### **Quasigroup Actions and Approximate Symmetry**

#### Jonathan D.H. Smith

Department of Mathematics,

Iowa State University,

Ames, IA 50011, U.S.A.

email: jdhsmith@iastate.edu

http://orion.math.iastate.edu/jdhsmith/homepage.html

**Definition:** If P is a subquasigroup of a quasigroup Q,

**Definition:** If P is a subquasigroup of a quasigroup Q, the **relative left multiplication group**  $\mathrm{LMlt}_Q P$  of P in Q

**Definition:** If P is a subquasigroup of a quasigroup Q, the **relative left multiplication group**  $\operatorname{LMlt}_Q P$  of P in Qis  $\langle L(p) \colon Q \to Q; x \mapsto px \mid p \in P \rangle_{Q!}$ .

**Definition:** If P is a subquasigroup of a quasigroup Q, the **relative left multiplication group**  $\operatorname{LMlt}_Q P$  of P in Qis  $\langle L(p) \colon Q \to Q; x \mapsto px \mid p \in P \rangle_{Q!}$ .

**Definition:** The (right) homogeneous space  $P \setminus Q$ is the set of orbits of  $LMlt_QP$  on Q.

**Definition:** If P is a subquasigroup of a quasigroup Q, the **relative left multiplication group**  $\operatorname{LMlt}_Q P$  of P in Qis  $\langle L(p) \colon Q \to Q; x \mapsto px \mid p \in P \rangle_{Q!}$ .

**Definition:** The (right) homogeneous space  $P \setminus Q$ is the set of orbits of  $LMlt_QP$  on Q.

If Q is a group, then  $P \backslash Q$ 

is the set  $\{Px \mid x \in Q\}$  of right cosets of P in Q.

**Definition:** If P is a subquasigroup of a quasigroup Q, the relative left multiplication group  $\operatorname{LMlt}_Q P$  of P in Qis  $\langle L(p) \colon Q \to Q; x \mapsto px \mid p \in P \rangle_{Q!}$ .

**Definition:** The **(right) homogeneous space**  $P \setminus Q$  is the set of orbits of  $LMlt_QP$  on Q.

If Q is a group, then P ackslash Q

is the set  $\{Px \mid x \in Q\}$  of right cosets of P in Q.

Recall that Px = Py or  $Px \cap Py = \emptyset$  in a group Q.

If Q is finite, each element q of Qhas a  $|P \setminus Q| \times |P \setminus Q|$  row-stochastic (right) action matrix  $R_{P \setminus Q}(q)$  with (X, Y)-entry  $[R_{P \setminus Q}(q)]_{XY} = |Xq \cap Y|/|X|$ for orbits X, Y in  $P \setminus Q$ .

If Q is finite, each element q of Qhas a  $|P \setminus Q| \times |P \setminus Q|$  row-stochastic (right) action matrix  $R_{P \setminus Q}(q)$  with (X, Y)-entry  $[R_{P \setminus Q}(q)]_{XY} = |Xq \cap Y|/|X|$ for orbits X, Y in  $P \setminus Q$ .

If Q is a group,

If Q is finite, each element q of Qhas a  $|P \setminus Q| \times |P \setminus Q|$  row-stochastic (right) action matrix  $R_{P \setminus Q}(q)$  with (X, Y)-entry  $[R_{P \setminus Q}(q)]_{XY} = |Xq \cap Y|/|X|$ for orbits X, Y in  $P \setminus Q$ .

If Q is a group,

then each entry  $[R_{P\setminus Q}(q)]_{XY} \in \{0,1\},\$ 

If Q is finite, each element q of Qhas a  $|P \setminus Q| \times |P \setminus Q|$  row-stochastic (right) action matrix  $R_{P \setminus Q}(q)$  with (X, Y)-entry  $[R_{P \setminus Q}(q)]_{XY} = |Xq \cap Y|/|X|$ for orbits X, Y in  $P \setminus Q$ .

If Q is a group,

then each entry  $[R_{P \setminus Q}(q)]_{XY} \in \{0, 1\}$ ,

and the action matrix is just the usual permutation matrix.

If Q is finite, each element q of Qhas a  $|P \setminus Q| \times |P \setminus Q|$  row-stochastic (right) action matrix  $R_{P \setminus Q}(q)$  with (X, Y)-entry  $[R_{P \setminus Q}(q)]_{XY} = |Xq \cap Y|/|X|$ for orbits X, Y in  $P \setminus Q$ .

