

The SD-world:
a bridge between algebra, topology, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

- 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.
- 2. The connection with set theory and the Laver tables.

Plan:

- Minicourse I. The SD-world
- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
- 1 . The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Plan:

- Minicourse I. The SD-world
- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
- 1 . The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
- The self-distributivity law SD:
- left version: "left self-distributivity"
or

$$
\begin{align*}
x(y z) & =(x y)(x z) \tag{LD}\\
x \triangleright(y \triangleright z) & =(x \triangleright y) \triangleright(x \triangleright z) \tag{LD}
\end{align*}
$$

- right version: "right self-distributivity"
or

$$
\begin{align*}
(x y) z & =(x z)(y z) \tag{RD}\\
(x \triangleleft y) \triangleleft z & =(x \triangleleft z) \triangleleft(y \triangleleft z) \tag{RD}
\end{align*}
$$

- Definition: An LD-groupoid, or left shelf, is a structure (S, \triangleright) with \triangleright obeying (LD). An RD-groupoid, or shelf, is a structure (S, \triangleleft) with \triangleright obeying (RD).
- Definition: A rack is a shelf in which all right-translations are bijections.
- Equivalently: $(S, \triangleleft, \bar{\triangleleft})$ with $\triangleleft, ~ ব$ obeying (RD) and, in addition

$$
(x \triangleleft y) \triangleleft y=x \quad \text { and } \quad(x \triangleleft y) \triangleleft y=x
$$

- Definition: A quandle is an idempotent rack ($x \triangleleft x=x$ always holds).
- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y:=f(x)$.
- A rack iff f is a permutation of S.
- In particular: the cyclic rack: $\mathbb{Z} / n \mathbb{Z}$ with $p \triangleleft q:=p+1$.
- In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q:=p+1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y:=x \vee y$.
- Idempotent; never a rack for $\# L \geqslant 2$: always $0 \triangleleft x=x \triangleleft x(=x)$.
- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y:=x \vee y^{c}$.
- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y:=t x+(1-t) y$.
- A rack (even a quandle) iff t is invertible in R.
- In particular: symmetries in $\mathbb{R}^{n}: x \triangleleft y:=-x+2 y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y:=y^{-1} x y$.
- Always a quandle.
- In particular: the free quandle based on X when G is the free group based on X.

$$
\begin{aligned}
& \text { when viewed as }(Q, \triangleleft, \bar{\triangleleft}):\left(F_{X}, \triangleleft\right) \text { is not a free idempotent shelf, } \\
& \text { it satisfies other laws: } x \triangleleft(y \triangleleft(y \triangleleft x))=(x \triangleleft(x \triangleleft y)) \triangleleft(y \triangleleft x) \text {, }
\end{aligned}
$$

(Drápal-Kepka-Musílek, Larue)

- Variants: $x \triangleleft y:=y^{-n} x y^{n}, x \triangleleft y:=f\left(y^{-1} x\right) y$ with $f \in \operatorname{Aut}(G), \ldots$
- Core (or sandwich) quandles: G a group, and $x \triangleleft y:=y x^{-1} y$.
- Half-conjugacy racks: G a group, X a subset of G,

$$
\text { and }(x, g) \triangleleft(y, h):=\left(x, h^{-1} y^{-1} g y h\right) \text { on } X \times G .
$$

- Not idempotent for $X \nsubseteq Z(G)$.
- the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_{X} monoid of all injections from X to itself, and $f \triangleleft g(x):=g\left(f\left(g^{-1}(x)\right)\right)$ for $x \in \operatorname{Im}(g)$, and $f \triangleleft g(x):=x$ otherwise.
- In particular, $X:=\mathbb{N}\left(=\mathbb{Z}_{>0}\right)$ starting with sh : $n \mapsto n+1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]
- The braid shelf, the iteration shelf, Laver tables: see below...
- Planar diagrams:

- projections of curves embedded in \mathbb{R}^{3}
- Generic question: recognizing whether two 2D-diagrams are (projections of) isotopic 3D-figures continuously deform the 3D-figure allowing no curve crossing
- find isotopy invariants.
- Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:
- type I:

- type II :

- type III :

- Fix a set (of colors) S equipped with two operations $\triangleleft, \bar{\triangleleft}$, and color the strands in diagrams obeying the rules:

- Action of Reidemeister moves on colors:

- Hence:
(S, \triangleleft)-colorings are invariant under Reidemeister move III iff (S, \triangleleft) is a shelf.
- Idem for Reidemeister move II:

- Hence:
(S, \triangleleft)-colorings are invariant under Reidemeister moves II+III iff (S, \triangleleft) is a rack.
- Idem for Reidemeister move I:

- Hence:
(S, \triangleleft)-colorings are invariant under Reidemeister moves I+II+III iff (S, \triangleleft) is a quandle.

