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e 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.
e 2. The connection with set theory and the Laver tables.
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Terminology

e The

or

or

e Definition: An LD-groupoid, or

SD:

version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”

(xy)z = (x2)(yz)

o Definition: A

(LD)
(LD)

(RD)
(RD)

, is a structure (S,>) with > obeying (LD).

An RD-groupoid, or , is a structure (S, <) with > obeying (RD).

e Definition: A is an idempotent rack

is a shelf in which all right-translations are bijections.



Classical shelves

shelves: S a set,

famapS — S, and x<y =

» A rack iff f is a permutation of S.

» In particular: the
» In particular: the

shelves: (L,V,0) a

rack: Z/nZ with p<q :=
rack: Z with p<q:=

-lattice, and x <y =

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R a rin

g, tin R, E an R-module, and x<y =

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.
» In particular: the

» Variants: x<y =

quandle based on X when G is the free group based on X.

Drapal-Kepka-Musilek, Larue
, Xy = with f € Aut(G), ...



Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

R & BNNNNNN\\N\a
B NN\N\NN\a

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

e The shelf, the shelf, : see below...



Connection with topology (1)

e Planar diagrams:

L) SO XK

» projections of curves embedded in R3

e Generic question: recognizing whether two 2D-diagrams are
3D-figures

» find isotopy



Connection with topology (2)

e Two diagrams represent isotopic figures iff one can go from the former to the latter

using finitely many

- type | : QN N-p
— —) ~—

- type Il : - -

- type Il : //_/\/N < -



Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

e Action of Reidemeister moves on colors:

[y /a<1b bac
a =" c
b

» Hence:

(S, <)-colorings are invariant under Reidemeister move Il iff (S, <) is a shelf.



Connection with topology (4)

e Idem for Reidemeister move II:

b 2 b b b b~ A~

a=—" N— 3 — a et
b bJla

» Hence:

(S, <)-colorings are invariant under Reidemeister moves II+I111 iff (S,<) is a rack.

e Idem for Reidemeister move I:
ada a
~ ~
9 — O —- & —~—
» Hence:

(S, <)-colorings are invariant under Reidemeister moves 4114111 iff (S, <) is a quandle.

v



A map of shelves

_ shelves)
= Freep Free3
O mmmmmm e O€-mmnmnan O€-nmmnn
A\ ' o
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Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation
< ’ 0,0, = 0,0, for|i—j\>2>
Oy ey O _ . :
1 =1 0;0;0; = 0;0;0; for |i — j| =1
~ { braid diagrams } / isotopy: 1 —
i+1 —
< 7 I
] o—
e Example:
— —
[ -
P— - P ol
- —_—\—
— —
s —_— = — N\
D) N JE—



The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0,0;0; = 0;0,0; for |i —j| =1
> endomorphism of B.o: 10O

e Proposition: For «, 8 in Bso, define
:= o - sh(B) - oy - sh(a) L.
Then (B,>) is a shelf.

sh(B) sh(a)~!

—~

abf

e Examples: 1> 1 = o, 1poy=o0,00, oy>1= 0120;1, o, > oy = 0,0, etc.



The braid shelf (cont'd)

» Proof: a> (B>7) = a-sh(B-sh(y) o, -sh(8)71) o, -sh(a)~?
=a-sh(B) -sh?(7) - o, - sh?(8)~! - o, - sh(a)~?

= a-sh(B) - sh?(y) - oy0y - sh?(B) ™! - sh(a)~?
(a>B)> (a>7)

= (ash(B) oy sh(a)~1) - sh(ash(y) oy sh(a)71) - oy sh(ash((f)a1 sh(a)~1)~!
= ash(B) oy sh(a) ™! sh(c )sh ( ) o, sh (@)~to sh?(a) o, Lsh?(8)~1sh(a)~t
= ash(f) oy shz(q)ﬂzrrlﬂz ( ) sh(a)~?

