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Summary

The varieties of dialgebras or Loday-type algebras (Leibniz, diassociative,
Jordan-Loday, etc.) have been the subject of recent developments. In
[KP] P. S. Kolesnikov and A.P. Pozhidaev provided a construction via
conformal algebras of these varieties.

In [BFO] M. Bremner, R. Felipe and J. Sánchez-Ortega formulated a
general Kolesnikov-Pozhidaev (KP) algorithm for defining the variety of
n-ary Loday algebras (binary, triple, etc.).
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n-ary Loday algebras (binary, triple, etc.).

P. S. Kolesnikov and V. Yu. Voronin showed in [KV ] that the generalized
KP algorithm actually generates the varieties of dialgebras under certain
constrains.

In this talk, we present a simple algorithm based on bimodules over an
algebra of a given variety, and equivariant maps between the bimodule and
the algebra.
This approach is equivalent to the KP algorithm for dialgebras and it
allows to develop structure theory and to study properties of dialgebras.
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Introduction

The Leibniz algebras were introduced independently by A. Bloh (in [B1] as
D-algebra), in 1965, and by J. L. Loday (in [L]), in 1989, as a
generalization of the Lie algebras.

Definition

A Leibniz algebra is a vector space L over K with a bilineal product
called Leibniz bracket [·, ·] : L× L → L satisfying the Leibniz identity
[x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]], for all x , y , z in L.
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[x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]], for all x , y , z in L.

J. L. Loday found that every Leibniz algebra can be obtained from a new
commutator in an algebraic structure with two binary maps (see [L]):
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Introduction

Definition

An associative dialgebra D is a vector space over K with two associative
products ⊢ and ⊣ satisfying for all x , y , z in D:
x ⊣ (y ⊣ z) = (x ⊣ y) ⊣ z ,
x ⊢ (y ⊣ z) = (x ⊢ y) ⊣ z ,
(x ⊢ y) ⊢ z = (x ⊣ y) ⊢ z .

The set D with the bracket [x , y ] = x ⊢ y − y ⊣ x is a Leibniz algebra.
Moreover, J. L. Loday proved that the following diagram commutes

As
−

→ Lie

↓ ↓

Dias
−

→ Leib
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Introduction

In the Jordan case, the Jordan-Loday algebras (Jordan dialgebras) satisfy
the identities (see R. Velásquez and R. Felipe [VF ], P. S. Kolesnikov [K1]
and M. Bremner [B])

x(yz) = x(zy), (yx2)x = (yx)x2 and (z , y , x2) = 2(zx , y , x)

Also the notions of alternative and commutative dialgebras were
introduced by D. Liu in [Liu] and F. Chapoton in [C ], respectively.

These notions correspond to a more general structure. P. S. Kolesnikov in
[K1] and A. P. Pozhidaev in [P] provided a systematic construction for
diverse varieties of dialgebras, i.e. associative, commutative, Lie (Leibniz),
Jordan (restrictive quasi-Jordan), alternative, etc.
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[K1] and A. P. Pozhidaev in [P] provided a systematic construction for
diverse varieties of dialgebras, i.e. associative, commutative, Lie (Leibniz),
Jordan (restrictive quasi-Jordan), alternative, etc.

In general, for each variety of algebras over a field, there is a definition of
a corresponding variety of dialgebras (Loday-type algebras), and these
varieties are constructed through the KP algorithm (see [BFS ]) and BSO
algorithm (see [BS ]). These algorithms are generalized for n-ary Loday
algebras in [BFS ].
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Our algorithm

Let I be a set of multihomogeneus polynomials in K [X ] (the free non
associative K -algebra generated by X ) and let f (x1, ..., xl) ∈ I , with

degf = h1 + ...+ hl and degxi f = hi ≥ 1, i = 1, ..., l .

We define fij(x1, ..., xl , y) as the component of f (x1, ..., xi + y , ..., xl) of
degree j in the variable y , for i = 1, ..., l and j = 1, ..., hi−1.

1 If charK ≥ hi or charK = 0 then fij ∈ (f ).

2 If charK > hi or charK = 0 then (f ) = (fij).
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degree j in the variable y , for i = 1, ..., l and j = 1, ..., hi−1.