Plan:

- Minicourse I. The SD-world
- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
- Definition (Artin 1925/1948): The braid group B_{n} is the group with presentation

$$
\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{cc}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 \\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right.\right\rangle .
$$

$\simeq\{$ braid diagrams $\} /$ isotopy:

- Example:

- Adding a strand on the right provides $i_{n, n+1}: B_{n} \subset B_{n+1}$
- Direct limit $B_{\infty}=\left\langle\sigma_{1}, \sigma_{2}, \ldots \quad \left\lvert\, \begin{array}{cc}\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 \\ \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1\end{array}\right.\right\rangle$.
- Shift endomorphism of $B_{\infty}:$ sh : $\sigma_{i} \mapsto \sigma_{i+1}$.
- Proposition: For α, β in B_{∞}, define

$$
\alpha \triangleright \beta:=\alpha \cdot \operatorname{sh}(\beta) \cdot \sigma_{1} \cdot \operatorname{sh}(\alpha)^{-1}
$$

Then $\left(B_{\infty}, \triangleright\right)$ is a left shelf.

- Examples: $1 \triangleright 1=\sigma_{1}, \quad 1 \triangleright \sigma_{1}=\sigma_{2} \sigma_{1}, \quad \sigma_{1} \triangleright 1=\sigma_{1}^{2} \sigma_{2}^{-1}, \quad \sigma_{1} \triangleright \sigma_{1}=\sigma_{2} \sigma_{1}$, etc.

$$
\begin{aligned}
& \square \text { Proof: } \begin{aligned}
\alpha \triangleright(\beta \triangleright \gamma) & =\alpha \cdot \operatorname{sh}\left(\beta \cdot \operatorname{sh}^{2}(\gamma) \cdot \sigma_{1} \cdot \operatorname{sh}(\beta)^{-1}\right) \cdot \sigma_{1} \cdot \operatorname{sh}(\alpha)^{-1} \\
& =\alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^{2}(\gamma) \cdot \sigma_{2} \cdot \operatorname{sh}^{2}(\beta)^{-1} \cdot \sigma_{1} \cdot \operatorname{sh}(\alpha)^{-1} \\
& =\alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^{2}(\gamma) \cdot \sigma_{2} \sigma_{1} \cdot \operatorname{sh}^{2}(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1}
\end{aligned} \\
& \begin{aligned}
(\alpha \triangleright \beta) \triangleright(\alpha \triangleright \gamma)
\end{aligned} \\
& \quad=\left(\alpha \operatorname{sh}(\beta) \sigma_{1} \operatorname{sh}(\alpha)^{-1}\right) \cdot \operatorname{sh}\left(\alpha \operatorname{sh}(\gamma) \sigma_{1} \operatorname{sh}(\alpha)^{-1}\right) \cdot \sigma_{1} \cdot \operatorname{sh}\left(\alpha \operatorname{sh}(\beta) \sigma_{1} \operatorname{sh}(\alpha)^{-1}\right)^{-1} \\
& \\
& =\alpha \operatorname{sh}(\beta) \sigma_{1} \operatorname{sh}(\alpha)^{-1} \operatorname{sh}(\alpha) \operatorname{sh}^{2}(\gamma) \sigma_{2} \operatorname{sh}^{2}(\alpha)^{-1} \sigma_{1} \operatorname{sh}^{2}(\alpha) \sigma_{2}^{-1} \operatorname{sh}^{2}(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\
& \\
& =\alpha \operatorname{sh}(\beta) \sigma_{1} \operatorname{sh}^{2}(\gamma) \sigma_{2} \sigma_{1} \sigma_{2}^{-1} \operatorname{sh}^{2}(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\
& \\
& =\alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^{2}(\gamma) \cdot \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1} \cdot \operatorname{sh}^{2}(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1}
\end{aligned}
$$

- Remark: Shelf (=right shelf) with

$$
\alpha \triangleleft \beta:=\operatorname{sh}(\beta)^{-1} \cdot \sigma_{1} \cdot \operatorname{sh}(\alpha) \cdot \beta
$$

but less convenient here.

