Quasigroup Actions and Approximate Symmetry

Jonathan D.H. Smith

Department of Mathematics,
lowa State University,
Ames, |IA 50011, U.S.A.
email: Jdhsmith@lastate.edu

http://orion.math.iastate.edu/jdhsmith/homepage.html




Homogeneous spaces



Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup ),



Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup ),

the relative left multiplication group LMItg P of P in ()



Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup ),

the relative left multiplication group LMItg P of P in ()
is (L(p): Q = Q;x—px|pe Po.



Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup ),

the relative left multiplication group LMItg P of P in ()
is (L(p): Q = Q;x—px|pe Po.

Definition: The (right) homogeneous space P\ ()
is the set of orbits of LMItg P on Q).



Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup ),

the relative left multiplication group LMItg P of P in ()
is (L(p): Q = Q;x—px|pe Po.

Definition: The (right) homogeneous space P\ ()
is the set of orbits of LMItg P on Q).

If QQ is a group, then P\ (@
is the set { Pz | « € @} of right cosets of P in ().



Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup ),

the relative left multiplication group LMItg P of P in ()
is (L(p): Q = Q;x—px|pe Po.

Definition: The (right) homogeneous space P\ ()
is the set of orbits of LMItg P on Q).

If QQ is a group, then P\ (@
is the set { Pz | « € @} of right cosets of P in ().

Recall that Px = Py or Px N Py = @ inagroup (.
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Quasigroup actions

If () is finite, each element g of ()

has a | P\Q| x | P\Q| row-stochastic

(right) action matrix R p\ ¢ (q) with (X, Y)-entry
[Rp\@(@)lxy = [XgNY|/|X]

for orbits X, Y in P\Q.

If () is a group,
then each entry [Rp\(q)| xy € {0, 1},

and the action matrix is just the usual permutation matrix.

Have dual versions RMltgP, Q/P, Lg/p(q) =|¢X NY|/|X|,
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Lagrangean subquasigroups

If P is a subgroup of a finite group @,
then all the orbits of LMIt P have the same length | P|. Hence:

Lagrange’s Theorem: If () is a finite group and P is a subgroup, then | P| divides | Q.

Definition: Subquasigroup P of a finite quasigroup () is (right) Lagrangean in ()
if all the orbits of LMItg P have the same length | P|.

Dual concept of left Lagrangean.

Remark: Divisibility of |(Q)| by | P| is neither sufficient, nor necessary!
For (Z/3, —), the subquasigroup {0} is left, but not right Lagrangean: Note 0 — 1 = 2.
On the other hand, the empty subquasigroup is both right and left Lagrangean.
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Burnside’s Lemma for group actions

number of orbits = average number of fixed points

Suffices to consider homogeneous space actions.

Then equivalentto 1 = ﬁ quQ TrRp\g(q) (%)

since fixed points give ones on the diagonal of a permutation matrix.

0 0 1]
Eg: Riaao12p((02) =10 1 0
10 0

To extend Burnside’s Lemma to quasigroup actions, prove (*)
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The incidence matrix ...

... Ap or A for subquasigroup P of finite quasigroup ) isa |Q| x | P\Q|-matrix with

1 ifx e X;
Arx = forx € Qand X € P\Q.
0 otherwise
X7t ifr e X;
Pseudoinverse A™ with A}L(x = for X € P\Qandx € Q.
0 otherwise

Lemma: For ¢ € Q, have Rp\g(q) = AFRo(q)Ap,
where Rg(q) is the permutation matrix of R(q) on Q.
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Burnside’s Lemma for quasigroup (and group) actions

ﬁ >geq TrRp\@(q) = @H 2 4c0 TrALRg(q)Ap

ﬁ > gcq xerglATRo()Alx x

07 200 2o xeP\Q 2oweq 2yeo Ax e[ Ro(@)]ay Ayx
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Burnside’s Lemma for quasigroup (and group) actions

ﬁ ZQEQ TrRp\g(q) = Wll quQ TrALRg(q)Ap

ﬁ > gcq xerglATRo()Alx x

07 200 2o xeP\Q 2oweq 2yeo Ax e[ Ro(@)]ay Ayx
- ﬁ ZCIGQ ZXEP\Q ZxEQ A;r(:cA(ﬂcq)X

— ﬁ ZXGP\Q Drex ‘X‘_lz Alzq)x

qeQ

v
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Sylow theory: the Miller-Wielandt approach

In a quasigroup (), the left multiplication group LMIt () is LMlto Q).
If @) is a group, then LMIt @) coincides with L(Q) = {L(q) | ¢ € Q}.

For a divisor d of the order of a finite quasigroup (),

consider the action of LMIt @ or L(Q) on (g) — the set of subsets of size d.
An orbit is good if its elements do not overlap.

Sylow’s Theorem (part): If d is a prime power divisor of |()| for a finite group @),

then good orbits exist, and each contains a (Lagrangean) subquasigroup.



Classifying divisors



Classifying divisors

Successively restrictive classes for d | |Q] < oo:



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists; “Just a good orbit, nothing more”



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup; "At least | good orbit”



Classifying divisors
Successively restrictive classes for d | |Q] < oo:
J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

H: Each good orbit contains a subquasigroup;



Classifying divisors
Successively restrictive classes for d | |Q] < oo:
J: A good orbit exists;

I: At least 1 good orbit contains a subquasigroup;

H: Each good orbit contains a subquasigroup; “EacH good orbit .. .”