1 If charK ≥ hi or charK = 0 then fij ∈ (f ).

2 If charK > hi or charK = 0 then (f ) = (fij).

From I , we can construct a set IL of multilinear homogenous polynomials
by an iterated use of the procedure to obtain from each f the f ′ijs.
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2 If charK > hi or charK = 0 then (f ) = (fij).

From I , we can construct a set IL of multilinear homogenous polynomials
by an iterated use of the procedure to obtain from each f the f ′ijs.

If charK > degxi f , for all f (x1, ..., xl) ∈ I and i = 1, ..., l , or charK = 0; we
have that (I ) = (IL). In these cases, the varieties of algebras V (I ) and
V (IL) are the same.
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Our algorithm

Let A ∈ V(I ) and let M be an I -bimodule over A. That is, there are
bilinear compositions

A×M → M; (a,m) 7→ am ∈ M

M × A → M; (n, b) 7→ mb ∈ M

such that (A⊕M, ·) ∈ V(I ), with (a⊕m) · (b ⊕ n) = ab ⊕ (an +mb).
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such that (A⊕M, ·) ∈ V(I ), with (a⊕m) · (b ⊕ n) = ab ⊕ (an +mb).

This is equivalent to M satisfying the identities (see N. Jacobson [J])

fi1(a1, ..., al ,m); ∀f ∈ I ; ∀i = 1, ..., l ; ∀a1, ..., al ∈ A and ∀m ∈ M.
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Let ξ : M → A;m 7→ ξ(m) be an equivariant map,
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Let ξ : M → A;m 7→ ξ(m) be an equivariant map, that is, ξ is a linear
map satisfying for all a ∈ A and m ∈ M:

ξ(am) = aξ(m) and ξ(ma) = ξ(m)a
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Our algorithm

If ξ is a surjective equivariant map on M, we define the products in M by

{·, ·}1 : M ×M → M, {m, n}1 := mξ(n)

{·, ·}2 : M ×M → M, {m, n}2 := ξ(m)n
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The structure (M; {·, ·}1, {·, ·}2) satisfies the identities f̂i1(n1, ..., nl ,m)
obtained from fi1(ξ(n1), ..., ξ(nl),m) by replacing:
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Our algorithm

If ξ is a surjective equivariant map on M, we define the products in M by

{·, ·}1 : M ×M → M, {m, n}1 := mξ(n)

{·, ·}2 : M ×M → M, {m, n}2 := ξ(m)n

The structure (M; {·, ·}1, {·, ·}2) satisfies the identities f̂i1(n1, ..., nl ,m)
obtained from fi1(ξ(n1), ..., ξ(nl),m) by replacing:

1 ai by ξ(ni ),
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obtained from fi1(ξ(n1), ..., ξ(nl),m) by replacing:

1 ai by ξ(ni ),
2 (tξ(s)) by {t, s}1,
3 (ξ(t)s) by {t, s}2,
4 ξ(t)ξ(s) by either ξ({t, s}1) or ξ({t, s}2),

since ξ(t)ξ(s) = ξ(tξ(s)) = ξ(ξ(t)s).
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The structure (M; {·, ·}1, {·, ·}2) satisfies the identities f̂i1(n1, ..., nl ,m)
obtained from fi1(ξ(n1), ..., ξ(nl),m) by replacing:

1 ai by ξ(ni ),
2 (tξ(s)) by {t, s}1,
3 (ξ(t)s) by {t, s}2,
4 ξ(t)ξ(s) by either ξ({t, s}1) or ξ({t, s}2),

since ξ(t)ξ(s) = ξ(tξ(s)) = ξ(ξ(t)s).
The last identities imply the 0-identities, for all m, n, s ∈ M:

{m, {n, s}1}1 = {m, {n, s}2}1 (Id01)

{{m, n}1, s}2 = {{m, n}2, s}2, (Id02)
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Our algorithm
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The KP algorithm and the equivalence

Accordingly, (M, {·, ·}1, {·, ·}2) belongs to the variety of dialgebras V(Î ),
where Î = {f̂i1(n1, ..., nl ,m)|f (x1, ..., xl) ∈ I , i = 1, ..., l} ∪ {Id01, Id02}.

