Symmetry in the theory of quasigroup and isotopy-isomorphy problem

Fedir M. Sokhatsky

University "Ukraina" Vinnytsia Institute of Economics and Social Sciences, Ukraine

3rd Mile High Conference on Nonassociative Mathematics, Denver, Colorado, USA, August 11-17, 2013

イロト イポト イヨト イヨト

Invertible operations and their parastrophes

Let $S_3 := \{\iota, \ell, r, s, s\ell, sr\}$, where $s := (12), \ell := (13), r := (23)$, be the group of all permutations of $\{1, 2, 3\}$.

Parastrophes

Let $(Q; \cdot)$ be a quasigroup, then $\{\stackrel{\sigma}{\cdot} \mid \sigma \in S_3\}$ is the set of all parastrophes of the invertible operation (\cdot) , where

$$x_{1\sigma} \stackrel{\sigma}{\cdot} x_{2\sigma} = x_{3\sigma} \iff x_1 \cdot x_2 = x_3, \quad \sigma \in S_3.$$

Parastrophes of objects

Let *P* be an arbitrary object of the quasigroup theory, i.e. theorem, lemma, notion,... An object, being obtained from *P* by replacing $(\stackrel{\tau}{\cdot})$ with $(\stackrel{\tau\sigma^{-1}}{\cdot})$ for all $\tau \in S_3$, will be called σ -parastrophe of *P* and will be denoted by ${}^{\sigma}P$.

ヘロン 人間 とくほ とくほう

Invertible operations and their parastrophes

Let $S_3 := \{\iota, \ell, r, s, s\ell, sr\}$, where $s := (12), \ell := (13), r := (23)$, be the group of all permutations of $\{1, 2, 3\}$.

Parastrophes

Let $(Q; \cdot)$ be a quasigroup, then $\{ \stackrel{\sigma}{\cdot} \mid \sigma \in S_3 \}$ is the set of all parastrophes of the invertible operation (\cdot) , where

$$x_{1\sigma} \stackrel{\sigma}{\cdot} x_{2\sigma} = x_{3\sigma} \iff x_1 \cdot x_2 = x_3, \quad \sigma \in S_3.$$

Parastrophes of objects

Let *P* be an arbitrary object of the quasigroup theory, i.e. theorem, lemma, notion,... An object, being obtained from *P* by replacing $(\stackrel{\tau}{\cdot})$ with $(\stackrel{\tau\sigma^{-1}}{\cdot})$ for all $\tau \in S_3$, will be called σ -parastrophe of *P* and will be denoted by ${}^{\sigma}P$.

ヘロン 人間 とくほ とくほう

Invertible operations and their parastrophes

Let $S_3 := \{\iota, \ell, r, s, s\ell, sr\}$, where $s := (12), \ell := (13), r := (23)$, be the group of all permutations of $\{1, 2, 3\}$.

Parastrophes

Let $(Q; \cdot)$ be a quasigroup, then $\{\stackrel{\sigma}{\cdot} \mid \sigma \in S_3\}$ is the set of all parastrophes of the invertible operation (\cdot) , where

$$x_{1\sigma} \stackrel{\sigma}{\cdot} x_{2\sigma} = x_{3\sigma} \iff x_1 \cdot x_2 = x_3, \quad \sigma \in S_3.$$

Parastrophes of objects

Let *P* be an arbitrary object of the quasigroup theory, i.e. theorem, lemma, notion,... An object, being obtained from *P* by replacing $(\stackrel{\tau}{\cdot})$ with $(\stackrel{\tau\sigma^{-1}}{\cdot})$ for all $\tau \in S_3$, will be called σ -parastrophe of *P* and will be denoted by ${}^{\sigma}P$.

ヘロト 人間 とく ヨ とく ヨ と

A mapping $(\sigma; P) \mapsto {}^{\sigma}P$ is an action of S_3 on $\{{}^{\sigma}P \mid \sigma \in S_3\}$.