If Q is a group,

then each entry  $[R_{P\setminus Q}(q)]_{XY} \in \{0, 1\},\$ 

and the action matrix is just the usual permutation matrix.

Have dual versions  $\operatorname{RMlt}_Q P$ , Q/P,  $L_{Q/P}(q) = |qX \cap Y|/|X|$ , ...

## Agenda

- 1. Lagrangian properties.
- 2. Burnside's Lemma.
- 3. Sylow theory.
- 4. A simple Bol loop acting on a projective line.
- 5. Approximately symmetric fractal-type objects.

# Agenda

1. Lagrangian properties.

If P is a subgroup of a finite group Q,

then all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|.

If P is a subgroup of a finite group Q,

then all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

If P is a subgroup of a finite group Q,

then all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

**Definition:** Subquasigroup P of a finite quasigroup Q is **(right) Lagrangean** in Q if all the orbits of  $\text{LMlt}_Q P$  have the same length |P|.

If P is a subgroup of a finite group Q,

then all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

**Definition:** Subquasigroup P of a finite quasigroup Q is **(right) Lagrangean** in Q if all the orbits of  $\text{LMlt}_Q P$  have the same length |P|.

Dual concept of left Lagrangean.

If P is a subgroup of a finite group Q,

then all the orbits of  $LMlt_QP$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

**Definition:** Subquasigroup P of a finite quasigroup Q is **(right) Lagrangean** in Q if all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|.

Dual concept of left Lagrangean.

**Remark:** Divisibility of |Q| by |P| is neither sufficient, nor necessary!

If P is a subgroup of a finite group Q,

then all the orbits of  $LMlt_QP$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

**Definition:** Subquasigroup P of a finite quasigroup Q is **(right) Lagrangean** in Q if all the orbits of  $\text{LMlt}_Q P$  have the same length |P|.

Dual concept of left Lagrangean.

**Remark:** Divisibility of |Q| by |P| is neither sufficient, nor necessary! For  $(\mathbb{Z}/_3, -)$ , the subquasigroup  $\{0\}$  is left, but not right Lagrangean:

If P is a subgroup of a finite group Q,

then all the orbits of  $LMlt_QP$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

**Definition:** Subquasigroup P of a finite quasigroup Q is **(right) Lagrangean** in Q if all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|.

Dual concept of left Lagrangean.

**Remark:** Divisibility of |Q| by |P| is neither sufficient, nor necessary! For  $(\mathbb{Z}/_3, -)$ , the subquasigroup  $\{0\}$  is left, but not right Lagrangean: Note 0 - 1 = 2.

If P is a subgroup of a finite group Q,

then all the orbits of  $LMlt_QP$  have the same length |P|. Hence:

**Lagrange's Theorem:** If Q is a finite group and P is a subgroup, then |P| divides |Q|.

**Definition:** Subquasigroup P of a finite quasigroup Q is **(right) Lagrangean** in Q if all the orbits of  $\mathrm{LMlt}_Q P$  have the same length |P|.

Dual concept of left Lagrangean.

**Remark:** Divisibility of |Q| by |P| is neither sufficient, nor necessary! For  $(\mathbb{Z}/_3, -)$ , the subquasigroup  $\{0\}$  is left, but not right Lagrangean: Note 0 - 1 = 2. On the other hand, the empty subquasigroup is both right and left Lagrangean.

# Agenda

2. Burnside's Lemma.

number of orbits = average number of fixed points

number of orbits = average number of fixed points

Suffices to consider homogeneous space actions.

number of orbits = average number of fixed points

Suffices to consider homogeneous space actions.

Then equivalent to  $1 = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q)$  (\*)

number of orbits = average number of fixed points

Suffices to consider homogeneous space actions.

Then equivalent to  $1 = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q)$  (\*)

since fixed points give ones on the diagonal of a permutation matrix.

number of orbits = average number of fixed points

Suffices to consider homogeneous space actions.

Then equivalent to  $1 = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q)$  (\*)

since fixed points give ones on the diagonal of a permutation matrix.

E.g: 
$$R_{\langle (1\ 2) \rangle \setminus \{0,1,2\}!} ((0\ 2)) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

number of orbits = average number of fixed points

Suffices to consider homogeneous space actions.