- Remark: Works similarly with

$$
x \triangleright y:=x \cdot \phi(y) \cdot e \cdot \phi(x)^{-1}
$$

whenever G is a group G, e belongs to G, and ϕ is an endomorphism ϕ satisfying

$$
e \phi(e) e=\phi(e) e \phi(e) \quad \text { and } \quad \forall x\left(e \phi^{2}(x)=\phi^{2}(x) e\right) .
$$

- Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

$$
x \sqsubset y \text { if } \exists z(x \triangleright z=y) .
$$

- Equivalently: $x=\left(\cdots\left(\left(x \triangleright z_{1}\right) \triangleright z_{2}\right) \triangleright \cdots\right) \triangleright z_{n}$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $\left(B_{\infty}, \triangleright\right)$ a free left shelf.
- Typically: The subshelf of $\left(B_{\infty}, \triangleright\right)$ generated by 1 is a free left shelf.
- Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in $\operatorname{Aut}\left(F_{\infty}\right)$:
$\rho\left(\sigma_{i}\right)\left(x_{i}\right):=x_{i} x_{i+1} x_{i}^{-1}, \quad \rho\left(\sigma_{i}\right)\left(x_{i+1}\right):=x_{i}, \quad \rho\left(\sigma_{i}\right)\left(x_{k}\right):=x_{k}$ for $k \neq i, i+1$,
Then $\alpha \sqsubset \beta$ in B_{∞} implies that $\alpha^{-1} \beta$ has an expression with $\geqslant 1$ letter σ_{1} and no σ_{1}^{-1}. For such a braid γ, the word $\rho(\gamma)\left(x_{1}\right)$ in F_{∞} finishes with the letter x_{1}^{-1}.
- Corollary: (solution of the wp of SD) Given two terms T, T^{\prime} :
- Evaluate T and T^{\prime} at $x:=1$ in B_{∞};
- Then $T={ }_{\text {sD }} T^{\prime}$ iff $T(1)=T^{\prime}(1)$ in B_{∞}.

Plan:

- Minicourse I. The SD-world
- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
- 1 . The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
- Describe the free (left) shelf based on a set X ($=$ the most general shelf gen'd by X) ($=$ the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let \mathcal{T}_{X} be the family of all terms built from X and \triangleright, and $=\mathrm{SD}$ be the congruence (i.e., compatible equiv. rel.) on \mathcal{T}_{X} generated by all pairs

$$
\left(T_{1} \triangleright\left(T_{2} \triangleright T_{3}\right),\left(T_{1} \triangleright T_{2}\right) \triangleright\left(T_{1} \triangleright T_{3}\right)\right) .
$$

Then $\mathcal{T}_{X} /=$ sD is the free left-shelf based on X.

- Proof: trivial.
- ...but says nothing: =sd not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X : assuming $X=\{a, b, c\}$,
a

$$
(\mathrm{a} \triangleright(\mathrm{~b} \triangleright \mathrm{c})) \triangleright \mathrm{b}
$$

- Lemma (confluence): Let $\rightarrow_{\text {SD }}$ be the semi-congruence on \mathcal{T}_{X} gen'd by all pairs $\left(T_{1} \triangleright\left(T_{2} \triangleright T_{3}\right),\left(T_{1} \triangleright T_{2}\right) \triangleright\left(T_{1} \triangleright T_{3}\right)\right)$.
Then $T_{1}={ }_{\text {SD }} T_{2}$ holds iff one has $T_{1} \rightarrow_{\text {SD }} T$ and $T_{2} \rightarrow_{\text {SD }} T$ for some T.
"SD-equivalent iff admit a common SD-expansion"

- Lemma (absorption): Define $x^{[1]}:=x$ and $x^{[n]}:=x \triangleright x^{[n-1]}$ for $n \geqslant 2$. For T in \mathcal{T}_{x},

$$
x^{[n+1]}=\mathrm{SD} T \triangleright x^{[n]}
$$

holds for $n>\operatorname{ht}(T)$, where $h t(x):=0$ and $\operatorname{ht}\left(T_{1} \triangleright T_{2}\right):=\max \left(h t\left(T_{1}\right), \operatorname{ht}\left(T_{2}\right)\right)+1$.

- Proof: Induction on T. For $T=x$, direct from the definitions.