Sym(*P*) := { $\sigma \mid {}^{\sigma}P = P$ } $\leq S_3$ is *symmetry group* of *P*. A number of different parastrophes of *P* is 6/|Sym(*P*)|. Symmetry groups of parastrophic objects are isomorphic.

So, we can classify the objects according to their symmetry groups: An object *P* is called:

	totally symmetric,	if	$\operatorname{Sym}(P) = S_3$
	skew symmetric,	if	$\operatorname{Sym}(P) = A_3$
One-side	left symmetric,	if	$\operatorname{Sym}(P) = \{\iota, \ell\}$
	right symmetric,	if	$\operatorname{Sym}(P) = \{\iota, r\}$
Symmetric	middle symmetric,	if	$\operatorname{Sym}(P) = \{\iota, s\}$
	asymmetric,	if	$\operatorname{Sym}(P) = \{\iota\}$

ヘロマ 不通 アイボット しょう

3

A mapping $(\sigma; P) \mapsto {}^{\sigma}P$ is an action of S_3 on $\{{}^{\sigma}P \mid \sigma \in S_3\}$.

 $Sym(P) := \{\sigma \mid {}^{\sigma}P = P\} \leq S_3 \text{ is symmetry group of } P.$ A number of different parastrophes of P is 6/|Sym(P)|. Symmetry groups of parastrophic objects are isomorphic.

So, we can classify the objects according to their symmetry groups: An object *P* is called:

	totally symmetric,	if	$\operatorname{Sym}(P) = S_3$
	skew symmetric,	if	$\operatorname{Sym}(P) = A_3$
One-side symmetric	left symmetric,	if	$\operatorname{Sym}(P) = \{\iota, \ell\}$
	right symmetric,	if	$\operatorname{Sym}(P) = \{\iota, r\}$
	middle symmetric,	if	$\operatorname{Sym}(P) = \{\iota, s\}$
	asymmetric,	if	$\operatorname{Sym}(P) = \{\iota\}$

・ロット (雪) (日) (日) 日

A mapping $(\sigma; P) \mapsto {}^{\sigma}P$ is an action of S_3 on $\{{}^{\sigma}P \mid \sigma \in S_3\}$.

Sym(*P*) := { $\sigma \mid {}^{\sigma}P = P$ } $\leq S_3$ is symmetry group of *P*. A number of different parastrophes of *P* is 6/|Sym(*P*)|. Symmetry groups of parastrophic objects are isomorphic.

So, we can classify the objects according to their symmetry groups: An object P is called:

	totally symmetric,		$\operatorname{Sym}(P) = S_3$
	skew symmetric,	if	$\operatorname{Sym}(P) = A_3$
One-side symmetric	left symmetric,	if	$\operatorname{Sym}(P) = \{\iota, \ell\}$
	right symmetric,	if	$\operatorname{Sym}(P) = \{\iota, r\}$
	middle symmetric,	if	$\operatorname{Sym}(P) = \{\iota, s\}$
	asymmetric,	if	$\operatorname{Sym}(P) = \{\iota\}$

ヘロア 人間 ア ヘヨア ヘヨア

For quasigroups we save the traditional names.

An quasigroup $(Q; \cdot)$ is called:

	totally symmetric,	if	$\operatorname{Sym}(Q; \cdot) = S_3;$	xy = yx,
				$x \cdot xy = y;$
	skew symmetric,	if	$\operatorname{Sym}(Q; \cdot) \supseteq A_3;$	$x \cdot yx = y;$
de etric	commutative,	if	$\operatorname{Sym}(\boldsymbol{Q};\cdot) \supseteq \{\iota, \boldsymbol{s}\};$	xy = yx;
e-si	left symmetric,	if	$\operatorname{Sym}(Q;\cdot) \supseteq \{\iota, r\};$	$x \cdot xy = x;$
One sym	right symmetric,	if	$\operatorname{Sym}(\boldsymbol{Q};\cdot) \supseteq \{\iota,\ell\};$	$xy \cdot y = y;$
	asymmetric,	if	$\operatorname{Sym}(Q; \cdot) = \{\iota\}.$	

ヘロン ヘアン ヘビン ヘビン

3

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- the class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- If the class of all unipotent loops (xx = e).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- Ithe class of all totally symmetric quasigroups;
- Ithe class of all skew symmetric quasigroups;
- Ithe class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- the class of all unipotent loops (xx = e).

