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Aims

MATHEMATICS:

(DIVISION ALGEBRAS)2 = MAGIC SQUARE OF LIE ALGEBRAS

PHYSICS (in D=3):

(YANG −MILLS)2 = MAGIC SQUARE OF SUPERGRAVITIES

RESULT :

MATHEMATICS MAGIC SQUARE = PHYSICS MAGIC SQUARE

PHYSICS (in D=3,4,6,10):

(YANG −MILLS)2 = MAGIC PYRAMID OF SUPERGRAVITIES



Outline
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3) Super-Yang-Mills

4) Squaring Yang-Mills

5) Magic square of supergravities in D=3

6) Magic pyramid of supergravities in D=3, 4, 6, 10



1.1 Physics background

Strong nuclear, Weak nuclear and Electromagnetic forces described
by Yang-Mills gauge theory, a non-abelian generalisation of Maxwell
theory with vector field Aµ. Gluons, W, Z and photons have spin 1.

Gravitational force described by Einstein’s general relativity with
metric tensor gµν . Gravitons have spin 2.

But recent work suggests maybe (Gravity) = (Yang −Mills)2

Today focus on deriving global symmetries G of supergravity from
product of two super-Yang-Mills theories eg in D=4

(N = 4 YM) x (N = 4 YM) → (N = 8 supergravity with G = E7)

N=number of supersymmetries



1.2 Supersymmetry

Special relativity requires that laws of physics be invariant under the
translations Pµ and Lorentz rotations Mµν (µ = 0, 1, 2, 3) of the
Poincare algebra

[Pµ,Pν ] = 0

[Mµν ,Pρ] = ηµρPν − ηνρPµ
[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

Representations are either bosons (integer spin) or fermions (odd
half-integer spin).
The Super-Poincare algebra incorporates anticommuting spin 1/2
changing transformations Qα

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ

[Qα,Pµ] = 0 [Mµν ,Qα] = (σµν)α
βQβ

Representations mix bosons and fermions (equal number).



1.3. Generalizations to D 6= 4 and N > 1

Global: eg super-Yang-Mills. Note D=3,4,6,10 are special
D N
10 1
9 1
8 1
7 1
6 1 2
5 1 2
4 1 2 x 4
3 1 2 3 4 5 6 x 8

Local: supergravity

D N
11 1
10 1 2
9 1 2
8 1 2
7 1 2
6 1 2 3 4
5 1 2 3 4
4 1 2 3 4 5 6 x 8
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x 16



2.2 Division algebras

Normed Divison Algebras: four kinds of numbers for which the
Octonions occupy a privileged position:

Name Symbol Imaginary parts

Reals R 0
Complexes C 1
Quaternions H 3
Octonions O 7

Table: Division Algebras



2.3 Division algebras

Division: ax + b = 0 has a unique solution
Associative: a(bc) = (ab)c

Commutative: ab = ba

A construction division? associative? commutative? ordered?

R R yes yes yes yes
C R + e1R yes yes yes no
H C + e2C yes yes no no
O H + e3H yes no no no

S O + e4O no no no no

(Note that Math cutoff at O resembles Physics cutoff at N=8)



2.4 Lie algebras

They provide an intuitive basis for the exceptional Lie algebras:

Classical algebras Rank Dimension

An SU(n + 1) n (n + 1)2 − 1
Bn SO(2n + 1) n n(2n + 1)
Cn Sp(2n) n n(2n + 1)
Dn SO(2n) n n(2n − 1)

Exceptional algebras

E6 6 78
E7 7 133
E8 8 248
F4 4 52
G2 2 14

Table: Classical and exceptional Lie alebras



2.5 Magic square

Freudenthal-Rozenfeld-Tits magic square

AL/AR R C H O

R A1 A2 C3 F4
C A2 A2 + A2 A5 E6
H C3 A5 D6 E7
O F4 E6 E7 E8

Table: Magic square



2.6 Octonions

For a review see [Baez:2001].
An element x ∈ O may be written x = xaea, where a = 0, . . . , 7,
xa ∈ R and {ea} is a basis with one real e0 = 1 and seven
ei , i = 1, . . . , 7 imaginary elements. The octonionic conjugation is
denoted by e∗a , where e∗0 = e0 and e∗i = −ei .
The octonionic multiplication rules are

e2
0 = 1 e0ei = ei eiej = Cijkek ,

where the totally antisymmetric Cijk are the octonionic structure
constants:

Cijk = εijk if ijk ∈ L

with L the set of oriented lines of the Fano plane.