Assume $T=T_{1} \triangleright T_{2}$ and $n>\operatorname{ht}(T)$. Then $n-1>\operatorname{ht}\left(T_{1}\right)$ and $n-1>\operatorname{ht}\left(T_{2}\right)$.
Then $x^{[n+1]}=$ SD $T_{1} \triangleright x^{[n]} \quad$ by induction hypothesis for T_{1}

$$
\begin{aligned}
& =\mathrm{SD} T_{1} \triangleright\left(T_{2} \triangleright x^{[n-1]}\right) \\
& =\mathrm{SD}\left(T_{1} \triangleright T_{2}\right) \triangleright\left(T_{1} \triangleright x^{[n-1]}\right) \\
& =\mathrm{SD}\left(T_{1} \triangleright T_{2}\right) \triangleright x^{[n]} \\
& =T \triangleright x^{[n]} .
\end{aligned}
$$

- Lemma (comparison I): Write $T \sqsubset_{\text {SD }} T^{\prime}$ for $\exists T^{\prime \prime}\left(T^{\prime}={ }_{\mathrm{SD}} T \triangleright T^{\prime \prime}\right)$, and $\sqsubset_{\mathrm{SD}}^{*}$ for the transitive closure of $\sqsubset \mathrm{sD}$. Then, for all T, T^{\prime} in \mathcal{T}_{x}, one has at least one of

$$
T \sqsubset_{\mathrm{SD}}^{*} T^{\prime}, \quad T=\mathrm{SD} T^{\prime}, \quad T^{\prime} \sqsubset_{\mathrm{SD}}^{*} T .
$$

- Proof:

A syntactic solution to the word problem

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are \sqsubset^{*}-comparable (with $\sqsubset^{*}=$ transitive closure of $\sqsubset=$ iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
- Proof: Assume S gen'd by g. " S is free" means " $T \neq \mathrm{sD} T^{\prime} \Rightarrow T(g) \neq T^{\prime}(g)$ ".

Now $T \neq \mathrm{sD} T^{\prime}$ implies $T \sqsubset_{\mathrm{SD}}^{*} T^{\prime}$ or $T^{\prime} \sqsubset_{\mathrm{SD}}^{*} T$,

$$
\text { whence } T(g) \sqsubset^{*} T^{\prime}(g) \text { or } T^{\prime}(g) \sqsubset^{*} T(g) \text {. }
$$

As \sqsubset has no cycle in S, both imply $T(g) \neq T^{\prime}(g)$.

- Proposition: If there exists at least one shelf with \sqsubset acyclic, then $\sqsubset_{S D}^{*}$ has no cycle.
- And such examples do exist: 1. Iteration shelf (Laver, 1989);

2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

- Corollary: (solution of the wp of SD) Given two terms T, T^{\prime} :
- Find a common LD-expansion $T^{\prime \prime}$ of $T \triangleright x^{[n]}$ and $T^{\prime} \triangleright x^{[n]}$;
- Find r and r^{\prime} satisfying $T \rightarrow_{\text {SD }}$ left $^{r}\left(T^{\prime \prime}\right)$ and $T^{\prime} \rightarrow_{\text {SD }}$ left $^{r^{\prime}}\left(T^{\prime \prime}\right)$.
- Then $T=$ sd T^{\prime} iff $r=r^{\prime}$.
- Definition: For α a binary address (= finite sequence of 0 s and 1 s), let $S D_{\alpha}$ be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid $\mathcal{M}_{\text {SD }}$ gen'd by all SD_{α} and their inverses.
- Fact: Two terms T, T^{\prime} are SD-equivalent iff some element of $\mathcal{M}_{\mathrm{SD}}$ maps T to T^{\prime}.
- Now, for every term T, select an element χ_{T} of $\mathcal{M}_{\text {SD }}$ that maps $x^{[n+1]}$ to $T \triangleright x^{[n]}$.
- Follow the inductive proof of the absorption property:

$$
\begin{equation*}
\chi_{x}:=1, \quad \chi_{T_{1} \triangleright T_{2}}:=\chi_{T_{1}} \cdot \operatorname{sh}_{1}\left(\chi_{T_{2}}\right) \cdot \mathrm{SD}_{\emptyset} \cdot \operatorname{sh}_{1}\left(\chi_{T_{1}}\right) \cdot \cdots \cdot \cdot \ldots, \tag{*}
\end{equation*}
$$