A D N A B N A B N A

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- Ithe class of all totally symmetric quasigroups;
- Ithe class of all skew symmetric quasigroups;
- Ithe class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- the class of all unipotent loops (xx = e).

A D N A B N A B N A

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- Ithe class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- the class of all unipotent loops (xx = e).

A D N A B N A B N A

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- the class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- the class of all unipotent loops (xx = e).

イロト イポト イヨト イヨ

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- the class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- the class of all unipotent loops (xx = e).

イロト イ理ト イヨト イヨト

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- the class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;

) the class of all unipotent loops (xx = e).

<ロト <問 > < 臣 > < 臣 >

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- Ithe class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;

the class of all unipotent loops (xx = e).

イロト イポト イヨト イヨト

Totally symmetric classes of quasigroups

- the class of all quasigroups;
- Ithe class of all totally symmetric quasigroups;
- the class of all skew symmetric quasigroups;
- the class of all one-side symmetric quasigroups;
- the class of all asymmetric quasigroups;
- the class of all self-orthogonal quasigroups;
- the class of all unipotent loops (xx = e).

イロト イポト イヨト イヨト

- the classes of all loops, groups, Moufang loops,...;
- 2 the classes of all quasigroups satisfying the 2-nd Stein law;
- the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- the class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

<ロ> (四) (四) (日) (日) (日)

- the classes of all loops, groups, Moufang loops,...;
 - 2 the classes of all quasigroups satisfying the 2-nd Stein law;
 - the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- the class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

イロト イロト イヨト イヨト

- the classes of all loops, groups, Moufang loops,...;
- the classes of all quasigroups satisfying the 2-nd Stein law;
 - the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- the class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

ヘロト ヘワト ヘビト ヘビト

- the classes of all loops, groups, Moufang loops,...;
- the classes of all quasigroups satisfying the 2-nd Stein law;
- the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- the class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

ヘロト ヘ戸ト ヘヨト ヘヨト

- the classes of all loops, groups, Moufang loops,...;
- the classes of all quasigroups satisfying the 2-nd Stein law;
- the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- the class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

イロト イポト イヨト イヨト

- the classes of all loops, groups, Moufang loops,...;
- the classes of all quasigroups satisfying the 2-nd Stein law;
- the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

the class of all left (right) loops;

the class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

イロト イポト イヨト イヨト

- the classes of all loops, groups, Moufang loops,...;
- 2 the classes of all quasigroups satisfying the 2-nd Stein law;
- the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- Ithe class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

イロト イポト イヨト イヨト

- the classes of all loops, groups, Moufang loops,...;
- 2 the classes of all quasigroups satisfying the 2-nd Stein law;
- the classes of all quasigroups satisfying the 3-d Stein law.

Asymmetric classes of quasigroups

- the class of all left (right) loops;
- Ithe class of all quasigroups satisfying the 1-st Stein law;

Skew symmetric classes of quasigroups

No variety of skew symmetric class of quasigroups is found.

イロト イポト イヨト イヨト

Corollary 1. Let *P* be true in a class of quasigroups \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ {}^{\sigma}P$ is true in \mathfrak{A} .

Corollary 2. Let *P* be true in a totally symmetric class \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ ^{\sigma}P$ is true in \mathfrak{A} .

Conclusion. Introducing a notion *P* we have to introduce six pairwise parastrofic notions $\{\tau P \mid \tau \in S_3\}$ simultaneously.

イロト イ理ト イヨト イヨト

Corollary 1. Let *P* be true in a class of quasigroups \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ {}^{\sigma}P$ is true in \mathfrak{A} .

Corollary 2. Let *P* be true in a totally symmetric class \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ ^{\sigma}P$ is true in \mathfrak{A} .

