

The SD-world:

a bridge between algebra, topology, and set theory Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへぐ

- 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.
- 2. The connection with set theory and the Laver tables.

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
 - Classical and exotic examples
 - Connection with topology: quandles, racks, and shelves
 - A chart of the SD-world
- 2. The word problem of SD: a semantic solution
 - Braid groups
 - The braid shelf
 - A freeness criterion
- 3. The word problem of SD: a syntactic solution
 - The free monogenerated shelf
 - The comparison property
 - The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
 - Large cardinals and elementary embeddings

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- The iteration shelf
- 2. Periods in Laver tables
 - Quotients of the iteration shelf
 - The dictionary
 - Results about periods

Plan:

Minicourse I. The SD-world

- 1. A general introduction
 - Classical and exotic examples
 - Connection with topology: quandles, racks, and shelves
 - A chart of the SD-world
- 2. The word problem of SD: a semantic solution
 - Braid groups
 - The braid shelf
 - A freeness criterion
- 3. The word problem of SD: a syntactic solution
 - The free monogenerated shelf
 - The comparison property
 - The Thompson's monoid of SD
- Minicourse II. Connection with set theory
 - 1. The set-theoretic shelf
 - Large cardinals and elementary embeddings

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- The iteration shelf
- 2. Periods in Laver tables
 - Quotients of the iteration shelf
 - The dictionary
 - Results about periods

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- The self-distributivity law SD:
 - left version: "left self-distributivity"

$$x(yz) = (xy)(xz) \tag{LD}$$

$$x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$$
 (LD)

▶ right version: "right self-distributivity"

$$(xy)z = (xz)(yz) \tag{RD}$$

$$(\mathsf{RD}) \land z = (x \land z) \land (y \land z)$$

or

- <u>Definition</u>: An <u>LD-groupoid</u>, or left shelf, is a structure (S, ▷) with ▷ obeying (LD). An <u>RD-groupoid</u>, or shelf, is a structure (S, ⊲) with ▷ obeying (RD).
- <u>Definition</u>: A rack is a shelf in which all right-translations are bijections.

▶ Equivalently: $(S, \triangleleft, \triangleleft)$ with $\triangleleft, \neg \triangleleft$ obeying (RD) and, in addition $(x \triangleleft y) \neg \neg y = x$ and $(x \neg y) \triangleleft y = x$.

• <u>Definition</u>: A quandle is an idempotent rack ($x \triangleleft x = x$ always holds).

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ► A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$. (i.e., " $x \leftarrow y$ ")
- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1 t)y$.
 - ▶ A rack (even a quandle) iff t is invertible in R.
 - ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - Always a quandle.
 - ▶ In particular: the free quandle based on X when G is the free group based on X.

when viewed as $(Q, \triangleleft, \triangleleft)$: (F_X, \triangleleft) is <u>not</u> a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x)) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x), \dots$ (Drápal-Kepka-Musílek, Larue)

▶ Variants: $x \triangleleft y := y^{-n}xy^n$, $x \triangleleft y := f(y^{-1}x)y$ with $f \in Aut(G)$, ...

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - \blacktriangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf, Laver tables: see below...

• Planar diagrams:

▶ projections of curves embedded in \mathbb{R}^3

• Generic question: recognizing whether two 2D-diagrams are (projections of) isotopic 3D-figures

continuously deform the 3D-figure allowing no curve crossing

▶ find isotopy invariants.

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

• Fix a set (of colors) *S* equipped with two operations ⊲,⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

► Hence:

 (S, \triangleleft) -colorings are invariant under Reidemeister move III iff (S, \triangleleft) is a shelf.

• Idem for Reidemeister move II:

► Hence:

 (S, \triangleleft) -colorings are invariant under Reidemeister moves II+III iff (S, \triangleleft) is a rack.

• Idem for Reidemeister move I:

 (S, \triangleleft) -colorings are invariant under Reidemeister moves I+II+III iff (S, \triangleleft) is a quandle.