Then equivalent to  $1 = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q)$  (\*)

since fixed points give ones on the diagonal of a permutation matrix.

E.g: 
$$R_{\langle (1\ 2) \rangle \setminus \{0,1,2\}!} ((0\ 2)) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

To extend Burnside's Lemma to quasigroup actions, prove (\*).

The incidence matrix ...

## The incidence matrix ...

 $\ldots A_P$  or A for subquasigroup P of finite quasigroup Q

#### The incidence matrix ...

 $\dots A_P$  or A for subquasigroup P of finite quasigroup Q is a |Q| imes |P ackslash Q|-matrix with

$$A_{xX} = \begin{cases} 1 & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases} \quad \text{for } x \in Q \text{ and } X \in P \backslash Q.$$
#### The incidence matrix ...

 $\dots A_P$  or A for subquasigroup P of finite quasigroup Q is a |Q| imes |P ackslash Q|-matrix with

$$A_{xX} = \begin{cases} 1 & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases} \quad \text{for } x \in Q \text{ and } X \in P \backslash Q.$$

Pseudoinverse 
$$A^+$$
 with  $A_{Xx}^+ = \begin{cases} |X|^{-1} & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases}$  for  $X \in P \setminus Q$  and  $x \in Q$ .

#### The incidence matrix ...

 $\dots A_P$  or A for subquasigroup P of finite quasigroup Q is a  $|Q| \times |P \setminus Q|$ -matrix with

$$A_{xX} = \begin{cases} 1 & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases} \quad \text{for } x \in Q \text{ and } X \in P \backslash Q.$$

Pseudoinverse 
$$A^+$$
 with  $A_{Xx}^+ = \begin{cases} |X|^{-1} & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases}$  for  $X \in P \setminus Q$  and  $x \in Q$ .

Lemma: For  $q \in Q$ , have  $R_{P \setminus Q}(q) = A_P^+ R_Q(q) A_P$ , where  $R_Q(q)$  is the permutation matrix of R(q) on Q.

# $\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q)$

# $\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} \sum_{y \in Q} A^+_{Xx} [R_Q(q)]_{xy} A_{yX}$$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} \sum_{y \in Q} A^+_{Xx} [R_Q(q)]_{xy} A_{yX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} A^+_{Xx} A_{(xq)X}$$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} \sum_{y \in Q} A_{Xx}^+ [R_Q(q)]_{xy} A_{yX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} A_{Xx}^+ A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} \sum_{q \in Q} A_{(xq)X}$$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} \sum_{y \in Q} A_{Xx}^+ [R_Q(q)]_{xy} A_{yX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} A_{Xx}^+ A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} \sum_{q \in Q} A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} |X|^{\times}$$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} \sum_{y \in Q} A_{Xx}^+ [R_Q(q)]_{xy} A_{yX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} A_{Xx}^+ A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} \sum_{q \in Q} A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} |X|^{\checkmark} = \frac{1}{|Q|} \sum_{x \in Q} 1 = 1$$

$$\frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} R_{P \setminus Q}(q) = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{Tr} A_P^+ R_Q(q) A_P$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} [A^+ R_Q(q) A]_{XX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} \sum_{y \in Q} A_{Xx}^+ [R_Q(q)]_{xy} A_{yX}$$

$$= \frac{1}{|Q|} \sum_{q \in Q} \sum_{X \in P \setminus Q} \sum_{x \in Q} A_{Xx}^+ A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} \sum_{q \in Q} A_{(xq)X}$$

$$= \frac{1}{|Q|} \sum_{X \in P \setminus Q} \sum_{x \in X} |X|^{-1} |X|^{\vee} = \frac{1}{|Q|} \sum_{x \in Q} 1 = 1 \quad (*)$$

Agenda

3. Sylow theory.

In a quasigroup Q, the left multiplication group  $\operatorname{LMlt} Q$  is  $\operatorname{LMlt}_Q Q$ .

In a quasigroup Q, the left multiplication group  $\operatorname{LMlt} Q$  is  $\operatorname{LMlt}_Q Q$ . If Q is a group, then  $\operatorname{LMlt} Q$  coincides with  $L(Q) = \{L(q) \mid q \in Q\}$ .