L = {124, 235, 346, 457, 561, 672, 713}.



2.7 Fano plane

The Fano plane has seven points and seven lines (the circle counts as a
line) with three points on every line and three lines through every point.

Fano plane



2.8 Gino Fano

Gino Fano (5 January 1871 to 8 November 1952) was an Italian
mathematician. He was born in Mantua and died in Verona.
Fano worked on projective and algebraic geometry; the Fano plane, Fano
fibration, Fano surface, and Fano varieties are named for him.
Ugo Fano and Robert Fano were his sons.



2.9 Fano quadrangles

It will also be useful to define Qijkl , which is equal to 1 (−1) when
ijkl is an even (odd) permutation of an element of Q, the set of
oriented quadrangles in the Fano plane:

Q = {3567, 4671, 5712, 6123, 7234, 1345, 2456},

and equal to zero otherwise. Equivalently, we can define Qijkl by

Qijkl = − 1
3!
Cmnpεmnpijkl .



2.10 The Associator

The octonions have a trilinear map called the associator given by :

[x , y , z ] = (xy)z − x(yz)

which measures the failure of associativity.
In the same way that the multiplication of the octonionic bases was
realised using the lines of the Fano plane, the associator of three
octonionic bases can be realised using its quadrangles Q :

[ea, eb, ec ] = 2Qabcded

where ea = (e0, ei ). The object Qabcd is totally antisymmetric with
Q0ijk = Cijk .

Qabcd =
1
4!
εabcdefghQ

efgh



2.11 Norm-preserving algebras

To understand the symmetries of the magic square and its relation
to YM we shall need in particular two algebras defined on A.
First, the algebra norm(A) that preserves the norm

〈x |y〉 :=
1
2

(xy + yx) = xaybδab

norm(R) = 0
norm(C) = so(2)

norm(H) = so(4)

norm(O) = so(8)



2.12 Triality Algebra

Second, the triality algebra tri(A)

tri(A) := {(A,B,C )|A(xy) = B(x)y+xC (y)}, A,B,C ∈ so(n), x , y ∈ A}

tri(R) = 0
tri(C) = so(2) + so(2)

tri(H) = so(3) + so(3) + so(3)

tri(O) = so(8)

[Barton and Sudbery:2003]:



2.13 Magic square of (non-compact) algebras g

For the purposes of squaring YM a manifestly AL ↔ AR symmetric
formulation of the square is required.
This is achieved by adapting the triality algebra construction
introduced by Barton and Sudbery.
[Barton and Sudbery:2003, MJD et al:2013]
Our definition is given by (see [MJD et al:2013] for commutators):

g3(AL,AR) := tri(AL) + tri(AR) + 3(AL ×AR).

AL/AR R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
O F4(−20) E6(−14) E7(−5) E8(8)

e8(8) = so(O) + so(O) + 3(O×O)

248 = (28, 1) + (1, 28) + (8v , 8v ) + (8s , 8s) + (8c , 8c)



2.14 Comment

There are different magic squares depending on the choice of real
forms.

Ours should not to be confused with other versions that have
appeared in the so-called ”magic” supergravities in D = 4, 5, 6
[Gunaydin, Sierra and Townsend 1983]

The specific square of real forms we derive from the triality
construction was first obtained in [Cacciatori-Cerchiai-Marrani:2012]
using a “Lorentizian Jordan algebra” adaptation of the Tits formula
[Tits:1962]



2.15 Magic square of maximal compact subalgebras H

We shall also need a magic square of the maximal compact
subalgebras. This is given by the reduced triality construction,

g1(AL,AR) := tri(AL) + tri(AR) + (AL ×AR),

AL/AR R C H O

R SO(2) SO(3)× SO(2) SO(5)× SO(3) SO(9)
C SO(3)× SO(2) [SO(3)× SO(2)]2 SO(6)× SO(3) SO(10)× SO(2)
H SO(5)× SO(3) SO(6)× SO(3) SO(8)× SO(4) SO(12)× SO(3)
O SO(9) SO(10)× SO(2) SO(12)× SO(3) SO(16)

Table: Magic square of maximal compact subalgebras.