Conclusion. Introducing a notion *P* we have to introduce six pairwise parastrofic notions $\{\tau P \mid \tau \in S_3\}$ simultaneously.

イロト イ理ト イヨト イヨト

Corollary 1. Let *P* be true in a class of quasigroups \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ {}^{\sigma}P$ is true in \mathfrak{A} .

Corollary 2. Let *P* be true in a totally symmetric class \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ ^{\sigma}P$ is true in \mathfrak{A} .

Conclusion. Introducing a notion *P* we have to introduce six pairwise parastrofic notions $\{{}^{\tau}P \mid \tau \in S_3\}$ simultaneously.

イロト イポト イヨト イヨト

Corollary 1. Let *P* be true in a class of quasigroups \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ {}^{\sigma}P$ is true in \mathfrak{A} .

Corollary 2. Let *P* be true in a totally symmetric class \mathfrak{A} , then for all $\sigma \in \text{Sym}(\mathfrak{A}) \ ^{\sigma}P$ is true in \mathfrak{A} .

Conclusion. Introducing a notion *P* we have to introduce six pairwise parastrofic notions $\{{}^{\tau}P \mid \tau \in S_3\}$ simultaneously.

イロト 不得 とくほと くほう

Left, right and middle translations are defined by

 $L_a(x) := a \cdot x, \quad R_a(x) := x \cdot a, \quad M_a(x) = y : \Leftrightarrow x \cdot y = a.$

The notion of "translation" is asymmetric:

$$({}^{(\iota)}L_a; {}^{(\ell)}L_a; {}^{(r)}L_a; {}^{(s)}L_a; {}^{(s\ell)}L_a; {}^{(sr)}L_a =$$

$$= \{L_a; \ M_a^{-1}, \ L_a^{-1}; \ R_a; \ R_a^{-1}; \ M_a\}.$$

Left, right and middle neutral elements are defined by

$$e_{\ell} \cdot x := x, \qquad x \cdot e_r := x, \qquad x \cdot x := e_m.$$

These notions are one-side symmetric:

 ${}^{(\iota)}\boldsymbol{e}_{\ell} = {}^{(r)}\boldsymbol{e}_{\ell} = \boldsymbol{e}_{\ell}, \quad {}^{(\ell)}\boldsymbol{e}_{\ell} = {}^{(sr)}\boldsymbol{e}_{\ell} = \boldsymbol{e}_{m}, \quad {}^{(s)}\boldsymbol{e}_{\ell} = {}^{(s\ell)}\boldsymbol{e}_{\ell} = \boldsymbol{e}_{r},$

Left, right and middle translations are defined by

 $L_a(x) := a \cdot x, \quad R_a(x) := x \cdot a, \quad M_a(x) = y : \Leftrightarrow x \cdot y = a.$

The notion of "translation" is asymmetric:

$$\{ {}^{(\iota)}L_a; {}^{(\ell)}L_a; {}^{(r)}L_a; {}^{(s)}L_a; {}^{(s\ell)}L_a; {}^{(sr)}L_a \} =$$

$$= \{ L_a; \ M_a^{-1}, \ L_a^{-1}; \ R_a; \ R_a^{-1}; \ M_a \}.$$

Left, right and middle neutral elements are defined by

 $e_{\ell} \cdot x := x, \qquad x \cdot e_r := x, \qquad x \cdot x := e_m.$

These notions are one-side symmetric:

 ${}^{(\iota)} e_{\ell} = {}^{(r)} e_{\ell} = e_{\ell}, \quad {}^{(\ell)} e_{\ell} = {}^{(sr)} e_{\ell} = e_{m}, \quad {}^{(s)} e_{\ell} = {}^{(s\ell)} e_{\ell} = e_{r}, \quad {}^{(s)} e_{\ell} = e_{\ell}, \quad {}^{(s)} e_{\ell}$

Left, right and middle translations are defined by

 $L_a(x) := a \cdot x, \quad R_a(x) := x \cdot a, \quad M_a(x) = y : \Leftrightarrow x \cdot y = a.$