In a quasigroup Q, the left multiplication group  $\operatorname{LMlt} Q$  is  $\operatorname{LMlt}_Q Q$ . If Q is a group, then  $\operatorname{LMlt} Q$  coincides with  $L(Q) = \{L(q) \mid q \in Q\}$ .

For a divisor d of the order of a finite quasigroup Q, consider the action of  $\operatorname{LMlt} Q$  or L(Q) on  $\binom{Q}{d}$  – the set of subsets of size d.

In a quasigroup Q, the left multiplication group  $\operatorname{LMlt} Q$  is  $\operatorname{LMlt}_Q Q$ . If Q is a group, then  $\operatorname{LMlt} Q$  coincides with  $L(Q) = \{L(q) \mid q \in Q\}$ .

For a divisor d of the order of a finite quasigroup Q, consider the action of  $\operatorname{LMlt} Q$  or L(Q) on  $\binom{Q}{d}$  – the set of subsets of size d.

An orbit is **good** if its elements do not overlap.

In a quasigroup Q, the left multiplication group  $\operatorname{LMlt} Q$  is  $\operatorname{LMlt}_Q Q$ . If Q is a group, then  $\operatorname{LMlt} Q$  coincides with  $L(Q) = \{L(q) \mid q \in Q\}$ .

For a divisor d of the order of a finite quasigroup Q, consider the action of  $\operatorname{LMlt} Q$  or L(Q) on  $\binom{Q}{d}$  – the set of subsets of size d.

An orbit is **good** if its elements do not overlap.

Sylow's Theorem (part): If d is a prime power divisor of |Q| for a finite group Q, then good orbits exist, and each contains a (Lagrangean) subquasigroup.

Successively restrictive classes for  $d \mid |Q| < \infty$ :

Successively restrictive classes for  $d \mid |Q| < \infty$ :

**J:** A good orbit exists;

Successively restrictive classes for  $d \mid |Q| < \infty$ :

**J:** A good orbit exists; "Just a good orbit, nothing more"

Successively restrictive classes for  $d \mid |Q| < \infty$ :

**J:** A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

Successively restrictive classes for  $d \mid |Q| < \infty$ :

**J:** A good orbit exists;

I: At least 1 good orbit contains a subquasigroup; "At least I good orbit"

Successively restrictive classes for  $d \mid |Q| < \infty$ :

J: A good orbit exists;

- I: At least 1 good orbit contains a subquasigroup;
- **H:** Each good orbit contains a subquasigroup;

Successively restrictive classes for  $d \mid |Q| < \infty$ :

**J:** A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

**H:** Each good orbit contains a subquasigroup; "Eac**H** good orbit ...."

Successively restrictive classes for  $d \mid |Q| < \infty$ :

J: A good orbit exists;

- I: At least 1 good orbit contains a subquasigroup;
- **H:** Each good orbit contains a subquasigroup;
- **G:** Each subquasigroup in a good orbit is (right) Lagrangean;

Successively restrictive classes for  $d \mid |Q| < \infty$ :

J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

**H:** Each good orbit contains a subquasigroup;

**G:** Each subquasigroup in a good orbit is (right) Lagrangean; "Group type" (for  $d = p^e$ )

Successively restrictive classes for  $d \mid |Q| < \infty$ :

J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

**H:** Each good orbit contains a subquasigroup;

G: Each subquasigroup in a good orbit is (right) Lagrangean;

Use plain for LMlt Q-action, and starred for L(Q)-action.

Successively restrictive classes for  $d \mid |Q| < \infty$ :

J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

H: Each good orbit contains a subquasigroup;

G: Each subquasigroup in a good orbit is (right) Lagrangean;

Use plain for LMlt Q-action, and starred for L(Q)-action.

Containments:



**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $\mathsf{PSL}_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ .

**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $\mathsf{PSL}_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ .

Both 2 and 3 have type I\*, but not H\* or I.

**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $PSL_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ . Both 2 and 3 have type I\*, but not H\* or I. While 2 has type J\*, it does not have type J.
**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $\mathsf{PSL}_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ .

Both 2 and 3 have type I\*, but not H\* or I.

While 2 has type J<sup>\*</sup>, it does not have type J.

Note 5 does not have type J or  $J^*$ .

**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $\mathsf{PSL}_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ .

Both 2 and 3 have type I\*, but not H\* or I.

While 2 has type J<sup>\*</sup>, it does not have type J.

Note 5 does not have type J or  $J^*$ .

(Indeed, there are no subloops of order 5.)

**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $PSL_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ . Both 2 and 3 have type I\*, but not H\* or I. While 2 has type J\*, it does not have type J. Note 5 does not have type J or J\*.

(Indeed, there are no subloops of order 5.)

Under the action of  $L(\mathsf{PSL}_{1,3}(2))$ ,

Klein 4-subgroups "of positive type" have orbits of length 120 - 18,

**Sylow:** If d is a prime-power and Q is a finite group, then d has types G and G<sup>\*</sup>.

**Example:** Paige loop  $PSL_{1,3}(2)$ , of order  $120 = 2^3 \cdot 3 \cdot 5$ . Both 2 and 3 have type I\*, but not H\* or I. While 2 has type J\*, it does not have type J. Note 5 does not have type J or J\*. (Indeed, there are no subloops of order 5.)

Under the action of  $L(\mathsf{PSL}_{1,3}(2))$ ,

Klein 4-subgroups "of positive type" have orbits of length 120 - 18, while Klein 4-subgroups "of negative type" have orbits of length 120 - 6.

## Agenda

4. A simple Bol loop acting on a projective line.

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the **projective group**  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ ,

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the projective group  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ , generated by the shift  $\lambda \colon x \mapsto x + 1$ ,

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the projective group  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ , generated by the shift  $\lambda \colon x \mapsto x + 1$ , doubler  $\mu \colon x \mapsto 2x$ ,

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}.$ 

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the projective group  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ , generated by the shift  $\lambda \colon x \mapsto x + 1$ , doubler  $\mu \colon x \mapsto 2x$ , and negated inversion  $\nu \colon x \mapsto -x^{-1}$ .

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the projective group  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ , generated by the shift  $\lambda \colon x \mapsto x + 1$ , doubler  $\mu \colon x \mapsto 2x$ , and negated inversion  $\nu \colon x \mapsto -x^{-1}$ .

Have elements  $0_1 = (\infty \ 0)(1 \ 2)(3 \ 4) : x \mapsto 2x^{-1}$ 

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}$ .

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the projective group  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ , generated by the shift  $\lambda \colon x \mapsto x + 1$ , doubler  $\mu \colon x \mapsto 2x$ , and negated inversion  $\nu \colon x \mapsto -x^{-1}$ .

Have elements  $0_1 = (\infty \ 0)(1 \ 2)(3 \ 4) : x \mapsto 2x^{-1}$ and  $0_2 = (\infty \ 0)(1 \ 3)(2 \ 4) : x \mapsto 3x^{-1}$ 

The projective line  $PG_1(5)$  of order 5 is the disjoint union  $\{\infty\} \dot{\cup} GF(5) = \{\infty, 0, 1, 2, 3, 4\}.$ 

The image of the group homomorphism

$$\mathsf{GL}_2(5) \to \mathsf{PG}_1(5)!; \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left( x \mapsto \frac{ax+c}{bx+d} \right)$$

is the projective group  $PGL_2(5)$  of order  $120 = 6 \cdot 5 \cdot 4$ , generated by the shift  $\lambda \colon x \mapsto x + 1$ , doubler  $\mu \colon x \mapsto 2x$ , and negated inversion  $\nu \colon x \mapsto -x^{-1}$ .

Have elements  $0_1 = (\infty \ 0)(1 \ 2)(3 \ 4) : x \mapsto 2x^{-1}$ and  $0_2 = (\infty \ 0)(1 \ 3)(2 \ 4) : x \mapsto 3x^{-1}$ 

along with successive conjugates  $0_1, 0_2, 1_1, 1_2, 2_1, 2_2, 3_1, 3_2, 4_1, 4_2$  by the shift.

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$ 

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$  and quotient  $J = \mathcal{P}(\mathsf{PG}_1(5))/\langle \mathsf{PG}_1(5) \rangle$ .

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$  and quotient  $J = \mathcal{P}(\mathsf{PG}_1(5))/\langle \mathsf{PG}_1(5) \rangle$ .

The **nub**  $N_{\infty}$  is the 16-element set of even subsets in J.