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
 - Classical and exotic examples
 - Connection with topology: quandles, racks, and shelves
 - A chart of the SD-world

- 2. The word problem of SD: a semantic solution

- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
 - The free monogenerated shelf
 - The comparison property
 - The Thompson's monoid of SD
- Minicourse II. Connection with set theory
 - 1. The set-theoretic shelf
 - Large cardinals and elementary embeddings

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- The iteration shelf
- 2. Periods in Laver tables
 - Quotients of the iteration shelf
 - The dictionary
 - Results about periods

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\langle \sigma_1, ..., \sigma_{n-1} | \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ for } |i-j| = 1 \rangle.$$

 $\sigma_2 \sigma_1 \sigma_2$

 $\sigma_1 \sigma_2 \sigma_1$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - $\blacktriangleright \text{ Direct limit } \mathcal{B}_{\infty} = \Big\langle \sigma_1, \sigma_2, \dots \quad \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \Big\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, $\sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$, $\sigma_1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, etc.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$\begin{array}{l} \blacktriangleright \mbox{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \mbox{sh}(\beta \cdot \mbox{sh}(\gamma) \cdot \sigma_1 \cdot \mbox{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \mbox{sh}(\alpha)^{-1} \\ = \alpha \cdot \mbox{sh}(\beta) \cdot \mbox{sh}^2(\gamma) \cdot \sigma_2 \cdot \mbox{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \mbox{sh}(\alpha)^{-1} \\ = \alpha \cdot \mbox{sh}(\beta) \cdot \mbox{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \mbox{sh}^2(\beta)^{-1} \cdot \mbox{sh}(\alpha)^{-1} \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ = (\alpha \mbox{sh}(\beta) \sigma_1 \mbox{sh}(\alpha)^{-1}) \cdot \mbox{sh}(\alpha \mbox{sh}(\gamma) \sigma_1 \mbox{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \mbox{sh}(\alpha \mbox{sh}(\beta) \sigma_1 \mbox{sh}(\alpha)^{-1})^{-1} \\ = \alpha \mbox{sh}(\beta) \sigma_1 \mbox{sh}(\alpha)^{-1} \mbox{sh}(\alpha) \mbox{sh}^2(\gamma) \sigma_2 \mbox{sh}^2(\alpha)^{-1} \sigma_1 \mbox{sh}^2(\alpha) \sigma_2^{-1} \mbox{sh}^2(\beta)^{-1} \mbox{sh}(\alpha)^{-1} \\ = \alpha \mbox{sh}(\beta) \sigma_1 \mbox{sh}^2(\gamma) \sigma_2 \sigma_1 \sigma_2^{-1} \mbox{sh}^2(\beta)^{-1} \mbox{sh}(\alpha)^{-1} \\ = \alpha \cdot \mbox{sh}(\beta) \cdot \mbox{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \mbox{sh}^2(\beta)^{-1} \cdot \mbox{sh}(\alpha)^{-1} \\ \end{array}$$

• <u>Remark</u>: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta,$

but less convenient here.

<ロト 4月ト 4日ト 4日ト 日 900</p>

• <u>Remark</u>: Works similarly with

$$\mathsf{x} \triangleright \mathsf{y} := \mathsf{x} \cdot \phi(\mathsf{y}) \cdot \mathsf{e} \cdot \phi(\mathsf{x})^{-1}$$

whenever G is a group G, e belongs to G, and ϕ is an endomorphism ϕ satisfying $e \phi(e) e = \phi(e) e \phi(e)$ and $\forall x (e \phi^2(x) = \phi^2(x) e).$ ▶ Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$ Then $\alpha \sqsubset \beta$ in B_{∞} implies that $\alpha^{-1}\beta$ has an expression with ≥ 1 letter σ_1 and no σ_1^{-1} . For such a braid γ , the word $\rho(\gamma)(x_1)$ in F_{∞} finishes with the letter x_1^{-1} . \Box

• Corollary: (solution of the wp of SD) Given two terms T, T':

- Evaluate T and T' at x := 1 in B_{∞} ;
- Then $T =_{SD} T'$ iff T(1) = T'(1) in B_{∞} .