The notion of "translation" is asymmetric:

$$\{ {}^{(\iota)}L_a; {}^{(\ell)}L_a; {}^{(r)}L_a; {}^{(s)}L_a; {}^{(s\ell)}L_a; {}^{(sr)}L_a \} =$$

$$= \{ L_a; \ M_a^{-1}, \ L_a^{-1}; \ R_a; \ R_a^{-1}; \ M_a \}.$$

Left, right and middle neutral elements are defined by

$$e_{\ell} \cdot x := x, \qquad x \cdot e_r := x, \qquad x \cdot x := e_m.$$

These notions are one-side symmetric:

 ${}^{(\iota)}e_{\ell} = {}^{(r)}e_{\ell} = e_{\ell}, \quad {}^{(\ell)}e_{\ell} = {}^{(sr)}e_{\ell} = e_{m}, \quad {}^{(s)}e_{\ell} = {}^{(s\ell)}e_{\ell} = e_{r}, \quad {}^{(s)}e_{\ell} = {}^{(s\ell)}e_{\ell} = e_{r}, \quad {}^{(s)}e_{\ell} = {}^{(s\ell)}e_{\ell} = {}^{(s\ell)$

Left, right and middle translations are defined by

 $L_a(x) := a \cdot x, \quad R_a(x) := x \cdot a, \quad M_a(x) = y : \Leftrightarrow x \cdot y = a.$

The notion of "translation" is asymmetric:

$$\{ {}^{(\iota)}L_a; {}^{(\ell)}L_a; {}^{(r)}L_a; {}^{(s)}L_a; {}^{(s\ell)}L_a; {}^{(sr)}L_a \} =$$

$$= \{ L_a; \ M_a^{-1}, \ L_a^{-1}; \ R_a; \ R_a^{-1}; \ M_a \}.$$

Left, right and middle neutral elements are defined by

$$e_{\ell} \cdot x := x, \qquad x \cdot e_r := x, \qquad x \cdot x := e_m.$$

These notions are one-side symmetric:

$${}^{(\iota)}\boldsymbol{e}_{\ell}={}^{(r)}\boldsymbol{e}_{\ell}=\boldsymbol{e}_{\ell}, \quad {}^{(\ell)}\boldsymbol{e}_{\ell}={}^{(sr)}\boldsymbol{e}_{\ell}=\boldsymbol{e}_{m}, \quad {}^{(s)}\boldsymbol{e}_{\ell}={}^{(s\ell)}\boldsymbol{e}_{\ell}=\boldsymbol{e}_{r}, \quad]_{(\iota)}$$

"One-side loop" is two-side symmetric:

left loop (with e_{ℓ}); right loop (with e_r); middle loop (with e_m).

"Two-side loop" is two-side symmetric:

left-right loop (with $e_{\ell} = e_r$); left-middle loop (with $e_{\ell} = e_m$); right-middle loop (with $e_r = e_m$).

'Three-side loop" is totally symmetric:

left-right-middle loop = total loop = all its parastrophes are loops (with $e_{\ell} = e_r = e_m$).

ヘロト 人間 ト ヘヨト ヘヨト

"One-side loop" is two-side symmetric:

left loop (with e_{ℓ}); right loop (with e_r); middle loop (with e_m).

"Two-side loop" is two-side symmetric:

left-right loop (with $e_{\ell} = e_r$); left-middle loop (with $e_{\ell} = e_m$); right-middle loop (with $e_r = e_m$).

'Three-side loop" is totally symmetric:

left-right-middle loop = total loop = all its parastrophes are loops (with $e_{\ell} = e_r = e_m$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

"One-side loop" is two-side symmetric:

left loop (with e_{ℓ}); right loop (with e_r); middle loop (with e_m).

"Two-side loop" is two-side symmetric:

left-right loop (with $e_{\ell} = e_r$); left-middle loop (with $e_{\ell} = e_m$); right-middle loop (with $e_r = e_m$).

