Commutator Theory for Loops

David Stanovský

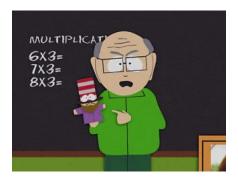
Charles University, Prague, Czech Republic stanovsk@karlin.mff.cuni.cz

joint work with Petr Vojtěchovský, University of Denver

July 2013

"Universal Algebra has had a disastrous impact on Loop Theory"

an unnamed loop theory guru



Feit-Thompson theorem

Theorem (Feit-Thompson, 1962)

Groups of odd order are solvable.

Can be extended?

- To which *class of algebras* ? (containing groups)
- What is odd order ?
- What is *solvable* ?

Feit-Thompson theorem

Theorem (Feit-Thompson, 1962)

Groups of odd order are solvable.

Can be extended?

- To which class of algebras ? (containing groups)
- What is odd order ?
- What is *solvable* ?

Theorem (Glauberman 1964/68)

Moufang loops of odd order are solvable.

Moufang loop = replace associativity by x(z(yz)) = ((xz)y)z

solvable = there are $N_i \trianglelefteq Q$ such that $1 = N_0 \le N_1 \le ... \le N_k = Q$ and N_{i+1}/N_i are abelian groups.

Solvability, nilpotence – after R. H. Bruck (1950's)

Q is *solvable* if there are $N_i \leq Q$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = Q$ and N_{i+1}/N_i are abelian groups *Q* is *nilpotent* if there are $N_i \leq Q$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = Q$ and $N_{i+1}/N_i \leq Z(Q/N_i)$ $Z(Q) = \{a \in Q : ax = xa, a(xy) = (ax)y, (xa)y = x(ay) \forall x, y \in Q\}$

Solvability, nilpotence – after R. H. Bruck (1950's)

Q is *solvable* if there are $N_i \leq Q$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = Q$ and N_{i+1}/N_i are abelian groups Q is *nilpotent* if there are $N_i \leq Q$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = Q$ and $N_{i+1}/N_i \leq Z(Q/N_i)$ $Z(Q) = \{a \in Q : ax = xa, a(xy) = (ax)y, (xa)y = x(ay) \forall x, y \in Q\}$

Alternatively, if we had a commutator, define

$$Q^{(0)} = Q_{(0)} = Q,$$
 $Q_{(i+1)} = [Q_{(i)}, Q_{(i)}],$ $Q^{(i+1)} = [Q^{(i)}, Q]$

- Q solvable iff $Q_{(n)} = 1$ for some n
- *Q* nilpotent iff $Q^{(n)} = 1$ for some *n*

We can set:

- [N, N] is the smallest M such that N/M is an abelian group
- [N, Q] is the smallest M such that $N/M \leq Z(Q/M)$
- [N₁, N₂] is ???

Solvability, nilpotence - in universal algebra

Q is *solvable* if there are $\alpha_i \in \operatorname{Con}(Q)$ such that $0_Q = \alpha_0 \le \alpha_1 \le ... \le \alpha_k = 1_Q$ and α_{i+1}/α_i is an abelian congr. in Q/α_i *Q* is *nilpotent* if there are $\alpha_i \in \operatorname{Con}(Q)$ such that $0_Q = \alpha_0 \le \alpha_1 \le ... \le \alpha_k = 1_Q$ and $\alpha_{i+1}/\alpha_i \le \zeta(Q/\alpha_i)$ $\zeta(Q) =$ abelian means

Alternatively, since we have a commutator, define

$$\alpha^{(0)} = \alpha_{(0)} = 1_Q, \qquad \alpha_{(i+1)} = [\alpha_{(i)}, \alpha_{(i)}], \qquad \alpha^{(i+1)} = [\alpha^{(i)}, 1_Q]$$

- Q solvable iff $\alpha_{(n)} = 1$ for some n
- *Q nilpotent* iff $\alpha^{(n)} = 1$ for some *n*

Solvability, nilpotence - in universal algebra

Q is *solvable* if there are $\alpha_i \in \operatorname{Con}(Q)$ such that $0_Q = \alpha_0 \leq \alpha_1 \leq \ldots \leq \alpha_k = 1_Q$ and α_{i+1}/α_i is an abelian congr. in Q/α_i *Q* is *nilpotent* if there are $\alpha_i \in \operatorname{Con}(Q)$ such that $0_Q = \alpha_0 \leq \alpha_1 \leq \ldots \leq \alpha_k = 1_Q$ and $\alpha_{i+1}/\alpha_i \leq \zeta(Q/\alpha_i)$ $\zeta(Q) = \ldots$ abelian means \ldots

Alternatively, since we have a commutator, define

$$\alpha^{(0)} = \alpha_{(0)} = 1_Q, \qquad \alpha_{(i+1)} = [\alpha_{(i)}, \alpha_{(i)}], \qquad \alpha^{(i+1)} = [\alpha^{(i)}, 1_Q]$$