= a-sh(B) - sh?(y) - 0'1020'102 h2(8)~! - sh(a)~! O

e Remark: Shelf (=right shelf) with
a<df:=sh(B)"t- oy - sh(a) - B,
but less convenient here.

e Remark: Works similarly with
x>y :=x-¢(y)-e-p(x)
whenever G is a group G, e belongs to G, and ¢ is an endomorphism ¢ satisfying

ep(e)e=d(e)eg(e) and Vx(ed’(x)=¢?(x)e).

1



A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>) to be free is that the relation = on S has no cycle.
xrcyifdz(x>z=y).
» Equivalently: x = (- (x> z1) > 2z2) > -+ ) > 2z, is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Foo):
p(o:)(Xi) == XiXip1X; 4 p(o:)(xix1) = xi,  p(o:)(xk) := xi for k #i,i+1,

Then o B in By implies that a—13 has an expression with >1 letter o, and no oy
For such a braid v, the word p(7)(x1) in Feo finishes with the letter xfl. |

1

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Lvaluate T and T' at x :=1 in Boo;
» Then T =sp T/ iff T(1) = T'(1) in Bo.
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Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far. In particular, is it decidable?

e Terms on X as binary trees with nodes > and leaves in X: assuming X = {a,b,c},

>

> / N\

: % AT
b>a @ N
cb

(a>(b>c))>b



The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen’d by all pairs
(T1 D(TQD T3) 9 (T1 > TQ)D(Tl > T3)).
Then Ty =sp T» holds iff one has Ty —sp T and Tr —sp T for some T.



The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht( T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T2).
Then xI1 =5 T3 > x[]
=sD T1 D(TQ > X[” 1])
=sp (T1 > Tz) > (T1 > X[nil])
=sp (T1 > T2) > xI
= T x[,

=sb =sDb =sD =sb
Ti\[T2\/T1 T1\/ T2

[
T

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|




The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
Tci, T/, T=sT', Tc&HT.

=SD

—SD




A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T g, T/ or T' &, T,

whence T(g)c* T'(g) or T'(g) c* T(g).

As C has no cycle in S, both imply T(g) # T'(g). O
e Proposition: If there exists shelf with C acyclic, then c, has no cycle.
» And such examples : 1. Iteration shelf (Laver, 1989);

2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Find a common LD-expansion T"' of T > xI"l and T’ > xI1;
» Find r and r’ satisfying T —sp left"(T"") and T' —sp Ieft’l(T”).
» Then TZSD T iffr=r".




The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:
Xx =1, ) (%)
e Next, identify relations in Msp:

A SDllzvSDu - SD(VSDH(“ SDIHSDIVSD1(VSDOH - SD(VSDIHSDH! etc. "-_(**)

.

..~" » When every SD,, s.t. a contains 0 is collapsed, only the SDi; . 1s remain. _
:.... » Write o; , for the image of SD11...1, i times 1. Then (%) becomes :-'
RLITIPG 0,0, = 0,0; for |[j —i| > 2, 0,0;0; = 0;0,0; for |j —i| = 1. .f
» The resulting quotient of Msp is M. .‘."
» If ¢ maps T to T/, then sho(¢) maps T > x[" to T/ x[", ""
so collapsing all sho(¢) give an SD-operation on the quoss! |t ie.,

.
o

» Its definition is the projection of (x), i.e., o



The Thompson’s monoid of SD (cont'd)

e The "“magic” braid operation revisited:

XT, shi(xt,) SDy sh1(xT,)
— — — —
=sD =sD =sD =sD
Ti\[T2\/T1 T1\/T>
| S

whence x 7,7, = x1; - shi(x7,) - SDy 'Shl(\nl)r

which projects to the braid operation.

]

Patrick Dehornoy
Braids ai

Self-Distributivity

e See more in [P0, Braids and selfdistributivity, PM192, Birkhaiiser (1999)]

Birkhiuser
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Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of = solutions of
-infinite  __infinite R 1
infinite finite [ ¥

» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;
» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (j injective not bijective)

» X -infinite: 3/ : X — X (j inject. not biject. preserving all €-definable notions)

1
an of X

e Example: N is super-infinite.

» A super-infinite set must be so large that it contains undefinable elements
(since all definable elements must be fixed).



Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fN V2 and fNV2 belongs to V for every a < \.