"Three-side loop" is totally symmetric:

left-right-middle loop = total loop = all its parastrophes are loops (with $e_{\ell} = e_r = e_m$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

A well-known proposition:

Every quasigroup is isotopic to a loop (=left-right loop):

$$x\circ y=R_a^{-1}(x)\cdot L_b^{-1}(y),\qquad e_\ell=e_r=ba=R_a(b)=L_b(a);$$

Its symmetric propositions:

Every quasigroup is isotopic to a right-midle loop:

$$x \circ y = R_b^{-1}(x \cdot M_c(y)), \qquad e_r = e_m = R_b^{-1}(c) = M_c^{-1}(b);$$

Every quasigroup is isotopic to a left-middle loop:

$$x \circ y = L_a^{-1} \Big(M_c^{-1}(x) \cdot y \Big), \qquad e_\ell = e_m = M_c^{-1}(a) = L_a^{-1}(c).$$

ヘロト ヘアト ヘヨト ヘ

A well-known proposition:

Every quasigroup is isotopic to a loop (=left-right loop):

$$x\circ y=R_a^{-1}(x)\cdot L_b^{-1}(y),\qquad e_\ell=e_r=ba=R_a(b)=L_b(a);$$

Its symmetric propositions:

Every quasigroup is isotopic to a right-midle loop:

$$x \circ y = R_b^{-1}(x \cdot M_c(y)), \qquad e_r = e_m = R_b^{-1}(c) = M_c^{-1}(b);$$

Every quasigroup is isotopic to a left-middle loop:

$$x \circ y = L_a^{-1} \Big(M_c^{-1}(x) \cdot y \Big), \qquad e_\ell = e_m = M_c^{-1}(a) = L_a^{-1}(c).$$

- 4 間 医 4 ほ 医 4 ほ 医

• equivalent, if they define the same variety;

- *parastrophic*, if they are σ -parastrophic for some σ ;
- *isoparastrophic*, if they define parastrophic varieties.

Problem: **Describe identities up to isoparastrophy**.

- 4 同 ト 4 回 ト 4 回 ト

- equivalent, if they define the same variety;
- *parastrophic*, if they are σ -parastrophic for some σ ;
- *isoparastrophic*, if they define parastrophic varieties.

Problem: **Describe identities up to isoparastrophy**.

イロト イポト イヨト イヨト

- equivalent, if they define the same variety;
- *parastrophic*, if they are σ -parastrophic for some σ ;
- *isoparastrophic*, if they define parastrophic varieties.

Problem: **Describe identities up to isoparastrophy**.

イロト イポト イヨト イヨト

- equivalent, if they define the same variety;
- *parastrophic*, if they are σ -parastrophic for some σ ;
- *isoparastrophic*, if they define parastrophic varieties.

Problem: **Describe identities up to isoparastrophy**.

(本間) (本語) (本語)

- equivalent, if they define the same variety;
- *parastrophic*, if they are σ -parastrophic for some σ ;
- *isoparastrophic*, if they define parastrophic varieties.

Problem: Describe identities up to isoparastrophy.

ヘロト ヘアト ヘビト ヘビト

1

Theorem. [V.D.Belousov, 1983]

Every minimal nontrivial quasigroup identity is isoparastrophic to exactly one of the following seven identities:

$$x(x \cdot xy) = y$$
the 1-st Belousov law [1983]; $y(x \cdot xy) = x$ the 2-nd Belousov law [1983]; $x \cdot xy = yx$ the 2-nd Belousov law [1983]; $x \cdot xy = yx$ the 1-st Stein law [1957]; $xy \cdot x = y \cdot xy$ the 2-nd Stein law [1957]; $xy \cdot y = x \cdot xy$ the 1-st Shröder law [1954]; $xy \cdot yx = x$ the 2-nd Stein law [1954]; $yx \cdot xy = x$ the 3-d Stein law [1957].

Theorem. [Krainichuk, 2013]

1) Shröder laws are totally symmetric; 2) the 2-nd Belousov law and the 1-st Stein law are asymmetric; 3) the 1-st Belousov law as well as the 2-nd and the 3-d Stein laws are one-side symmetric.