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$  and quotient  $J = \mathcal{P}(\mathsf{PG}_1(5))/\langle \mathsf{PG}_1(5) \rangle$ .

The **nub**  $N_{\infty}$  is the 16-element set of even subsets in J.

For  $x \in \mathsf{GF}(5)$ , have  $N_{\infty} = \infty_x \dot{\cup} \overline{\infty}_x$ ,

where  $\overline{\infty}_x$  contains 8 doubletons with just one of x or  $\infty$ .

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$  and quotient  $J = \mathcal{P}(\mathsf{PG}_1(5))/\langle \mathsf{PG}_1(5) \rangle$ .

The **nub**  $N_{\infty}$  is the 16-element set of even subsets in J.

For  $x \in \mathsf{GF}(5)$ , have  $N_{\infty} = \infty_x \dot{\cup} \overline{\infty}_x$ ,

where  $\overline{\infty}_x$  contains 8 doubletons with just one of x or  $\infty$ .

For  $x \in GF(5)$  and  $d \in \{1, 2\}$ ,

define formal coset  $N_{x,d} = \infty_x \cdot x_d$  and  $N_x = N_{x,1} \dot{\cup} N_{x,2}$ .

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$  and quotient  $J = \mathcal{P}(\mathsf{PG}_1(5))/\langle \mathsf{PG}_1(5) \rangle$ .

The **nub**  $N_{\infty}$  is the 16-element set of even subsets in J.

For  $x \in \mathsf{GF}(5)$ , have  $N_{\infty} = \infty_x \dot{\cup} \overline{\infty}_x$ ,

where  $\overline{\infty}_x$  contains 8 doubletons with just one of x or  $\infty$ .

For  $x \in GF(5)$  and  $d \in \{1, 2\}$ ,

define formal coset  $N_{x,d} = \infty_x \cdot x_d$  and  $N_x = N_{x,1} \dot{\cup} N_{x,2}$ .

Define  $N = N_{\infty} \dot{\cup} N_0 \dot{\cup} N_1 \dot{\cup} N_2 \dot{\cup} N_3 \dot{\cup} N_4$ ,

Boolean groups  $\mathcal{P}(\mathsf{PG}_1(5))$  and quotient  $J = \mathcal{P}(\mathsf{PG}_1(5))/\langle \mathsf{PG}_1(5) \rangle$ .

The **nub**  $N_{\infty}$  is the 16-element set of even subsets in J.

For  $x \in \mathsf{GF}(5)$ , have  $N_{\infty} = \infty_x \dot{\cup} \overline{\infty}_x$ ,

where  $\overline{\infty}_x$  contains 8 doubletons with just one of x or  $\infty$ .

For  $x \in GF(5)$  and  $d \in \{1, 2\}$ ,

define formal coset  $N_{x,d} = \infty_x \cdot x_d$  and  $N_x = N_{x,1} \dot{\cup} N_{x,2}$ .

Define  $N = N_{\infty} \dot{\cup} N_0 \dot{\cup} N_1 \dot{\cup} N_2 \dot{\cup} N_3 \dot{\cup} N_4$ , a simple right Bol loop of order  $96 = 16 \cdot 6$ .

The right and left homogeneous spaces of the nub take the form

 $N_{\infty} \setminus N = N/N_{\infty} = \{N_{\infty}, N_0, N_1, N_2, N_3, N_4\},\$ 

The right and left homogeneous spaces of the nub take the form

 $N_{\infty} \setminus N = N/N_{\infty} = \{N_{\infty}, N_0, N_1, N_2, N_3, N_4\},\$ 

which is readily identified with the projective line  $PG_1(5)$ .

The right and left homogeneous spaces of the nub take the form

 $N_{\infty} \setminus N = N/N_{\infty} = \{N_{\infty}, N_0, N_1, N_2, N_3, N_4\},\$ 

which is readily identified with the projective line  $PG_1(5)$ .

In the right action of N on the projective line  $PG_1(5)$ , each nub element acts trivially.

The right and left homogeneous spaces of the nub take the form

 $N_{\infty} \setminus N = N/N_{\infty} = \{N_{\infty}, N_0, N_1, N_2, N_3, N_4\},\$ 

which is readily identified with the projective line  $PG_1(5)$ .

In the right action of N on the projective line  $PG_1(5)$ , each nub element acts trivially.

