RETRACT ORTHOGONALITY AND ORTHOGONALITY OF n-ARY OPERATIONS

Iryna Fryz

Khmelnitskiy National University,
Department of Programming, Computer and Telecommunication systems, Ukraine

July 29-August 5, 2017

Definition of orthogonality

Definition

n-ary operations $f_{1}, \ldots, f_{k}(n \geqslant 2, k \leqslant n)$ on $Q(m:=|Q|)$ are called orthogonal, if for every $b_{1}, \ldots, b_{k} \in Q$ the system

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=b_{1} \tag{1}\\
\ldots \ldots \ldots \ldots \ldots \\
f_{k}\left(x_{1}, \ldots, x_{n}\right)=b_{k}
\end{array}\right.
$$

has m^{n-k} solutions. If $n=k$, then (1) has a unique solution.
If $k=1$, then f_{1} is called complete, i.e., for all $b_{1} \in Q$

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=b_{1} \tag{2}
\end{equation*}
$$

has m^{n-1} solutions.

CONSTRUCTION METHODS OF ORTHOGONAL OPERATIONS

[1] A.S. Bektenov, T Yakubov, Systems of orthogonal n-ary operations, Izvestiya AN MSSR, Seria fiz.-tehn. i mat. nayk, 1974, 3, 7 - 17.
[2] M. Trenkler, On orthogonal latin p-dimensional cubes, Czechoslovak Mathematical Journal, 2005, 55 (130), 725-728.
[3] G. Belyavskaya, G.L. Mullen, Orthogonal hypercubes and n-ary operations, Quasigroups and Related Systems, 2005, 13, 1, 73-86.
[4] Fryz I.V., Sokhatsky F.M. Block composition algorithm for constructing orthogonal n-ary operations, Discrete mathematics, 2017, 340, 1957-1966.

Definition of invertibility

An operation f is called i-invertible if for arbitrary elements $a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}$ there exists a unique element x such that

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)=b \tag{3}
\end{equation*}
$$

If f is i-invertible for all $i \in \overline{1, n}:=\{1,2, \ldots, n\}$, then it is called an invertible or quasigroup operation.

Problems

(1) relations between orthogonal n-ary operations and their orthogonal retracts;
(2) complementing of a k-tuple of orthogonal n-ary operations $(k<n)$ to an n-tuple of orthogonal n-ary operations.

Problems

(1) relations between orthogonal n-ary operations and their orthogonal retracts;
(2) complementing of a k-tuple of orthogonal n-ary operations ($k<n$) to an n-tuple of orthogonal n-ary operations.

Definition of retract

Let f be an n-ary operation on a set Q.

An ($n-1$)-ary operation $f_{i, a}$ is called a retract of f by element a, if it is obtained from f by replacing variable x_{i} with an element $a \in Q$, i.e., if it is defined by

$$
\begin{align*}
& f_{i, a}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)= \tag{4}\\
& \quad f\left(x_{1}, \ldots, x_{i-1}, a_{i}, x_{i+1}, \ldots, x_{n}\right) .
\end{align*}
$$

Definition of retract

Unary operation $f_{(\bar{b},\{i\})}$ defined by

$$
\begin{equation*}
f_{(\bar{b},\{i\})}\left(x_{i}\right)=f\left(b_{1}, \ldots, b_{i-1}, x_{i}, b_{i+1}, \ldots, b_{n}\right) \tag{5}
\end{equation*}
$$

is unary $(\bar{b},\{i\})$-retract of $f, \bar{b}:=\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n}\right)$.

An operation $f_{(\bar{a}, \delta)}$ which is defined by

$$
f_{(\bar{a}, \delta)}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right):=f\left(y_{1}, \ldots, y_{n}\right)
$$

Definition of retract

Unary operation $f_{(\bar{b},\{i\})}$ defined by

$$
\begin{equation*}
f_{(\bar{b},\{i\})}\left(x_{i}\right)=f\left(b_{1}, \ldots, b_{i-1}, x_{i}, b_{i+1}, \ldots, b_{n}\right) \tag{5}
\end{equation*}
$$

is unary $(\bar{b},\{i\})$-retract of $f, \bar{b}:=\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n}\right)$.
$\delta:=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq \overline{1, n}, \quad\left\{j_{1}, \ldots, j_{n-k}\right\}:=\overline{1, n} \backslash \delta, \quad \bar{a}:=\left(a_{j_{1}}, \ldots, a_{j_{n-k}}\right)$.
An operation $f_{(\bar{a}, \delta)}$ which is defined by

$$
\begin{equation*}
f_{(\bar{a}, \delta)}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right):=f\left(y_{1}, \ldots, y_{n}\right) \tag{6}
\end{equation*}
$$

where $y_{i}:=\left\{\begin{array}{l}x_{i}, \text { if } i \in \delta, \\ a_{i}, \text { if } i \notin \delta\end{array}\right.$ is called (\bar{a}, δ)-retract or δ-retract of f.

Definition of retract orthogonality

Definition

Operations $f_{1 ;\left(\bar{a}_{1}, \delta\right)}, f_{2 ;\left(\bar{a}_{2}, \delta\right)}, \ldots, f_{k ;\left(\bar{a}_{k}, \delta\right)}$ are called similar δ-retracts of n-ary operations f_{1}, \ldots, f_{k} if $\bar{a}_{1}=\bar{a}_{2}=\cdots=\bar{a}_{k}$.

Definition

If all similar δ-retracts of f_{1}, \ldots, f_{k} are orthogonal, then the operations f_{1}, \ldots, f_{k} are called δ-retractly orthogonal.