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;

G: Each subquasigroup in a good orbit is (right) Lagrangean;



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;

G: Each subquasigroup in a good orbit is (right) Lagrangean; “Group type” (for d = p°)



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;

G: Each subquasigroup in a good orbit is (right) Lagrangean;

Use plain for LMt Q-action, and starred for L(())-action.



Classifying divisors

Successively restrictive classes for d | |Q] < oo:

J: A good orbit exists;
I: At least 1 good orbit contains a subquasigroup;
H: Each good orbit contains a subquasigroup;

G: Each subquasigroup in a good orbit is (right) Lagrangean;

Use plain for LMt Q-action, and starred for L(())-action.

Containments: G* ——H* |*

/\/ T T

G H I
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Sylow: If d is a prime-power and () is a finite group, then d has types G and G*.

Example: Paige loop PSL; 3(2), of order 120 = 23 - 3 - 5.
Both 2 and 3 have type I*, but not H* or I.

While 2 has type J*, it does not have type J.

Note 5 does not have type J or J*.

(Indeed, there are no subloops of order 5.)

Under the action of L(PSL; 3(2)),
Klein 4-subgroups “of positive type” have orbits of length 120 — 18,
while Klein 4-subgroups “of negative type” have orbits of length 120 — .
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The image of the group homomorphism

=

ar+c
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is the projective group PGL2(5) of order 120 = 6 - 5 - 4, generated by the
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The projective group PGL,(5)

The projective line PG (5) of order 5 is the disjoint union {occ }UGF(5) = {0,0, 1,2, 3,4}.

The image of the group homomorphism

a b
GLy(5) — PG (5)! — (2 gzt

is the projective group PGL2(5) of order 120 = 6 - 5 - 4, generated by the

shift \: x — = + 1, doubler ;1: = — 2z, and negated inversion v: x — —z 1.

Have elements 01 = (00 0)(12)(34) : z +— 221
and 02 = (00 0)(13)(24) : z +— 3z~ 1

along with successive conjugates 01,02, 11, 19,21, 29, 31, 32, 41, 42 by the shift.
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Boolean groups P (PG1(5)) and quotient J = P (PG1(5)) /(PG1(5)).
The nub N, is the 16-element set of even subsets in .J.

For z € GF(5), have N, = 00,Ud0,,

where 00, contains 8 doubletons with just one of x or oo.

Forxz € GF(5) and d € {1, 2},

define formal coset N, ¢ = 00, - 4 and N = N, 1UN, 2.

Define N = N UNgUN;UNsUN3UN,, a simple right Bol loop of order 96 = 16 - 6.
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The right and left homogeneous spaces of the nub take the form
NOO\N — N/NOO — {N007N07N17N27N37N4} 9

which is readily identified with the projective line PG1(5).

In the right action of N on the projective line PGy (5),

each nub element acts trivially.

Forx € GF(5)and d € {1, 2},
each element p - x4 of N, 4 (with p in 00)

acts on PGy (5) as the permutation .
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Left action on the projective line

In the left action of /N on the projective line PGy (5) nub elements again act trivially.

Forp € oog andd € {1,2},

01 0 0 0 0
10 0 0 0 0
Ensw (p - 0a) = 00 0 1/2 0 1/2
00 0 0 1/2 1/2
00 1/2 1/2 0 0
00 1/2 0 1/2 0




Left action on the projective line

In the left action of /N on the projective line PGy (5) nub elements again act trivially.

Forp € oog andd € {1,2},

1 0 0 0 0
0 0 0 0 0

L (- 0) = 0 0 1/2 0 1/2

0 0 0 1/2 1/2

0 1/2 1/2 0 0

0

1/2 0 1/2 0

o o o o = O

Other matrices obtained on conjugation by the shift.
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Application: A maximality proof

for the subloop My = NoUNp:

Forp € oogand d € {1, 2},

0o 0 0 0
0o 0 0 0
3/8 3/8 1/8 1/8
1/8 3/8 1/8 3/8
3/8 1/8 3/8 1/8
1/8 1/8 3/8 3/8

LN, (p-0q)° =

o o o o = O
o o o o o =




Agenda

5. Approximately symmetric fractal-type objects.
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For a subquasigroup P of a finite quasigroup (),

consider the simplex (P\@Q)? spanned by the points of P\ (Q as a compact metric space.

For ¢ € @, the action matrices R p\ g (g) acton (P\Q)”

as an iterated function system in the sense of fractal geometry.



Quasigroup actions as iterated function systems

For a subquasigroup P of a finite quasigroup (),

consider the simplex (P\@Q)? spanned by the points of P\ (Q as a compact metric space.

For ¢ € @, the action matrices R p\ g (g) acton (P\Q)”

as an iterated function system in the sense of fractal geometry.

Consider

User o Unen Uy co 2B \@(@1) - - Bp\@(&i) - - - Bp\@(gn)

as an affine geometric subset of the simplex (P\Q)®.



Chalmers’ example



Chalmers’ example

{1} in

Consider the subquasigroup P

1 3 2 5 4 6

Q|1 2 3 4 5 6

1

212 4 5 1 6 3
313 5 6 4 1 2
414 1 3 6 2 5
5195 6 4 2 3 1
616 2 1 3 5 4



Chalmers’ example

Consider the subquasigroup P = {1} in

Q|1 2 3 4 5 6
1|1 3 2 5 4 6
212 4 51 6 3
33 56 4 1 2
414 1 3 6 2 5
515 6 4 2 3 1
66 2 1 3 5 4

Have P\Q = {1},{2,3},{4,5,6}}, so (P\Q)” is a triangle (2-dimensional simplex).
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