3.0 Yang-Mills

Lie-algebra valued 1-form A

Covariant derivative DX = dX + [A,X ]

Commutator DDX = [F ,X ]

2-form field strength F = dA + AA

Bianchi identity DF = 0

Field equation D ∗ F = 0

Action principle S = 1
2

∫
Tr(F ∗ F )



3.1 Supersymmetry

We give a unified description of
D = 3 Yang-Mills with N = 1, 2, 4, 8
D = 4 Yang-Mills with N = 1, 2, 4
D = 6 Yang-Mills with N = 1, 2
D = 10 Yang-Mills with N = 1
in terms of a pair of division algebras (An,AnN ), n = D − 2
We present a master Lagrangian, defined over AnN -valued fields,
which encapsulates all cases.
The overall (spacetime plus internal) on-shell symmetries are given
by the corresponding triality algebras.
We use imaginary AnN -valued auxiliary fields to close the
non-maximal supersymmetry algebra off-shell. The failure to close
off-shell for maximally supersymmetric theories is attributed directly
to the non-associativity of the octonions.
NB This is not applicable to D = 10, so D < 10 Yang-Mills not just
”trivial” dimensional reduction of D = 10.



3.2 Earlier work

For earlier work on A = (R,C,H,O) and D = (3, 4, 6, 10)
[Kugo and Townsend: 1983
Sudbery: 1984
Evans: 1987, 1994
MJD: 1987
Fairlie and Manogue: 1987
Manogue and Schray: 1993
Baez: 2001, 2009
Baez-Huerta 2009-2017: “Division algebras and supersymmetry I-IV”
Anastasiou, Borsten, Duff, Hughes, Marrani, Nagy 2014-2017]
For other work on octonions in high energy physics:
[Gunaydin and Gursey: 1973, 1974
Gunaydin, Sierra and Townsend: 1983
Fubini and Nicolai: 1985
Berkovits: 1993
Gunaydin and Nicolai:1995
Dray and Manogue: 2004
Feingold, Kleinschmidt and Nicolai: 2008]



3.3 D = 3,N = 8 Yang-Mills

The D = 3, N = 8 super YM action is given by

S =

∫
d3x

(
−1
4
FA
µνF

Aµν − 1
2
Dµφ

A
i D

µφAi + i λ̄Aa γ
µDµλ

A
a

−1
4
g2fBC

AfDE
AφBi φ

D
i φ

C
j φ

E
j − gfBC

AφBi λ̄
AaΓi

abλ
Cb

)
,

where the Dirac matrices Γi
ab, i = 1, . . . , 7, a, b = 0, . . . , 7, belong to

the SO(7) Clifford algebra.
The key observation is that Γi

ab can be represented by the octonionic
structure constants,

Γi
ab = i(δbiδa0 − δb0δai + Ciab),

which allows us to rewrite the action over octonionic fields



3.4 A = R,C,H,O→ N = 1, 2, 4, 8 supersymmetries

If we replace O with a general division algebra A, the result is
N = 1, 2, 4, 8 over R,C,H,O:

S =

∫
d3x

(
−1
4
FA
µνF

Aµν − 1
2
Dµφ

∗ADµφA + i λ̄AγµDµλ
A

−1
4
g2fBC

AfDE
A〈φB |φD〉〈φC |φE 〉

+
i

2
gfBC

A
(
(λ̄AφB)λC − λ̄A(φ∗BλC )

))
,

φ = φiei is an ImA-valued scalar field.
λ = λaea is an A-valued two-component spinor and λ̄ = λ̄ae∗a .
Note, since λa is anti-commuting we are dealing with the algebra of
octonions defined over the Grassmanns.



3.5 Transformation rules

The supersymmetry transformations in this language are given by

δλA =
1
2

(FAµν + εµνρDρφ
A)σµνε+

1
2
gfBC

AφBi φ
C
j σijε,

δAA
µ =

i

2
(ε̄γµλ

A − λ̄Aγµε),

δφA =
i

2
ei [(ε̄ei )λ

A − λ̄A(eiε)],

where σµν are the generators of SL(2,R) ∼= SO(1, 2).

For A = R,C,H we can add an auxiliary A-valued scalar for an
off-shell formulation of the supersymmetry algebra.