For  $x \in GF(5)$  and  $d \in \{1, 2\}$ , each element  $p \cdot x_d$  of  $N_{x,d}$  (with p in  $\infty_x$ ) acts on  $PG_1(5)$  as the permutation  $x_d$ .

In the left action of N on the projective line  $\mathsf{PG}_1(5)$ , nub elements again act trivially.

In the left action of N on the projective line  $PG_1(5)$ , nub elements again act trivially.

 $\operatorname{For} p \in \infty_0 \text{ and } d \in \{1, 2\},$   $L_{N/N_{\infty}}(p \cdot 0_d) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 \end{bmatrix}$ 

In the left action of N on the projective line  $PG_1(5)$ , nub elements again act trivially.

 $\operatorname{For} p \in \infty_0 \text{ and } d \in \{1, 2\},$   $L_{N/N_{\infty}}(p \cdot 0_d) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 \end{bmatrix}$ 

Other matrices obtained on conjugation by the shift.

Application: A maximality proof

## **Application: A maximality proof**

for the subloop  $M_0 = N_\infty \dot{\cup} N_0$ :

## **Application: A maximality proof**

for the subloop  $M_0 = N_\infty \dot{\cup} N_0$ :

For  $p \in \infty_0$  and  $d \in \{1, 2\}$ ,

$$L_{N/N_{\infty}}(p \cdot 0_d)^3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3/8 & 3/8 & 1/8 & 1/8 \\ 0 & 0 & 1/8 & 3/8 & 1/8 & 3/8 \\ 0 & 0 & 3/8 & 1/8 & 3/8 & 1/8 \\ 0 & 0 & 1/8 & 1/8 & 3/8 & 3/8 \end{bmatrix}$$

## Agenda

5. Approximately symmetric fractal-type objects.
For a subquasigroup P of a finite quasigroup Q,

consider the simplex  $(P \backslash Q)^B$  spanned by the points of  $P \backslash Q$  as a compact metric space.

For a subquasigroup P of a finite quasigroup Q,

consider the simplex  $(P \setminus Q)^B$  spanned by the points of  $P \setminus Q$  as a compact metric space.

For  $q \in Q$ , the action matrices  $R_{P \setminus Q}(q)$  act on  $(P \setminus Q)^B$ 

as an iterated function system in the sense of fractal geometry.

For a subquasigroup P of a finite quasigroup Q,

consider the simplex  $(P \setminus Q)^B$  spanned by the points of  $P \setminus Q$  as a compact metric space.

For  $q \in Q$ , the action matrices  $R_{P \setminus Q}(q)$  act on  $(P \setminus Q)^B$ 

as an iterated function system in the sense of fractal geometry.

Consider

$$\bigcup_{x \in P \setminus Q} \bigcup_{n \in \mathbb{N}} \bigcup_{q_i \in Q} x R_{P \setminus Q}(q_1) \dots R_{P \setminus Q}(q_i) \dots R_{P \setminus Q}(q_n)$$

as an affine geometric subset of the simplex  $(P \setminus Q)^B$ .

Chalmers' example

# Chalmers' example

Consider the subquasigroup  $P=\{1\}$  in

| Q | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 3 | 2 | 5 | 4 | 6 |
| 2 | 2 | 4 | 5 | 1 | 6 | 3 |
| 3 | 3 | 5 | 6 | 4 | 1 | 2 |
| 4 | 4 | 1 | 3 | 6 | 2 | 5 |
| 5 | 5 | 6 | 4 | 2 | 3 | 1 |
| 6 | 6 | 2 | 1 | 3 | 5 | 4 |

### Chalmers' example

Consider the subquasigroup  $P=\{1\}$  in

| Q | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 3 | 2 | 5 | 4 | 6 |
| 2 | 2 | 4 | 5 | 1 | 6 | 3 |
| 3 | 3 | 5 | 6 | 4 | 1 | 2 |
| 4 | 4 | 1 | 3 | 6 | 2 | 5 |
| 5 | 5 | 6 | 4 | 2 | 3 | 1 |
| 6 | 6 | 2 | 1 | 3 | 5 | 4 |

Have  $P \setminus Q = \{1\}, \{2,3\}, \{4,5,6\}\}$ , so  $(P \setminus Q)^B$  is a triangle (2-dimensional simplex).