» Proof: Every element of V) belongs to some V,, with a < A; The set fN \/42\
is included in \/{3‘, hence in V2, hence it belongs to V.3, hence to V. O



Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal  satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

above, everybody is moved

below, nothing is moved

1
0



The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to V), and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[k]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but  crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For o < k, j(a) = «, hence j(j()) = o, whereas
J(k) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(a) = «) implies Va<j(k) (j[/](a)) = ), whereas
J(r) > rk implies j[j](j(r)) > j(k). We deduce crit(j[j]) = j(k) > k. O

u}

F = = =



The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf

v

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

v

» A realization set-theoretic of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,
» ...whence a proof that cgp is acyclic on 7,
» ...whence a solution for the word problem of SD

but all this

~» motivation for finding another proof/another realization...
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Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j]...[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[][1[]). etec.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v < X, declare i =, i" ("I and i’ agree up to ~") if
Vxe Vs (i(x)NVy = i’ (x)NVy).
Then =, (j) is a congruence on lter(j), it has 2" classes,
which are those of j, jip|, ..., jon], the latter also being the class of id.

» Proof: (Difficult...) Starts from j =) i[j] and similar.
Uses in particular crit(jjm)) = critn(j) with n maximal s.t. 2" divides m. |



Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1) for p <27 and 2">1 =1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.
» Proof: Write p for the =, (j)-class of ji.

The proposition says that Iter(j) /=g, (j) is a left-shelf whose domain is {1,...,2"};
By construction, p = 1[p] holds for p < 2".

Then jon) =it j) id implies jjan 1) =i, j) J: Whence 27 >1 =1 in the quotient. [

» A (set-theoretic) realization of A, as a quotient of the iteration shelf Iter(j).

u]
]
I
ul
!




A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to  crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to  crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

of crit(t(j)) = critn(j) and crit(t(j)) # critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 O

e Proposition ("dictionary”): For m < n and p < 2",
the period of p jumps from 2" to 27! between A, and A, |
iff  jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjp [im)]) = critn(j), whence (1, > 1[2m])A”71 = 2" by (*x),
which is also

(p>2m)Ant1 = 2. (s %).
First, (+*x) implies 7m,11(p) > 2™. Conversely, (%) projects to (p>2™)"4 = 2",
implying mp(p) < 2™. As mp1(p) is wa(p) or 2mp(p), (%) is equivalent to

the conjunction 7,(p)=2™ and m,1(p)=2"*1. O

o F = = =



Comparing the periods of 1 and 2

e Lemma: Ifj belongs to E,, for every o < \,one has
Jlil(a) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

¥y < B (() < ). ()
Applying j to () gives

vy <j(8) GUI(y) < (). (%)
Taking v := o in (%) yields j[j](a) < j(o).

e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mn(1) = 2™+1, and let 7 be maximal <n satisfying 77(1) < 2.
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.
By the dictionary, j maps critm(j) to critz(j).

Hence, by the lemma, j[j] maps critm(j) to <critz(j).

Therefore, there exists n’ < n < n s.t.j[j] maps critm(j) to crit,/ (j).

By the dictionary, the period of 2 jumps from 27 to 2™*! between A, and A,/ ;.
Hence, the period of 2 in A, is at least om+1



Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).

» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.
» Proof: (difficult...) O

® Proposition (Laver): /f there exists a Laver cardinal, wy(1) tends to oo with n. J

» Proof: Assume 7,(1) = 2™. We wish to show that

there exists i > n s.t. m5(1) = 2™ and 75, 1(1) = 2M*1L
By the dictionary, this is equivalent to j mapping critm(j) to critx(j).
Now j maps critm(j), which is crit(jjom;), to crit(j[ijam;]-

As j[jjzm)] belongs to lter(j), the lemma implies crit(j[jom)] = critz(j) for some n. O

e Open questions: Find alternative proofs using no Laver cardinal.



The role of set theory

e Are the properties of Laver tables an application of set theory?
» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.
» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An analogy:
» In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.
» Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to co in Laver tables),
then pass them to the mathematician for a formal proof.

e The two main open questions about Laver tables:

» Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

» Can one use them in low-dimensional topology?




