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Homogeneous spaces

Definition: If P is a subquasigroup of a quasigroup Q, .

the relative left multiplication group LMltQP of P in Q .

is ⟨L(p) : Q → Q;x 7→ px | p ∈ P ⟩Q!. .

.

Definition: The (right) homogeneous space P\Q .

is the set of orbits of LMltQP on Q. .

.

If Q is a group, then P\Q .

is the set {Px | x ∈ Q} of right cosets of P in Q. .

.

Recall that Px = Py or Px ∩ Py = Ø in a group Q.
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Quasigroup actions

If Q is finite, each element q of Q .

has a |P\Q| × |P\Q| row-stochastic .

(right) action matrix RP\Q(q) with (X,Y )-entry .

[RP\Q(q)]XY = |Xq ∩ Y |
/
|X| .

for orbits X,Y in P\Q. .

.

If Q is a group, .

then each entry [RP\Q(q)]XY ∈ {0, 1}, .

and the action matrix is just the usual permutation matrix. .

.

Have dual versions RMltQP , Q/P , LQ/P (q) = |qX ∩ Y |
/
|X|, . . .
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Lagrangean subquasigroups

If P is a subgroup of a finite group Q, .

then all the orbits of LMltQP have the same length |P |. Hence: .

.

Lagrange’s Theorem: If Q is a finite group and P is a subgroup, then |P | divides |Q|. .

.

Definition: Subquasigroup P of a finite quasigroup Q is (right) Lagrangean in Q .

if all the orbits of LMltQP have the same length |P |. .

Dual concept of left Lagrangean. .

.

Remark: Divisibility of |Q| by |P | is neither sufficient, nor necessary! .

For (Z/3,−), the subquasigroup {0} is left, but not right Lagrangean: Note 0− 1 = 2. .

On the other hand, the empty subquasigroup is both right and left Lagrangean.



Agenda

.

.

2. Burnside’s Lemma. .

.

.

.

.

.



Burnside’s Lemma for group actions

.

.

.

.

.

.

.

.



Burnside’s Lemma for group actions

number of orbits = average number of fixed points .

.

.

.

.

.

.

.



Burnside’s Lemma for group actions

number of orbits = average number of fixed points .

.

Suffices to consider homogeneous space actions. .

.

.

.

.

.



Burnside’s Lemma for group actions

number of orbits = average number of fixed points .

.

Suffices to consider homogeneous space actions. .

Then equivalent to 1 = 1
|Q|

∑
q∈Q TrRP\Q(q) (∗) .

.

.

.

.



Burnside’s Lemma for group actions

number of orbits = average number of fixed points .

.

Suffices to consider homogeneous space actions. .

Then equivalent to 1 = 1
|Q|

∑
q∈Q TrRP\Q(q) (∗) .

since fixed points give ones on the diagonal of a permutation matrix. .

.

.

.



Burnside’s Lemma for group actions

number of orbits = average number of fixed points .

.

Suffices to consider homogeneous space actions. .

Then equivalent to 1 = 1
|Q|

∑
q∈Q TrRP\Q(q) (∗) .

since fixed points give ones on the diagonal of a permutation matrix. .

.

E.g: R⟨(1 2)⟩\{0,1,2}!
(
(0 2)

)
=


0 0 1

0 1 0

1 0 0

 .

.



Burnside’s Lemma for group actions

number of orbits = average number of fixed points .

.

Suffices to consider homogeneous space actions. .

Then equivalent to 1 = 1
|Q|

∑
q∈Q TrRP\Q(q) (∗) .

since fixed points give ones on the diagonal of a permutation matrix. .

.

E.g: R⟨(1 2)⟩\{0,1,2}!
(
(0 2)

)
=


0 0 1

0 1 0

1 0 0

 .

.

To extend Burnside’s Lemma to quasigroup actions, prove (∗).
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The incidence matrix . . .

. . .AP or A for subquasigroup P of finite quasigroup Q is a |Q| × |P\Q|-matrix with .

.

AxX =

1 if x ∈ X;

0 otherwise
for x ∈ Q and X ∈ P\Q. .

.

Pseudoinverse A+ with A+
Xx =

|X|−1 if x ∈ X;

0 otherwise
for X ∈ P\Q and x ∈ Q. .

.

Lemma: For q ∈ Q, have RP\Q(q) = A+
PRQ(q)AP , .

where RQ(q) is the permutation matrix of R(q) on Q.
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Sylow theory: the Miller-Wielandt approach

In a quasigroup Q, the left multiplication group LMltQ is LMltQQ. .

If Q is a group, then LMltQ coincides with L(Q) = {L(q) | q ∈ Q}. .

.

For a divisor d of the order of a finite quasigroup Q, .

consider the action of LMltQ or L(Q) on
(
Q
d

)
– the set of subsets of size d. .

.

An orbit is good if its elements do not overlap. .

.

Sylow’s Theorem (part): If d is a prime power divisor of |Q| for a finite group Q, .

then good orbits exist, and each contains a (Lagrangean) subquasigroup.
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Classifying divisors

Successively restrictive classes for d
∣∣∣ |Q| < ∞: .

.

J: A good orbit exists; .

I: At least 1 good orbit contains a subquasigroup; .