Plan:

Minicourse I. The SD-world

- 1. A general introduction
 - Classical and exotic examples
 - Connection with topology: quandles, racks, and shelves
 - A chart of the SD-world
- 2. The word problem of SD: a semantic solution
 - Braid groups
 - The braid shelf
 - A freeness criterion
- 3. The word problem of SD: a syntactic solution
 - The free monogenerated shelf
 - The comparison property
 - The Thompson's monoid of SD
- Minicourse II. Connection with set theory
 - 1. The set-theoretic shelf
 - Large cardinals and elementary embeddings

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- The iteration shelf
- 2. Periods in Laver tables
 - Quotients of the iteration shelf
 - The dictionary
 - Results about periods

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.
 - ▶ Proof: trivial.
 - \blacktriangleright ...but says nothing: =_{SD} not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X: assuming $X = \{a, b, c\}$,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
Assume *T* = *T*₁ ▷ *T*₂ and *n* > ht(*T*). Then *n* − 1 > ht(*T*₁) and *n* − 1 > ht(*T*₂).
Then
$$x^{[n+1]} =_{SD} T_1 ▷ x^{[n]}$$
 by induction hypothesis for *T*₁
 $=_{SD} T_1 ▷ (T_2 ▷ x^{[n-1]})$ by induction hypothesis for *T*₂
 $=_{SD} (T_1 ▷ T_2) ▷ (T_1 ▷ x^{[n-1]})$ by applying SD
 $=_{SD} (T_1 ▷ T_2) ▷ x^{[n]}$ by induction hypothesis for *T*₁
 $= T ▷ x^{[n]}$.

• Lemma (comparison I): Write $T {}_{\Box SD} T'$ for $\exists T'' (T' {}_{SD} T {}^{\triangleright} T'')$, and ${}_{\Box SD}^{*}$ for the transitive closure of ${}_{\Box SD}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T {}_{\Box SD}^{*} T'$, $T {}_{SD} T'$, $T' {}_{\Box SD}^{*} T$.

► Proof:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Application: If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are _*-comparable (with _*= transitive closure of _ = iterated left divisibility).
- <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume *S* gen'd by *g*. "*S* is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \sqsubset_{SD}^* T'$ or $T' \sqsubset_{SD}^* T$, whence $T(g) \sqsubset^* T'(g)$ or $T'(g) \sqsubset^* T(g)$. As \sqsubset has no cycle in *S*, both imply $T(g) \neq T'(g)$.

- <u>Proposition</u>: If there exists at least one shelf with \Box acyclic, then \Box_{SD}^* has no cycle.
 - ► And such examples do exist: 1. Iteration shelf (Laver, 1989);
 - 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).
- <u>Corollary</u>: (solution of the wp of SD) Given two terms T, T':
 - ▶ Find a common LD-expansion T'' of $T \triangleright x^{[n]}$ and $T' \triangleright x^{[n]}$;
 - ▶ Find r and r' satisfying $T \rightarrow_{SD} \text{left}^r(T'')$ and $T' \rightarrow_{SD} \text{left}^{r'}(T'')$.
 - Then $T =_{SD} T'$ iff r = r'.

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD $_{\alpha}$ be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD $_{\alpha}$ and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element χ_T of \mathcal{M}_{SD} that maps $x^{[n+1]}$ to $T \triangleright x^{[n]}$. ▶ Follow the inductive proof of the absorption property:

$$\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}$$
(*)

• (**)