- Next, identify relations in $\mathcal{M}_{\text {SD }}$:

$$
\mathrm{SD}_{11 \alpha} \mathrm{SD}_{\alpha}=\mathrm{SD}_{\alpha} \mathrm{SD}_{11 \alpha}, \quad \mathrm{SD}_{1 \alpha} \mathrm{SD}_{\alpha} \mathrm{SD}_{1 \alpha} \mathrm{SD}_{0 \alpha}=\mathrm{SD}_{\alpha} \mathrm{SD}_{1 \alpha} \mathrm{SD}_{\alpha}, \text { etc. }
$$

- When every SD_{α} s.t. α contains 0 is collapsed, only the $\mathrm{SD}_{11 \ldots 1}$ s remain.
- Write σ_{i+1} for the image of $\mathrm{SD}_{11 \ldots 1}, i$ times 1 . Then ($* *$) becomes
- The resulting quotient of $\mathcal{M}_{\mathrm{SD}}$ is B_{∞} (!).
- If ϕ maps T to T^{\prime}, then $\operatorname{sh}_{0}(\phi)$ maps $T \triangleright x^{[n]}$ to $T^{\prime} \triangleright x^{[n]}$,
so collapsing all sho $h_{0}(\phi)$ must give an SD-operation on the que.+***, i.e., on B_{∞}.
- Its definition is the projection of $(*)$, i.e.,

$$
\begin{aligned}
& \text { rojection of }(*) \text {, i.e., } \\
& a \triangleright b:=a \cdot \operatorname{sh}(b) \cdot \sigma_{i} \cdot \operatorname{sh}(a)^{-1}
\end{aligned}
$$

- The "magic" braid operation revisited:

whence $\chi_{T_{1} \triangleright T_{2}}=\chi_{T_{1}} \cdot \operatorname{sh}_{1}\left(\chi_{T_{2}}\right) \cdot \mathrm{SD}_{\emptyset} \cdot \operatorname{sh}_{1}\left(\chi_{T_{1}}^{-1}\right)$,
which projects to the braid operation.
.../...
- See more in [P.D., Braids and selddistributivity, PM192, Birkhaüser (1999)]

Plan:

- Minicourse I. The SD-world
- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
- Identify further properties of infinite sets $=$ explore further axioms.
- Typical example: axioms of large cardinal $=$ solutions of

$$
\frac{\text { super-infinite }}{\text { infinite }}=\frac{\text { infinite }}{\text { finite }}
$$

- Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- Repeat the process with "super-infinite".

- Principle: self-similar implies large
- X infinite: $\exists j: X \rightarrow X$ (j injective not bijective)
- X super-infinite: $\exists j: X \rightarrow X$ (j inject. not biject. preserving all \in-definable notions) an elementary embedding of X
- Example: \mathbb{N} is not super-infinite.
- A super-infinite set must be so large that it contains undefinable elements (since all definable elements must be fixed).
- Fact: There is a canonical filtration of sets by the sets V_{α}, α an ordinal, def'd by

$$
V_{0}:=\emptyset, \quad V_{\alpha+1}:=\mathfrak{P}\left(V_{\alpha}\right), \quad V_{\lambda}:=\bigcup_{\alpha<\lambda} V_{\alpha} \text { for } \lambda \text { limit. }
$$

- Fact: If λ is a limit ordinal and $f: V_{\lambda} \rightarrow V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda} f \cap V_{\alpha}^{2}$ and $f \cap V_{\alpha}^{2}$ belongs to V_{λ} for every $\alpha<\lambda$.
- Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha<\lambda$; The set $f \cap V_{\alpha}^{2}$ is included in V_{α}^{2}, hence in $V_{\alpha+2}$, hence it belongs to $V_{\alpha+3}$, hence to V_{λ}.
- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}
(hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \rightarrow V_{\lambda}$ witnesses that λ is a Laver cardinal.
- The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
- There exists an ordinal α satisfying $j(\alpha)>\alpha$.
- There exists a smallest ordinal κ satisfying $j(\kappa)>\kappa$: the "critical ordinal" of j.
- One necessarily has $\lambda=\sup _{n} j^{n}(\operatorname{crit}(j))$.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- Definition: For i, j in E_{λ}, the result of applying i to j is

$$
i[j]:=\bigcup_{\alpha<\lambda} i\left(j \cap V_{\alpha}^{2}\right) .
$$

- Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ}, and $\left(E_{\lambda},-[-]\right)$ is a left-shelf.
- Proof: The sets $j \cap V_{\alpha}^{2}$ belong to V_{λ}, and are pairwise compatible partial maps, hence so are the sets $i\left(j \cap V_{\alpha}^{2}\right)$: so $i[j]$ is a map from V_{λ} to itself.
"Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding.
"Being the image of" is definable, hence $\ell=j[k]$ implies $i[\ell]=i[j][i[k]]$,
i.e., $i[j[k]]=i[j][i[k]]$: the left SD law.
- Attention! Application is not composition:

$$
\operatorname{crit}(\mathrm{j} \circ \mathrm{j})=\operatorname{crit}(\mathrm{j}), \quad \text { but } \quad \operatorname{crit}(\mathrm{j}[\mathrm{j}])>\operatorname{crit}(\mathrm{j}) .
$$