For A = O the algebra fails to close because of non-associativity.
[MJD et al: 2013]



4.3 Squaring R,C,H,O Yang-Mills

We have:

Cast the magic square in terms of a manifestly AL ↔ AR symmetric
triality algebra construction,

Written N = 1, 2, 4, 8 YM in terms of fields valued in R,C,H,O

We can now:
Obtain the magic square of supergravities by “squaring”
N = 1, 2, 4, 8 YM.

In the supersymmetric context it is not difficult to see that the
amount of supersymmetry is given by

[NL SYM]× [NR SYM]→ [N = NL +NR SG],



4.4 U-dualities of supergravity

It is harder to see how the other gravitational symmetries arise from
those of Yang-Mills.
For example, D = 4,N = 8 supergravity has a global non-compact
symmetry (U-duality) E7(7) and a local compact symmetry SU(8),
but D = 4,N = 4 super Yang-Mills has global SU(4) R-symmetry.

N D scalars vectors G H

2 10A 1 1 SO(1, 1,R) −
4 6 25 16 SO(5, 5,R) SO(5,R)× SO(5,R)
8 4 70 28 E7(7)(R) SU(8)
16 3 128 - E8(8)(R) SO(16,R)

Table: Symmetry groups (G) of maximal supergravity in D dimensions and
their maximal compact subgroups (H). One may truncate to lower N to get
smaller G and H. The scalars belong to the space G/H.



4.5. Squaring R,C,H,O Yang-Mills in D = 3

Taking a left SYM multiplet

{Aµ(L) ∈ ReAL, φ(L) ∈ ImAL, λ(L) ∈ AL}

and tensoring with a right multiplet

{Aµ(R) ∈ ReAR , φ(R) ∈ ImAR , λ(R) ∈ AR}

we obtain the field content of a supergravity theory valued in both AL

and AR :

Grouping spacetime fields of the same type we find,

gµν ∈ R, Ψµ ∈
(
AL

AR

)
, ϕ ∈

(
AL ⊗AR

AL ⊗AR

)
, χ ∈

(
AL ⊗AR

AL ⊗AR

)



4.6 Grouping together

Grouping spacetime fields of the same type we find,

gµν ∈ R, Ψµ ∈
(
AL

AR

)
, ϕ, χ ∈

(
AL ⊗AR

AL ⊗AR

)
. (1)

Note we have dualised all resulting p-forms, in particular vectors to
scalars.
The R-valued graviton and AL ⊕AR -valued gravitino carry no
degrees of freedom.
The (AL ⊗AR)2-valued scalar and Majorana spinor each have
2(dimAL × dimAR) degrees of freedom.
Fortunately, AL ⊕AR and (AL ⊗AR)2 are precisely the
representation spaces of the vector and (conjugate) spinor.
E.g. in the maximal case of AL,AR = O, we have the 16, 128 and
128′ of SO(16).



4.7. Gravity Magic Square in D = 3

In D = 3 tensoring NL = 1, 2, 4, 8 and NR = 1, 2, 4, 8 Yang-Mills
multiplets yields a 4× 4 square description of supergravities with
N = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16.

RR RC RH RO 2 3 5 9
CR CC CH CO 3 4 6 10
HR HC HH HO 5 6 8 12
OR OC OH OO 9 10 12 16

The G/H U-dualities are precisely those of the Freudenthal Magic
Square!

G : g3(AL,AR) := tri(AL) + tri(AR) + 3(AL ×AR).

H : g1(AL,AR) := tri(AL) + tri(AR) + (AL ×AR).



4.8 U-dualities from division algebras

U-dualities G are realised non-linearly on the scalars, which
parametrise the symmetric spaces G/H.
This can be understood using the remarkable identity:

(AL ⊗AR)P2 ∼= G/H.