•
$$Q$$
 solvable iff $\alpha_{(n)} = 1$ for some n

• *Q nilpotent* iff $\alpha^{(n)} = 1$ for some *n*

 $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$, hence

- $[\alpha, \alpha]$ is the smallest δ such that $C(\alpha, \alpha; \delta)$, or α/δ is ab. cg. in Q/δ
- $[\alpha, 1_Q]$ is the smallest δ such that $C(\alpha, 1_Q; \delta)$, or $\alpha/\delta \leq \zeta(Q/\delta)$

Abelianess, center, commutator

Smith-Gumm / Freese-McKenzie commutator theory (1970's-80's):

Centralizing relation for $\alpha, \beta, \delta \in Con(A)$:

 $C(\alpha, \beta; \delta)$ iff for every term t and every $x \alpha y$, $u_i \beta v_i$

$$t(\mathbf{x}, u_1, \ldots, u_n) \stackrel{\delta}{=} t(\mathbf{x}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{y}, u_1, \ldots, u_n) \stackrel{\delta}{=} t(\mathbf{y}, v_1, \ldots, v_n)$$

We say

• A is abelian if $C(1_A, 1_A; 0_A)$

Abelianess, center, commutator

Smith-Gumm / Freese-McKenzie commutator theory (1970's-80's):

Centralizing relation for $\alpha, \beta, \delta \in Con(A)$:

 $C(\alpha, \beta; \delta)$ iff for every term t and every $x \alpha y$, $u_i \beta v_i$

$$t(\mathbf{x}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{x}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{y}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{y}, v_1, \ldots, v_n)$$

We say

- A is abelian if $C(1_A, 1_A; 0_A)$
- α is *abelian* in A if $C(\alpha, \alpha; 0_A)$
- the *center* of A is the largest ζ such that $C(\zeta, 1_A; 0_A)$

Commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$ (well behaved in congruence modular varieties, e.g., groups, loops, rings)

- α is *abelian* in A iff $[\alpha, \alpha] = 0_A$
- the *center* of A is the largest ζ such that $[\zeta, 1_A] = 0_A$

Translating to loops I

Good news

- A loop is abelian if and only if it is an abelian group.
- **2** The congruence center corresponds to the Bruck's center.

Hence, nilpotent loops are really (centrally) nilpotent loops!

Translating to loops II

Bad news

Abelian congruences \neq normal subloops that are abelian groups

N is an abelian group iff
$$[1_N, 1_N]_N = 0_N$$
, i.e., $[N, N]_N = 0_N$
N is abelian in Q iff $[\nu, \nu]_Q = 0_Q$, i.e., $[N, N]_Q = 0_N$
abelian \neq abelian in Q !!!

Example: $Q = \mathbb{Z}_4 \times \mathbb{Z}_2$, redefine (a, 1) + (b, 1) = (a * b, 0)

*	0	1	2	3
0	0	1	2	3
1	1	1 3 0	0	2
0 1 2 3	2	0	3	1
3	0 1 2 3	2	1	0

N = Z₄ × {0} ≤ Q
[N, N]_N = 0, hence N is an abelian group
[N, N]_Q = N, hence N is not abelian in Q

Translating to loops III

$$\operatorname{TotMlt}(Q) = \langle L_a, R_a, M_a : a \in Q \rangle$$

 $\operatorname{TotInn}(Q) = \operatorname{TotMlt}(Q)_1$

Main Theorem

 \mathcal{V} a variety of loops, Φ a set of words that generates TotInn's in \mathcal{V} , then $[A, B] = Ng(\varphi_{u_1,...,u_n}(a) / \varphi_{v_1,...,v_n}(a) : \varphi \in \Phi, a \in A, u_i/v_i \in B)$ for every $Q \in \mathcal{V}$ and $A, B \leq Q$.

Examples:

• in loops,
$$\Phi = \{L_{a,b}, R_{a,b}, M_{a,b}, T_a, U_a\}$$

• in groups, $\Phi = \{T_a\}$

Consequences: Two notions of solvability

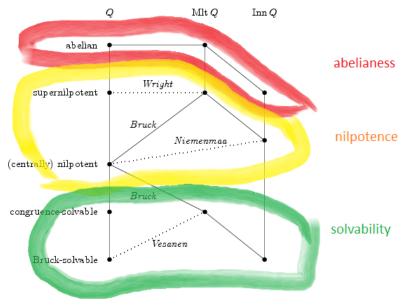
Q is *Bruck-solvable* if there are $N_i \leq Q$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = Q$ and N_{i+1}/N_i are abelian groups i.e. $[N_{i+1}, N_{i+1}]_{N_{i+1}} \leq N_i$

Q is congruence-solvable if there are $N_i \leq Q$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = Q$ and N_{i+1}/N_i are abelian in Q/N_i i.e. $[N_{i+1}, N_{i+1}]_Q \leq N_i$

The loop from the last but one slide is

- Bruck-solvable
- NOT congruence-solvable

Solvability and nilpotence



Feit-Thompson revisited

Theorem (Glauberman 1964/68)

Moufang loops of odd order are Bruck-solvable.

Problem

Are Moufang loops of odd order congruence-solvable?

For Moufang loops,

- we know that abelian \neq abelian in Q (in a 16-element loop)
- is it so that Bruck-solvable iff congruence-solvable?