Remark

We prove that the variety of dialgebras V(Î ) so obtained from V(I ) is the
one obtained by Kolesnikov-Pozhidaev (KP) algorithm for producing a
variety of dialgebras V (̃IKPL ) from a variety of algebras V(IL), i.e.

V(Î ) = V (̃IKPL ), if charK > degxi f , for all f (x1, ..., xl) ∈ I and i = 1, ..., l ,
or charK = 0.
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The KP algorithm and the equivalence

Accordingly, (M, {·, ·}1, {·, ·}2) belongs to the variety of dialgebras V(Î ),
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variety of dialgebras V (̃IKPL ) from a variety of algebras V(IL), i.e.

V(Î ) = V (̃IKPL ), if charK > degxi f , for all f (x1, ..., xl) ∈ I and i = 1, ..., l ,
or charK = 0.

The present formalism allows to study the classification of Loday algebras
through the representations of algebras.
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An example of the algorithm

Let’s consider the set of identities I = {xy = yx , (x2y)x = x2(yx)}.
An algebra A is an element of V(I ) if for all a, b ∈ A, we have ab = ba and
(a2b)a = a2(ba). The variety V(I ) is the variety of Jordan algebras.

If M is an I -bimodule over A then from the equation xy = yx we get

am = ma (1)
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(a2b)a = a2(ba). The variety V(I ) is the variety of Jordan algebras.

If M is an I -bimodule over A then from the equation xy = yx we get

am = ma (1)

and from (x2y)x = x2(yx), using (1), we obtain

(ma2)a = (ma)a2 (2)

and the associator (Osborn) identity

2(ma, b, a) = (m, b, a2) (3)
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An example of the algorithm

If ξ : M → A is an equivariant surjective map, from (1) we have that
{n,m}1 = {m, n}2 := nm
Because of the definition of the equivariant map

nξ(mξ(v)) = n(ξ(m)ξ(v)) = n(ξ(v)ξ(m)) = nξ(vξ(m))

and so, we have the 0-identity

n (mv) = n (v m) (J0)
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nξ(mξ(v)) = n(ξ(m)ξ(v)) = n(ξ(v)ξ(m)) = nξ(vξ(m))

and so, we have the 0-identity

n (mv) = n (v m) (J0)

Now, from (2), we have the Jordan identity

(mn2) n = (mn) n2 (J1)
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n (mv) = n (v m) (J0)

Now, from (2), we have the Jordan identity

(mn2) n = (mn) n2 (J1)

Finally, from (3), we obtain the Osborn identity

2(mn, v , n) = (m, v , n2) (J2)
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(mn2) n = (mn) n2 (J1)

Finally, from (3), we obtain the Osborn identity

2(mn, v , n) = (m, v , n2) (J2)

Hence, (M; ·) ∈ V(Î ), where Î = {J0, J1, J2}, this is

Î = {x (y z)− x (z y), (x y2) y − (x y) y2, 2(x y , z , y) = (x , z , y2)}.
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Î = {x (y z)− x (z y), (x y2) y − (x y) y2, 2(x y , z , y) = (x , z , y2)}.
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The homomorphism theorems, bar units and derivations

There remain to prove if for every dialgebra (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ),
we have that:

1 M is an I -bimodule over an algebra A ∈ V(IL).

2 There exists a surjective equivariant map ξ such that
{m, n}1 = mξ(n) and {m, n}2 = ξ(m)n.
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we have that:

1 M is an I -bimodule over an algebra A ∈ V(IL).

2 There exists a surjective equivariant map ξ such that
{m, n}1 = mξ(n) and {m, n}2 = ξ(m)n.

For (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ), we define

Ann(M) := 〈{m, n}1 − {m, n}2|m, n ∈ M〉

and

ZB(M) :=
{
m|{n,m}1 = 0 and {m, s}2 = 0, ∀n, s ∈ M

}
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The homomorphism theorems, bar units and derivations

We have that Ann(M) and ZB(M) are ideals of M, Ann(M) ⊆ ZB(M) and

{ZB(M),M}1 + {M,ZB(M)}2 ⊆ Ann(M).