For more on these “projective planes” see e.g. [Rosenfeld: 1954,
1995, Freudenthal:1964, Baez: 2001, Landsberg and Manivel: 2001]
The scalar fields may be regarded as points in (AL ⊗AR)P2

The tangent space at any point of (AL ⊗AR)P2 is just
(AL ⊗AR)2, the required representation space of H

Example: the Cayley plane OP2, with isometry group F4(−52):

F4(−52)/Spin(9) ∼= (R⊗O)P2 = OP2

The tangent space at any point of OP2 is O2, the spinor of Spin(9)



4.9 Magic square

The N > 8 supergravities in D = 3 are unique, all fields belonging
to the gravity multiplet, while those with N ≤ 8 may be coupled to
k additional matter multiplets [Marcus and Schwarz:1983; deWit,
Tollsten and Nicolai:1992]. The real miracle is that tensoring left
and right YM multiplets yields the field content of N = 2, 3, 4, 5, 6, 8
supergravity with k = 1, 1, 2, 1, 2, 4: just the right matter content to
produce the U-dualities appearing in the magic square.



4.10 Conclusion

In both cases the field content is such that the U-dualities exactly
match the algebras of the magic square:

AL/AR R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
O F4(−20) E6(−14) E7(−5) E8(8)

Table: Magic square

This D = 3 square is the base of a Magic Pyramid



5.0 D=3,4,6,10

BUT there is also a more familiar R,C,H,O description of
spacetime based on

SL(2,A) = SO(n + 1, 1)

the Lorentz algebra in D = n + 2 dimensions (not strictly true when
A=O but Sudbery has a way of dealing with it.)
Baez and Huerta show that under supersymmetry the Yang-Mills
action changes by

δS =

∫
< χ, (ε.χ)χ >

but this vanishes in D=3,4,6,10 by virtue of R C H O being
alternative. See John’s lecture.



5.1 Gravity Magic Pyramid

Tensoring left and right yields:

D = 3 A magic 4× 4 square RR, CR, CC, HR, HC, HH, OR, OC, OH,
OO description of supergravities with N = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16.

D = 4 A 3× 3 square RR, CR, CC, HR, HC, HH description of
supergravities with N = 2, 3, 4, 5, 6, 8.

D = 6 A 2× 2 square RR, CR, CC description of supergravities with
N = 2, 3, 4.

D = 10 A 1× 1 square RR description of supergravities with N = 2.
Together these form The Magic Pyramid.
The corresponding U-duality groups are given by a new algebraic
structure, the magic pyramid formula, which may be regarded as
being defined over three division algebras, one for spacetime and
each of the left/right Yang-Mills multiplets.



5.2 Spacetime Fields in D = n + 2

The division algebras can be used to describe field theory in Minkowski
space using the Lie algebra isomorphism [Sudbery: 1984]

so(1, 1 + n) ∼ sl(2,A).

Spacetime spinors: A-valued doublets.
Spacetime vectors: A-valued 2× 2 Hermitian matrices.
Connected to conventional notation via generalised A-valued Paulis

Field Symbol Representation Rep. Symbol Algebra
ΨA Spinor S+ so(1, dimA+ 1)
XA Conjugate Spinor S− so(1, dimA+ 1)
AA Vector V so(1, dimA+ 1)
ψA Spinor s so(dimA)
χA Conjugate Spinor c so(dimA)
aA Vector v so(dimA)

Table: A summary of the fields and notation used in D = n + 2



5.3 Super Yang-Mills in D = dimA+ 2 = 3, 4, 6, 10

N -extended super Yang-Mills can be formulated over the division
algebras in D = dimA+ 2 = 3, 4, 6, 10
[Kugo-Townsend: 1983, Evans: 1987, Baez-Huerta: 2009, MJD et al: 2013]

D/N 1 2 4 8

10 SO(8)ST

6 SO(4)ST SO(4)ST
× Sp(1)R ×

(
Sp(1)× Sp(1)

)
R

4 SO(2)ST SO(2)ST SO(2)ST
×U(1)R ×

(
SU(2)× U(1)2

)
R
× SU(4)R

3 1 SO(2)R SO(4)R SO(8)R

Table: Space-time Little and R-symmetry groups are related to the triality
algebras of A



5.4. Magic Pyramid: G symmetries



5.5 Magic Pyramid: H symmetries



5.6 Summary Gravity: Conformal Magic Pyramid

We also construct a conformal magic pyramid by tensoring
conformal supermultiplets in D = 3, 4, 6.

Walls of pyramid now given by magic square too, except for the
missing entry in D = 10

Suggestive of an exotic theory with G/H duality structure
F4(4)/Sp(3)× Sp(1).



5.7 Conformal Magic Pyramid: G symmetries