-

Theorem. [V.D.Belousov, 1983]

Every minimal nontrivial quasigroup identity is isoparastrophic to exactly one of the following seven identities:

$$x(x \cdot xy) = y$$
the 1-st Belousov law [1983]; $y(x \cdot xy) = x$ the 2-nd Belousov law [1983]; $x \cdot xy = yx$ the 1-st Stein law [1957]; $xy \cdot x = y \cdot xy$ the 2-nd Stein law [1957]; $xy \cdot y = x \cdot xy$ the 1-st Shröder law [1954]; $xy \cdot yx = x$ the 2-nd Stein law [1954]; $yx \cdot xy = x$ the 3-d Stein law [1957].

Theorem. [Krainichuk, 2013]

1) Shröder laws are totally symmetric; 2) the 2-nd Belousov law and the 1-st Stein law are asymmetric; 3) the 1-st Belousov law as well as the 2-nd and the 3-d Stein laws are one-side symmetric.

Theorem 1.

Left distributivity has six parastrophic identities, but they are equivalent to three of them:

$$x \cdot yz = xy \cdot xz, \quad yz \cdot x = yx \cdot zx, \quad (yz) \setminus x = (y \setminus x) \cdot (z \setminus x).$$
 (*)

Theorem 2.

Any two identities from (*) imply the third one.

Corollary.

The class of all distributive quasigroups are totally symmetric.

イロト イポト イヨト イヨト

Theorem 1.

Left distributivity has six parastrophic identities, but they are equivalent to three of them:

$$x \cdot yz = xy \cdot xz, \quad yz \cdot x = yx \cdot zx, \quad (yz) \setminus x = (y \setminus x) \cdot (z \setminus x).$$
 (*)

Theorem 2.

Any two identities from (*) imply the third one.

Corollary.

The class of all distributive quasigroups are totally symmetric.

イロト 不得 とくほ とくほとう

Theorem 1.

Left distributivity has six parastrophic identities, but they are equivalent to three of them:

$$x \cdot yz = xy \cdot xz, \quad yz \cdot x = yx \cdot zx, \quad (yz) \setminus x = (y \setminus x) \cdot (z \setminus x).$$
 (*)

Theorem 2.

Any two identities from (*) imply the third one.

Corollary.

The class of all distributive quasigroups are totally symmetric.

イロト イポト イヨト イヨト

The following theorem is some refinement of the well-known Belousov's theorem.

Theorem 3.

A quasigroup $(Q; \cdot)$ is distributive if and only if there exists a Commutative Moufang Loop (Q; +) and its commuting automorphisms φ , ψ such that

$$\mathbf{x} \cdot \mathbf{y} = \varphi \mathbf{x} + \psi \mathbf{y}, \qquad \mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\varphi \mathbf{x} + \mathbf{y}) + (\psi \mathbf{x} + \mathbf{z}).$$

1

Pseudoisomorphy

Two quasigroups are said to be left-, right-, midldle-pseudoisomorphic, if they are isotopic and two corresponding components of the isotopism coinside.

Loops $(Q_1; \cdot)$ and $(Q_2; \circ)$ are said to be:

left pseudoisomorphic, if there exists an element c ∈ Q₂ and a bijection θ : Q₁ → Q₂ such that

 $\boldsymbol{c} \cdot \boldsymbol{\theta} (\boldsymbol{x} \cdot \boldsymbol{y}) = (\boldsymbol{c} \cdot \boldsymbol{\theta} \boldsymbol{x}) \cdot \boldsymbol{\theta} \boldsymbol{y};$

 right pseudoisomorphic, there exists an element c ∈ Q₂ and a bijection θ : Q₁ → Q₂ such that the equality

 $\theta(x \cdot y) \cdot c = \theta x \cdot (\theta y \cdot c).$

Pseudoisomorphy

Two quasigroups are said to be left-, right-, midldle-pseudoisomorphic, if they are isotopic and two corresponding components of the isotopism coinside.