Theorem

Let (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ) be a dialgebra. Then we have that the
quotient algebras

M := M/Ann(M) and M̂ := M/ZB(M)

are in the variety V(IL) and M is a IL-bimodule over M and over M̂
respectively.
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Let (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ) be a dialgebra. Then we have that the
quotient algebras

M := M/Ann(M) and M̂ := M/ZB(M)

are in the variety V(IL) and M is a IL-bimodule over M and over M̂
respectively.
The canonical maps π and π̂ are surjective equivariant maps of M as
IL-bimodule over M and M̂, respectively.
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The homomorphism theorems, bar units and derivations

Theorem

Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The map φ : M → A, defined by m 7→ ξ(m) is a surjective algebra
homomorphism.
Moreover, φ is an isomorphism if the condition Am ⊆ Ann(M) or
mA ⊆ Ann(M) implies that m ∈ Ann(M), is satified for all m ∈ M.
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Theorem

Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The map φ : M → A, defined by m 7→ ξ(m) is a surjective algebra
homomorphism.
Moreover, φ is an isomorphism if the condition Am ⊆ Ann(M) or
mA ⊆ Ann(M) implies that m ∈ Ann(M), is satified for all m ∈ M.

2 The map θ : A → M̂, defined by ξ(m) 7→ m̂ is a surjective algebra
homomorphism.
Moreover, φ is an isomorphism iff the condition Mξ(m) = {0} or
ξ(m)M = {0} implies ξ(m) = 0, is satified for all m ∈ M.
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The homomorphism theorems, bar units and derivations

Theorem

Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The map φ : M → A, defined by m 7→ ξ(m) is a surjective algebra
homomorphism.
Moreover, φ is an isomorphism if the condition Am ⊆ Ann(M) or
mA ⊆ Ann(M) implies that m ∈ Ann(M), is satified for all m ∈ M.

2 The map θ : A → M̂, defined by ξ(m) 7→ m̂ is a surjective algebra
homomorphism.
Moreover, φ is an isomorphism iff the condition Mξ(m) = {0} or
ξ(m)M = {0} implies ξ(m) = 0, is satified for all m ∈ M.

3 The set
I := ξ−1

(
{0}

)
=

{
m ∈ M|ξ(m) = 0

}

is an ideal of M such that Ann(M) ⊆ I ⊆ ZB(M) and the quotient
algebra M̃ := M/I is isomorphic to A.
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The homomorphism theorems, bar units and derivations

For a dialgebra (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ) we say that e ∈ M is a bar

unit if {m, e}1 = m and {e, n}2 = n, for all m, n ∈ M; and we denote
H(M) the set of bar units in M (the halo of M).

Theorem

Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that
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The homomorphism theorems, bar units and derivations

For a dialgebra (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ) we say that e ∈ M is a bar

unit if {m, e}1 = m and {e, n}2 = n, for all m, n ∈ M; and we denote
H(M) the set of bar units in M (the halo of M).

Theorem

Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The algebra A is unital iff H(M) 6= Φ. In this case,
H(M) = Ker1ξ = {m ∈ M| ξ(m) = 1 ∈ A}.
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Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The algebra A is unital iff H(M) 6= Φ. In this case,
H(M) = Ker1ξ = {m ∈ M| ξ(m) = 1 ∈ A}.

2 If H(M) 6= Φ, then Ann(M) = ZB(M) and both φ and θ are
isomorphisms.
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Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The algebra A is unital iff H(M) 6= Φ. In this case,
H(M) = Ker1ξ = {m ∈ M| ξ(m) = 1 ∈ A}.

2 If H(M) 6= Φ, then Ann(M) = ZB(M) and both φ and θ are
isomorphisms.

3 If e ∈ H(M), then H(M) = {e +m|m ∈ Ann(M)}.
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For a dialgebra (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ) we say that e ∈ M is a bar

unit if {m, e}1 = m and {e, n}2 = n, for all m, n ∈ M; and we denote
H(M) the set of bar units in M (the halo of M).