- Proof: Let $\kappa:=\operatorname{crit}(\mathrm{j})$. For $\alpha<\kappa, j(\alpha)=\alpha$, hence $j(j(\alpha))=\alpha$, whereas

$$
j(\kappa)>\kappa \text {, hence } j(j(\kappa))>j(\kappa)>\kappa \text {. We deduce } \operatorname{crit}(\mathrm{j} \circ \mathrm{j})=\kappa \text {. }
$$

On the other hand, $\forall \alpha<\kappa(j(\alpha)=\alpha)$ implies $\forall \alpha<j(\kappa)(j[j](\alpha)=\alpha)$, whereas $j(\kappa)>\kappa$ implies $j[j](j(\kappa))>j(\kappa)$. We deduce $\operatorname{crit}(\mathrm{j}[\mathrm{j}])=\mathrm{j}(\kappa)>\kappa$.

- Proposition: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\operatorname{Iter}(\mathrm{j})$.
closure of $\{j\}$ under the "application" operation: $j[j], j[j][j] \ldots$
- Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.
- A realization (the "set-theoretic realization") of the free (left)-shelf,
- ...plus a proof of that a shelf with acyclic \sqsubset exists,
- ...whence a proof that \sqsubset sd is acyclic on \mathcal{T}_{x},
- ...whence a solution for the word problem of SD
(because both $=$ SD and $\sqsubset_{\text {SD }}^{*}$ are semi-decidable).
but all this under the (unprovable) assumption that a Laver cardinal exists.
\rightsquigarrow motivation for finding another proof/another realization...

Plan:

- Minicourse I. The SD-world
- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
- 1 . The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
- Notation: ("left powers") $j_{[p]}:=j[j][j] \ldots[j], p$ times j.
- Definition: For j in E_{λ}, $\operatorname{crit}_{n}(\mathrm{j}):=$ the $(n+1)$ st ordinal (from bottom) in $\{\operatorname{crit}(\mathrm{i}) \mid \mathrm{i} \in \operatorname{Iter}(\mathrm{j})\}$.
- One can show $\operatorname{crit}_{0}(\mathrm{j})=\operatorname{crit}(\mathrm{j}), \operatorname{crit}_{1}(\mathrm{j})=\operatorname{crit}(\mathrm{j}[\mathrm{j}]), \operatorname{crit}_{2}(\mathrm{j})=\operatorname{crit}(\mathrm{j}[\mathrm{j}][\mathrm{j}][\mathrm{j}])$, etc.
- Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to E_{λ}. For i, i^{\prime} in Iter(j) and $\gamma<\lambda$, declare $i \equiv \equiv_{\gamma} i^{\prime}$ (" i and i^{\prime} agree up to $\gamma^{\prime \prime}$) if

$$
\forall x \in V_{\gamma}\left(i(x) \cap V_{\gamma}=i^{\prime}(x) \cap V_{\gamma}\right) .
$$

Then $\equiv_{\text {crit }_{n}(\mathrm{j})}$ is a congruence on Iter (j), it has 2^{n} classes, which are those of $j, j_{[2]}, \ldots, j_{\left[2^{n}\right]}$, the latter also being the class of id.

```
- Proof: (Difficult...) Starts from j \equivcrit(i) i[j] and similar.
Uses in particular crit (j[m] ) = crit
```

- Recall: The Laver table A_{n} is the unique left-shelf on $\left\{1, \ldots, 2^{n}\right\}$

$$
\text { satisfying } p=1_{[p]} \text { for } p \leqslant 2^{n} \text { and } 2^{n} \triangleright 1=1 \text {. }
$$

(or, equivalently, on $\left\{0, \ldots, 2^{n}-1\right\}$) satisfying $p=1_{[p]} \bmod 2^{n}$ for $p \leqslant 2^{n}$ and $0 \triangleright 1=1$)

- Corollary: The quotient-structure $\operatorname{Iter}(\mathrm{j}) / \equiv_{\operatorname{crit}_{n}(\mathrm{j})}$ is (isomorphic to) the table A_{n}.
- Proof: Write p for the $\equiv_{\text {critn }}(\mathrm{j})$-class of $j_{[p]}$.