Loops $(Q_1; \cdot)$ and $(Q_2; \circ)$ are said to be:

left pseudoisomorphic, if there exists an element *c* ∈ *Q*₂ and a bijection θ : *Q*₁ → *Q*₂ such that

$$\boldsymbol{c}\cdot\boldsymbol{\theta}(\boldsymbol{x}\cdot\boldsymbol{y})=(\boldsymbol{c}\cdot\boldsymbol{\theta}\boldsymbol{x})\cdot\boldsymbol{\theta}\boldsymbol{y};$$

right pseudoisomorphic, there exists an element *c* ∈ *Q*₂ and a bijection θ : *Q*₁ → *Q*₂ such that the equality

$$\theta(\mathbf{x}\cdot\mathbf{y})\cdot\mathbf{c}=\theta\mathbf{x}\cdot(\theta\mathbf{y}\cdot\mathbf{c}).$$

Pseudoisomorphy

Two quasigroups are said to be left-, right-, midldle-pseudoisomorphic, if they are isotopic and two corresponding components of the isotopism coinside.

Loops $(Q_1; \cdot)$ and $(Q_2; \circ)$ are said to be:

left pseudoisomorphic, if there exists an element *c* ∈ *Q*₂ and a bijection θ : *Q*₁ → *Q*₂ such that

$$\boldsymbol{c} \cdot \boldsymbol{\theta} (\boldsymbol{x} \cdot \boldsymbol{y}) = (\boldsymbol{c} \cdot \boldsymbol{\theta} \boldsymbol{x}) \cdot \boldsymbol{\theta} \boldsymbol{y};$$

right pseudoisomorphic, there exists an element *c* ∈ *Q*₂ and a bijection θ : *Q*₁ → *Q*₂ such that the equality

$$\theta(\mathbf{x}\cdot\mathbf{y})\cdot\mathbf{c}=\theta\mathbf{x}\cdot(\theta\mathbf{y}\cdot\mathbf{c}).$$

Pseudoisomorphy

Two quasigroups are said to be left-, right-, midldle-pseudoisomorphic, if they are isotopic and two corresponding components of the isotopism coinside.

Loops $(Q_1; \cdot)$ and $(Q_2; \circ)$ are said to be:

left pseudoisomorphic, if there exists an element *c* ∈ *Q*₂ and a bijection θ : *Q*₁ → *Q*₂ such that

$$\boldsymbol{c} \cdot \boldsymbol{\theta} (\boldsymbol{x} \cdot \boldsymbol{y}) = (\boldsymbol{c} \cdot \boldsymbol{\theta} \boldsymbol{x}) \cdot \boldsymbol{\theta} \boldsymbol{y};$$

right pseudoisomorphic, there exists an element *c* ∈ *Q*₂ and a bijection θ : *Q*₁ → *Q*₂ such that the equality

$$\theta(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{c} = \theta \mathbf{x} \cdot (\theta \mathbf{y} \cdot \mathbf{c}).$$

If IP-loops are left-pseudoisomorphic then they are right pseudoisomorphic and vice versa. We will say that they are peudoisomorphic.

Theorem. 1. Two isotopic IP-loops are pseudoisomorphic. 2. Two isotopic commutative IP-loops are isomorphic. 3. If a loop is isotopic to a Moufang loop then the loops are pseudoisomorphic.

イロト イポト イヨト イヨト

If IP-loops are left-pseudoisomorphic then they are right pseudoisomorphic and vice versa. We will say that they are peudoisomorphic.

Theorem. 1. Two isotopic IP-loops are pseudoisomorphic. 2. Two isotopic commutative IP-loops are isomorphic. 3. If a loop is isotopic to a Moufang loop then the loops are pseudoisomorphic.

ヘロト ヘアト ヘビト ヘビト

3

Thank you for your attention

Fedir M. Sokhatsky Symmetry in the theory of quasigroup and isotopy-isomorphy prol

・ 同 ト ・ ヨ ト ・ ヨ ト