- $SD_{11\alpha}SD_{\alpha} = SD_{\alpha}SD_{11\alpha}$, $SD_{1\alpha}SD_{\alpha}SD_{1\alpha}SD_{0\alpha} = SD_{\alpha}SD_{1\alpha}SD_{\alpha}$, etc. When every SD_{α} s.t. α contains 0 is collapsed and Write σ ▶ When every SD_{α} s.t. α contains 0 is collapsed, only the $SD_{11...1}$ s remain.
 - Write $\sigma_{i\perp 1}$ for the image of SD_{11...1}, *i* times 1. Then (**) becomes
 - Write σ_{i+1} for the image of j = 1. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j i| \ge 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for |j i| = 1.
 - ▶ The resulting quotient of \mathcal{M}_{SD} is B_{∞} (!).
 - so collapsing all $sh_0(\phi)$ maps $T \triangleright x^{[n]}$ to $T' \triangleright x^{[n]}$, $to T' \models x^{[n]}$, ▶ If ϕ maps T to T', then $sh_0(\phi)$ maps $T \triangleright x^{[n]}$ to $T' \triangleright x^{[n]}$,
 - ▶ Its definition is the projection of (*), i.e.,

$$a \triangleright b := a \cdot \operatorname{sh}(b) \cdot \sigma_i \cdot \operatorname{sh}(a)^{-1}$$
.

• The "magic" braid operation revisited:

whence $\chi_{T_1 \triangleright T_2} = \chi_{T_1} \cdot \operatorname{sh}_1(\chi_{T_2}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_1(\chi_{T_1}^{-1})$,

which projects to the braid operation.

.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]

Plan:

- Minicourse I. The SD-world
 - 1. A general introduction
 - Classical and exotic examples
 - Connection with topology: quandles, racks, and shelves
 - A chart of the SD-world
 - 2. The word problem of SD: a semantic solution
 - Braid groups
 - The braid shelf
 - A freeness criterion
 - 3. The word problem of SD: a syntactic solution
 - The free monogenerated shelf
 - The comparison property
 - The Thompson's monoid of SD
- Minicourse II. Connection with set theory
 - 1. The set-theoretic shelf
 - Large cardinals and elementary embeddings

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- The iteration shelf
- 2. Periods in Laver tables
 - Quotients of the iteration shelf
 - The dictionary
 - Results about periods

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
 - \blacktriangleright Identify further properties of infinite sets = explore further axioms.
 - ► Typical example: axioms of large cardinal = solutions of

super-infinite = infinite infinite finite

- Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms:
- ▶ Repeat the process with "super-infinite".
- Principle: self-similar implies large
 - ▶ X infinite: $\exists j : X \rightarrow X$ (j injective not bijective)
 - ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions) an elementary embedding of X
- Example: \mathbb{N} is not super-infinite.
 - ► A super-infinite set must be so large that it contains <u>un</u>definable elements

(since all definable elements must be fixed).

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$, $V_{\lambda} := \bigcup_{\alpha < \lambda} V_{\alpha}$ for λ limit.

• <u>Fact</u>: If λ is a limit ordinal and $f : V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

▶ Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$; The set $f \cap V_{\alpha}^2$ is included in V_{α}^2 , hence in $V_{\alpha+2}$, hence it belongs to $V_{\alpha+3}$, hence to V_{λ} .

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

(hence a Laver cardinal).

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ∘ j) = κ.
 On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j[j](α) = α), whereas j(κ) > κ implies j[j](j(κ)) > j(κ). We deduce crit(j[j]) = j(κ) > κ.

 $\operatorname{crit}(\mathfrak{j} \circ \mathfrak{j}) = \operatorname{crit}(\mathfrak{j}), \quad \mathsf{but} \quad \operatorname{crit}(\mathfrak{j}[\mathfrak{j}]) > \operatorname{crit}(\mathfrak{j}).$

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• <u>Theorem</u> (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \Box has no cycle in lter(j); hence, lter(j) is a free left-shelf.

- ▶ A realization (the "set-theoretic realization") of the free (left)-shelf,
- ▶ ...plus a proof of that a shelf with acyclic $_$ exists,
- ...whence a proof that \square_{SD} is acyclic on \mathcal{T}_x ,
- ...whence a solution for the word problem of SD

(because both $=_{SD}$ and $__{SD}^*$ are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

 \rightsquigarrow motivation for finding another proof/another realization...