The proposition says that $\operatorname{Iter}(\mathrm{j}) / \equiv_{\text {critn }_{n}(\mathrm{j})}$ is a left-shelf whose domain is $\left\{1, \ldots, 2^{n}\right\}$; By construction, $p=1_{[p]}$ holds for $p \leqslant 2^{n}$.
Then $j_{\left[2^{n}\right]} \equiv_{\text {crit }_{n}(\mathrm{j})}$ id implies $j_{\left[2^{n}+1\right]} \equiv_{\text {crit }_{n}(\mathrm{j})} j$, whence $2^{n} \triangleright 1=1$ in the quotient.

- A (set-theoretic) realization of A_{n} as a quotient of the iteration shelf Iter(j).
- Lemma: For every j in E_{λ}, every term $t(x)$, and every n,

$$
\begin{aligned}
t(1)^{A_{n}} & =2^{n} \quad \text { is equivalent to } \quad \operatorname{crit}\left(\mathrm{t}(\mathrm{j})^{\operatorname{Iter}(\mathrm{j})}\right) \geqslant \operatorname{crit}_{n}(\mathrm{j}) ; \\
t(1)^{A_{n+1}} & =2^{n} \quad \text { is equivalent to } \quad \operatorname{crit}\left(\mathrm{t}(\mathrm{j})^{\operatorname{ter}(\mathrm{j})}\right)=\operatorname{crit}_{n}(\mathrm{j}) .
\end{aligned}
$$

- Proof: For $(*): \operatorname{crit}(\mathrm{t}(\mathrm{j})) \geqslant \operatorname{crit}_{n}(\mathrm{j})$ means $t(j) \equiv_{\text {crit }_{n}(\mathrm{j})}$ id,
i.e., the class of $t(j)$ in A_{n}, which is $t(1)^{A_{n}}$, is that of id, which is 2^{n}.

For $(* *): \operatorname{crit}(\mathrm{t}(\mathrm{j}))=\operatorname{crit}_{\mathrm{n}}(\mathrm{j})$ is the conjunction
of $\operatorname{crit}(\mathrm{t}(\mathrm{j})) \geqslant \operatorname{crit}_{n}(\mathrm{j})$ and $\operatorname{crit}(\mathrm{t}(\mathrm{j})) \neq \operatorname{crit}_{\mathrm{n}+1}(\mathrm{j})$, hence
of $t(1)^{A_{n}}=2^{n}$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}}=2^{n}$.

- Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^{n}$, the period of p jumps from 2^{m} to 2^{m+1} between A_{n} and A_{n+1}

$$
\text { iff } j_{[p]} \text { maps } \operatorname{crit}_{m}(\mathrm{j}) \text { to } \operatorname{crit}_{n}(\mathrm{j}) \text {. }
$$

- Proof: Apply the lemma to the term $x_{[p]}$.

As $\operatorname{crit}_{m}(\mathrm{j})=\operatorname{crit}\left(\mathrm{j}_{\left[2^{m}\right]}\right)$, the embedding $j_{[p]}$ maps $\operatorname{crit}_{\mathrm{m}}(\mathrm{j})$ to $\operatorname{crit}\left(\mathrm{j}_{[p]}\left[\mathrm{j}_{\left[2^{m}\right]}\right]\right)$,
so the RHT is $\operatorname{crit}\left(\mathrm{j}_{[p]}\left[\mathrm{j}_{\left[2^{m}\right]}\right]\right)=\operatorname{crit}_{\mathrm{n}}(\mathrm{j})$, whence $\left(1_{[p]} \triangleright 1_{\left[2^{m}\right]}\right)^{A_{n+1}}=2^{n}$ by $(* *)$,
which is also

$$
\left(p \triangleright 2^{m}\right)^{A_{n+1}}=2^{n}
$$

$$
(* * *) .
$$

First, $(* * *)$ implies $\pi_{n+1}(p)>2^{m}$. Conversely, $(* * *)$ projects to $\left(p \triangleright 2^{m}\right)^{A_{n}}=2^{n}$, implying $\pi_{n}(p) \leqslant 2^{m}$. As $\pi_{n+1}(p)$ is $\pi_{n}(p)$ or $2 \pi_{n}(p),(* * *)$ is equivalent to the conjunction $\pi_{n}(p)=2^{m}$ and $\pi_{n+1}(p)=2^{m+1}$.