H: Each good orbit contains a subquasigroup; .

G: Each subquasigroup in a good orbit is (right) Lagrangean; .

.

Use plain for LMltQ-action, and starred for L(Q)-action. .

Containments: G* // H* // I* // J*

G //

\����

@@���

H // I //

OO

J

OO
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Sample divisor classifications

Sylow: If d is a prime-power and Q is a finite group, then d has types G and G*. .

.

Example: Paige loop PSL1,3(2), of order 120 = 23 · 3 · 5. .

Both 2 and 3 have type I*, but not H* or I. .

While 2 has type J*, it does not have type J. .

Note 5 does not have type J or J*. .

(Indeed, there are no subloops of order 5.) .

.

Under the action of L
(
PSL1,3(2)

)
, .

Klein 4-subgroups “of positive type” have orbits of length 120− 18, .

while Klein 4-subgroups “of negative type” have orbits of length 120− 6.
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4. A simple Bol loop acting on a projective line. .

.
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The projective group PGL2(5)

The projective line PG1(5) of order 5 is the disjoint union {∞}∪̇GF(5) = {∞, 0, 1, 2, 3, 4}. .

.

The image of the group homomorphism .

GL2(5) → PG1(5)! ;

a b

c d

 7→
(
x 7→ ax+c

bx+d

)
.

is the projective group PGL2(5) of order 120 = 6 · 5 · 4, generated by the .

shift λ : x 7→ x+ 1, doubler µ : x 7→ 2x, and negated inversion ν : x 7→ −x−1. .

.

Have elements 01 = (∞ 0)(1 2)(3 4) : x 7→ 2x−1 .

and 02 = (∞ 0)(1 3)(2 4) : x 7→ 3x−1 .

along with successive conjugates 01, 02, 11, 12, 21, 22, 31, 32, 41, 42 by the shift.
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The right Bol loop N

Boolean groups P
(
PG1(5)

)
and quotient J = P

(
PG1(5)

)/
⟨PG1(5)⟩. .

.

The nub N∞ is the 16-element set of even subsets in J . .

.

For x ∈ GF(5), have N∞ = ∞x∪̇∞x, .

where ∞x contains 8 doubletons with just one of x or ∞. .

.

For x ∈ GF(5) and d ∈ {1, 2}, .

define formal coset Nx,d = ∞x · xd and Nx = Nx,1∪̇Nx,2. .

.

Define N = N∞∪̇N0∪̇N1∪̇N2∪̇N3∪̇N4, a simple right Bol loop of order 96 = 16 · 6.
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Right action on the projective line

The right and left homogeneous spaces of the nub take the form .

N∞\N = N/N∞ = {N∞, N0, N1, N2, N3, N4} , .

which is readily identified with the projective line PG1(5). .

.

In the right action of N on the projective line PG1(5), .

each nub element acts trivially. .

.

For x ∈ GF(5) and d ∈ {1, 2}, .

each element p · xd of Nx,d (with p in ∞x) .

acts on PG1(5) as the permutation xd.
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Left action on the projective line

In the left action of N on the projective line PG1(5), nub elements again act trivially. .

.

For p ∈ ∞0 and d ∈ {1, 2}, .

LN/N∞(p · 0d) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1/2 0 1/2

0 0 0 0 1/2 1/2

0 0 1/2 1/2 0 0

0 0 1/2 0 1/2 0


.

.

Other matrices obtained on conjugation by the shift.
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Application: A maximality proof

for the subloop M0 = N∞∪̇N0: .

.

For p ∈ ∞0 and d ∈ {1, 2}, .

LN/N∞(p · 0d)3 =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 3/8 3/8 1/8 1/8

0 0 1/8 3/8 1/8 3/8

0 0 3/8 1/8 3/8 1/8

0 0 1/8 1/8 3/8 3/8
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Quasigroup actions as iterated function systems

For a subquasigroup P of a finite quasigroup Q, .

consider the simplex (P\Q)B spanned by the points of P\Q as a compact metric space. .

.

For q ∈ Q, the action matrices RP\Q(q) act on (P\Q)B .

as an iterated function system in the sense of fractal geometry. .

.

Consider .∪
x∈P\Q

∪
n∈N

∪
qi∈Q xRP\Q(q1) . . . RP\Q(qi) . . . RP\Q(qn) .

.

as an affine geometric subset of the simplex (P\Q)B .
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Chalmers’ example

Consider the subquasigroup P = {1} in .

.

Q 1 2 3 4 5 6

1 1 3 2 5 4 6

2 2 4 5 1 6 3

3 3 5 6 4 1 2

4 4 1 3 6 2 5

5 5 6 4 2 3 1

6 6 2 1 3 5 4

.

.



Chalmers’ example

Consider the subquasigroup P = {1} in .

.

Q 1 2 3 4 5 6

1 1 3 2 5 4 6

2 2 4 5 1 6 3

3 3 5 6 4 1 2

4 4 1 3 6 2 5

5 5 6 4 2 3 1

6 6 2 1 3 5 4

.

.

Have P\Q =
{
1}, {2, 3}, {4, 5, 6}

}
, so (P\Q)B is a triangle (2-dimensional simplex).
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