Plan:

- Minicourse I. The SD-world
 - 1. A general introduction
 - Classical and exotic examples
 - Connection with topology: quandles, racks, and shelves
 - A chart of the SD-world
 - 2. The word problem of SD: a semantic solution
 - Braid groups
 - The braid shelf
 - A freeness criterion
 - 3. The word problem of SD: a syntactic solution
 - The free monogenerated shelf
 - The comparison property
 - The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
 - Large cardinals and elementary embeddings

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- The iteration shelf
- 2. Periods in Laver tables
 - Quotients of the iteration shelf
 - The dictionary
 - Results about periods

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- Definition: For j in E_λ, crit_n(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ lter(j)}.
 Done can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]), etc.

• <u>Proposition</u> (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("i and i' agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{crit_n(j)}$ is a congruence on Iter(j), it has 2^n classes, which are those of $j, j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

▶ Proof: (Difficult...) Starts from $j \equiv_{crit(i)} i[j]$ and similar. Uses in particular crit($j_{[m]}$) = crit_n(j) with n maximal s.t. 2^n divides m.

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n-1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

• <u>Corollary</u>: The quotient-structure $lter(j) / \equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write *p* for the $\equiv_{\operatorname{crit}_n(j)}$ -class of $j_{[p]}$. The proposition says that $\operatorname{lter}(j)/\equiv_{\operatorname{crit}_n(j)}$ is a left-shelf whose domain is $\{1, ..., 2^n\}$; By construction, $p = 1_{[p]}$ holds for $p \leq 2^n$. Then $j_{[2^n]} \equiv_{\operatorname{crit}_n(j)}$ id implies $j_{[2^n+1]} \equiv_{\operatorname{crit}_n(j)} j$, whence $2^n \triangleright 1 = 1$ in the quotient. \Box

• A (set-theoretic) realization of A_n as a quotient of the iteration shelf lter(j).

 Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.
</sup>

 Proposition ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff j_[p] maps crit_m(j) to crit_n(j).

▶ Proof: Apply the lemma to the term $x_{[p]}$. As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_[2^m]]), so the RHT is crit(j_[p][j_[2^m]]) = crit_n(j), whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$. (***). First, (***) implies $\pi_{n+1}(p) > 2^m$. Conversely, (***) projects to $(p \triangleright 2^m)^{A_n} = 2^n$,

implying $\pi_n(p) \leq 2^m$. As $\pi_{n+1}(p)$ is $\pi_n(p)$ or $2\pi_n(p)$, (***) is equivalent to the conjunction $\pi_n(p)=2^m$ and $\pi_{n+1}(p)=2^{m+1}$. \Box

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j[j](\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\gamma < j(\beta) \ (j[j](\gamma) \leq j(\alpha)).$$
 (**)

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, j maps crit_m(j) to crit_{\overline{n}}(j). Hence, by the lemma, j[j] maps crit_m(j) to $\leq \operatorname{crit}_{\overline{n}}(j)$. Therefore, there exists $n' \leq \overline{n} \leq n \text{ s.t. } j[j]$ maps crit_m(j) to $\operatorname{crit}_{n'}(j)$. By the dictionary, the period of 2 jumps from 2^m to 2^{m+1} between $A_{n'}$ and $A_{n'+1}$. Hence, the period of 2 in A_n is at least 2^{m+1} .

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals $crit_n(j)$.
 - ▶ <u>Not</u> obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

 Proof: Assume π_n(1) = 2^m. We wish to show that there exists n
 ≥ n s.t. π_n(1) = 2^m and π_{n+1}(1) = 2^{m+1}.
 By the dictionary, this is equivalent to j mapping crit_m(j) to crit_n(j).
 Now j maps crit_m(j), which is crit(j_[2m]), to crit(j_[j2m]].
 As j[j_{12m}] belongs to lter(j), the lemma implies crit(j[j_{12m}]) = crit_n(j) for some n. □

Open questions: Find alternative proofs using no Laver cardinal.

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

- The two main <u>open questions</u> about Laver tables:
 - Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)
 - ▶ Can one use them in low-dimensional topology?

Richard Laver (1942-2012)