Theorem

Let M be an I -bimodule over A and let ξ : M → A a surjective equivariant
map. For the dialgebra (M, {·, ·}1, {·, ·}2) we have that

1 The algebra A is unital iff H(M) 6= Φ. In this case,
H(M) = Ker1ξ = {m ∈ M| ξ(m) = 1 ∈ A}.

2 If H(M) 6= Φ, then Ann(M) = ZB(M) and both φ and θ are
isomorphisms.

3 If e ∈ H(M), then H(M) = {e +m|m ∈ Ann(M)}.

Theorem

Let (M, {·, ·}1, {·, ·}2) ∈ V (̃IKPL ). If e ∈ H(M), then Ann(M) = ZB(M)
and H(M) = {e +m|m ∈ Ann(M)}.
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The homomorphism theorems, bar units and derivations

On derivations over dialgebras

Let M an I -bimodule over A, ξ : M → A a surjective equivarient map and
D : A → M a derivation, i.e a linear map such that

D(ab) = D(a) · b + a · D(b), ∀a, b ∈ A.
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D(ab) = D(a) · b + a · D(b), ∀a, b ∈ A.

Then for any a, b ∈ A and m, n ∈ M we have that

m · a
ξ
7→ ξ(m)a

D
7→ D(ξ(m)) · a + ξ(m) · D(a)

and
b · n

ξ
7→ bξ(n)

D
7→ D(b) · ξ(n) + b · D(ξ(n)).
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Hence, the definition of products {·, ·}1 and {·, ·}2 implies that
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D
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and
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D
7→ {D(ξ(m)), n}1 + {m,D(ξ(n))}2,

for any m, n ∈ M.
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The homomorphism theorems, bar units and derivations

On derivations over dialgebras

Let M an I -bimodule over A, ξ : M → A a surjective equivarient map and
D : A → M a derivation, i.e a linear map such that

D(ab) = D(a) · b + a · D(b), ∀a, b ∈ A.

Then for any a, b ∈ A and m, n ∈ M we have that

m · a
ξ
7→ ξ(m)a

D
7→ D(ξ(m)) · a + ξ(m) · D(a)

and
b · n

ξ
7→ bξ(n)

D
7→ D(b) · ξ(n) + b · D(ξ(n)).

Hence, the definition of products {·, ·}1 and {·, ·}2 implies that

{m, n}1
D
7→ {D(ξ(m)), n}1 + {m,D(ξ(n))}2

and
{m, n}2

D
7→ {D(ξ(m)), n}1 + {m,D(ξ(n))}2,

for any m, n ∈ M.
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The homomorphism theorems, bar units and derivations

Then we have defined a linear map δ : M → M such that

δ({m, n}i = {δ(m), n}1 + {m, δ(n)},

for i = 1, 2 and for all m, n ∈ M.
We call this maps a diderivations and we denote by Dider(M) the set of
diderivations over M.

1 If A is a Lie algebra then {m, n}1 = −{n,m}2 and we have the notion
of anti-derivation over Leibniz algebras (introduced by J. L. Loday).
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1 If A is a Lie algebra then {m, n}1 = −{n,m}2 and we have the notion
of anti-derivation over Leibniz algebras (introduced by J. L. Loday).

2 If A is a Jordan algebra then {m, n}1 = {n,m}2 and we have the
notion of left-derivation respect to the product {m, n}1 and the
right-derivation respect to the produt {m, n}2 over Jordan-Loday
algebras introduced by (R. Velásquez and R. Felipe). Moreover,
[Lm,Rm] is a inner left-derivation (rigth-derivation) respect to the
correspondient product.
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The homomorphism theorems, bar units and derivations

3 If A is an associative algebra, R. Velásquez and G. Restrepo defined
the definition of diderivations by dialgebras and showed that Lim − R i

m

are inner derivations and L1m − R2
m is a diderivation over any dialegbra

associative.

4 Finally, in the three cases we have that Dider(M) is a Lie module
over Der(M), for any product, with respecto to the bracket

[δ,D] := δD − Dδ
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Thanks !
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