\infty}}\left(p \cdot 0_{d}\right)=\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\ 0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\ 0 & 0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 0 & 0 & 1 / 2 & 0 & 1 / 2 & 0\end{array}\right]$

Other matrices obtained on conjugation by the shift.

Application: A maximality proof

Application: A maximality proof

for the subloop $M_{0}=N_{\infty} \dot{\cup} N_{0}$:

Application: A maximality proof

for the subloop $M_{0}=N_{\infty} \dot{\cup} N_{0}$:

For $p \in \infty_{0}$ and $d \in\{1,2\}$,

$$
L_{N / N_{\infty}}\left(p \cdot 0_{d}\right)^{3}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 / 8 & 3 / 8 & 1 / 8 & 1 / 8 \\
0 & 0 & 1 / 8 & 3 / 8 & 1 / 8 & 3 / 8 \\
0 & 0 & 3 / 8 & 1 / 8 & 3 / 8 & 1 / 8 \\
0 & 0 & 1 / 8 & 1 / 8 & 3 / 8 & 3 / 8
\end{array}\right]
$$

Agenda

5. Approximately symmetric fractal-type objects.

Quasigroup actions as iterated function systems

Quasigroup actions as iterated function systems

For a subquasigroup P of a finite quasigroup Q, consider the simplex $(P \backslash Q)^{B}$ spanned by the points of $P \backslash Q$ as a compact metric space.

Quasigroup actions as iterated function systems

For a subquasigroup P of a finite quasigroup Q, consider the simplex $(P \backslash Q)^{B}$ spanned by the points of $P \backslash Q$ as a compact metric space.

For $q \in Q$, the action matrices $R_{P \backslash Q}(q)$ act on $(P \backslash Q)^{B}$
as an iterated function system in the sense of fractal geometry.

Quasigroup actions as iterated function systems

For a subquasigroup P of a finite quasigroup Q,
consider the simplex $(P \backslash Q)^{B}$ spanned by the points of $P \backslash Q$ as a compact metric space.

For $q \in Q$, the action matrices $R_{P \backslash Q}(q)$ act on $(P \backslash Q)^{B}$
as an iterated function system in the sense of fractal geometry.

Consider

$$
\bigcup_{x \in P \backslash Q} \bigcup_{n \in \mathbb{N}} \bigcup_{q_{i} \in Q} x R_{P \backslash Q}\left(q_{1}\right) \ldots R_{P \backslash Q}\left(q_{i}\right) \ldots R_{P \backslash Q}\left(q_{n}\right)
$$

as an affine geometric subset of the simplex $(P \backslash Q)^{B}$.

Chalmers' example

Chalmers' example

Consider the subquasigroup $P=\{1\}$ in

Q	1	2	3	4	5	6
1	1	3	2	5	4	6
2	2	4	5	1	6	3
3	3	5	6	4	1	2
4	4	1	3	6	2	5
5	5	6	4	2	3	1
6	6	2	1	3	5	4

Chalmers' example

Consider the subquasigroup $P=\{1\}$ in

Q	1	2	3	4	5	6
1	1	3	2	5	4	6
2	2	4	5	1	6	3
3	3	5	6	4	1	2
4	4	1	3	6	2	5
5	5	6	4	2	3	1
6	6	2	1	3	5	4

Have $P \backslash Q=\{1\},\{2,3\},\{4,5,6\}\}$, so $(P \backslash Q)^{B}$ is a triangle (2-dimensional simplex).

tr