- Lemma: If j belongs to E_{λ}, for every $\alpha<\lambda$, one has

$$
j[j](\alpha) \leqslant j(\alpha) .
$$

- Proof: There exists β satisfying $j(\beta)>\alpha$, hence there is a smallest such β, which therefore satisfies $j(\beta)>\alpha$ and

$$
\begin{equation*}
\forall \gamma<\beta(j(\gamma) \leqslant \alpha) \tag{*}
\end{equation*}
$$

Applying j to (*) gives

$$
\begin{equation*}
\forall \gamma<j(\beta)(j[j](\gamma) \leqslant j(\alpha)) . \tag{**}
\end{equation*}
$$

Taking $\gamma:=\alpha$ in $(* *)$ yields $j[j](\alpha) \leqslant j(\alpha)$.

- Proposition (Laver): If there exists a Laver cardinal, $\pi_{n}(2) \geqslant \pi_{n}(1)$ holds for all n.
- Proof: Write $\pi_{n}(1)=2^{m+1}$, and let \bar{n} be maximal $<n$ satisfying $\pi_{\bar{n}}(1) \leqslant 2^{m}$.

By construction, the period of 1 jumps from 2^{m} to 2^{m+1} between $A_{\bar{n}}$ and $A_{\bar{n}+1}$.
By the dictionary, j maps crit $m(j)$ to crit $_{\bar{n}}(\mathrm{j})$.
Hence, by the lemma, $j[j]$ maps crit $_{m}(j)$ to $\leqslant \operatorname{crit}_{\bar{n}}(j)$.
Therefore, there exists $n^{\prime} \leqslant \bar{n} \leqslant n$ s.t. $j[j]$ maps crit ${ }_{m}(j)$ to crit $_{n^{\prime}}(j)$.
By the dictionary, the period of 2 jumps from 2^{m} to 2^{m+1} between $A_{n^{\prime}}$ and $A_{n^{\prime}+1}$. Hence, the period of 2 in A_{n} is at least 2^{m+1}.

- Lemma: If j belongs to E_{λ}, then λ is the supremum of the ordinals $\operatorname{crit}_{n}(j)$.
- Not obvious: $\{\operatorname{crit}(\mathrm{i}) \mid \mathrm{i} \in \operatorname{Iter}(\mathrm{j})\}$ is countable, but its order type might be $>\omega$.
- Proof: (difficult...)
- Proposition (Laver): If there exists a Laver cardinal, $\pi_{n}(1)$ tends to ∞ with n.
- Proof: Assume $\pi_{n}(1)=2^{m}$. We wish to show that
there exists $\bar{n} \geqslant n$ s.t. $\pi_{\bar{n}}(1)=2^{m}$ and $\pi_{\bar{n}+1}(1)=2^{m+1}$.
By the dictionary, this is equivalent to j mapping $\operatorname{crit}_{\mathrm{m}}(\mathrm{j})$ to $\operatorname{crit}_{\mathrm{n}}(\mathrm{j})$.
Now j maps $\operatorname{crit}_{\mathrm{m}}(\mathrm{j})$, which is $\operatorname{crit}\left(\mathrm{j}_{\left[2^{m}\right]}\right)$, to $\operatorname{crit}\left(\mathrm{j}\left[\mathrm{j}_{\left[2^{m}\right]}\right]\right.$.
As $j\left[j_{\left[2^{m}\right]}\right]$ belongs to $\operatorname{Iter}(\mathrm{j})$, the lemma implies $\operatorname{crit}\left(\mathrm{j}\left[\mathrm{j}_{\left[2^{m}\right]}\right]=\operatorname{crit} \bar{n}(\mathrm{j})\right.$ for some \bar{n}.
- Open questions: Find alternative proofs using no Laver cardinal.
- Are the properties of Laver tables an application of set theory?
- So far, yes;
- In the future, formally no if one finds alternative proofs using no large cardinal.
- But, in any case, it is set theory that made the properties first accessible.
- Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
- In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
- Here: using a logical intuition (existence of a Laver cardinal), guess statements (periods tend to ∞ in Laver tables), then pass them to the mathematician for a formal proof.
- The two main open questions about Laver tables:
- Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)
- Can one use them in low-dimensional topology?