Definition of retract orthogonality

Definition

Operations $f_{1 ;\left(\bar{a}_{1}, \delta\right)}, f_{2 ;\left(\bar{a}_{2}, \delta\right)}, \ldots, f_{k ;\left(\bar{a}_{k}, \delta\right)}$ are called similar δ-retracts of n-ary operations f_{1}, \ldots, f_{k} if $\bar{a}_{1}=\bar{a}_{2}=\cdots=\bar{a}_{k}$.

Definition

If all similar δ-retracts of f_{1}, \ldots, f_{k} are orthogonal, then the operations f_{1}, \ldots, f_{k} are called δ-retractly orthogonal.

Problem 1. Relations between orthogonality and retract orthogonality

Theorem 1 (I. Fryz, 2017)

If for some $\delta \subset \overline{1, n}$ a tuple of n-ary operations is δ-retractly orthogonal, then the tuple is orthogonal.

I.Fryz, Orthogonality and retract orthogonality of operations (in print).

Problem 1. Relations between orthogonality and retract orthogonality

Theorem 1 (I. Fryz, 2017)

If for some $\delta \subset \overline{1, n}$ a tuple of n-ary operations is δ-retractly orthogonal, then the tuple is orthogonal.

Theorem 2 (I. Fryz, 2017)

There exist k-tuples of orthogonal n-ary operations such that for some $\delta \subset \overline{1, n},|\delta|=k$, they are not δ-retractly orthogonal.
I.Fryz, Orthogonality and retract orthogonality of operations (in print).

Specification for central quasigroups

If an n-ary quasigroup f is linear on a group $(Q ;+)$, then

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}+a \tag{7}
\end{equation*}
$$

where $\boldsymbol{a} \in Q$ and $\alpha_{1}, \ldots, \alpha_{n}$ are automorphisms of ($Q ;+$). If $(Q ;+)$ is abelian, then f is called a central quasigroup (or a T-quasigroup).

Specification for central quasigroups

If an n-ary quasigroup f is linear on a group $(Q ;+)$, then

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}+a \tag{7}
\end{equation*}
$$

where $\boldsymbol{a} \in Q$ and $\alpha_{1}, \ldots, \alpha_{n}$ are automorphisms of ($Q ;+$). If $(Q ;+)$ is abelian, then f is called a central quasigroup (or a T-quasigroup).

Theorem 3 (l. Fryz, 2017)

Let $k \leqslant n$ and p be a prime number. n-ary central quasigroups f_{1}, \ldots, f_{k} over field $\left(\mathbb{Z}_{p} ;+, \cdot\right)$ are orthogonal if and only if there exists δ such that $|\delta|=k$ and f_{1}, \ldots, f_{k} are δ-retractly orthogonal.

Problem 2. Complementing orthogonal operations

 Embedding of orthogonal operations
Theorem (G. Belyavskaya, G.Mullen, 2005)

Every k-tuple of orthogonal n-ary operations $(k<n)$ can be embedded in an n-tuple of orthogonal n-ary operations.
G. Belyavskaya, G.L. Mullen, Orthogonal hypercubes and n-ary operations, Quasigroups and Related Systems, 2005, 13, 1, $73-86$.

Problem 2. Complementing of orthogonal operations

 Embedding of orthogonal operations
Theorem (G. Belyavskaya, G.Mullen, 2005)

Every k-tuple of orthogonal n-ary operations $(k<n)$ can be embedded in an n-tuple of orthogonal n-ary operations.

This means that for every k-tuple of orthogonal n-ary operations f_{1}, \ldots, f_{k}, there exist an $(n-k)$-tuple of orthogonal n-ary operations f_{k+1}, \ldots, f_{n} such that n-tuple f_{1}, \ldots, f_{n} is orthogonal.

Every complete n-ary operation is complementable to an n-tuple of orthogonal n-ary operations.
G. Belyavskaya, G.L. Mullen, Orthogonal hypercubes and n-ary operations, Quasigroups and Related Systems, 2005, 13, 1, 73 - 86 .

Complementing orthogonal n-ary operations

Algorithm 1.

Theorem (Belyavskaya and Mullen's algorithm, 2005)

Let f_{1}, \ldots, f_{n} be n-ary $(n-i+1)$-invertible operations for all $i \in \overline{1, n}$. Operations g_{1}, \ldots, g_{n} defined by

$$
\begin{aligned}
& \left(g_{1}\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}, \ldots, x_{n}\right),\right. \\
& g_{2}\left(x_{1}, \ldots, x_{n}\right)=f_{2}\left(x_{1}, \ldots, x_{n-1}, g_{1}\left(x_{1}, \ldots, x_{n}\right)\right), \\
& g_{3}\left(x_{1}, \ldots, x_{n}\right)=f_{3}\left(x_{1}, \ldots, x_{n-2}, g_{1}\left(x_{1}, \ldots, x_{n}\right), g_{2}\left(x_{1}, \ldots, x_{n}\right)\right), \\
& g_{n}\left(x_{1}, \ldots, x_{n}\right)=f_{n}\left(x_{1}, g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{n-1}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$ are orthogonal.

Complementing orthogonal n-ary operations

Algorithm 1.

Let $\delta=\left\{i_{1}, \ldots, i_{k}\right\} \subset \overline{1, n}$ and $g_{i_{1}}, \ldots, g_{i_{k}}$ are δ-retractly orthogonal Operations $g_{i_{k+1}}, \ldots, g_{i_{n}}$ are constructed by

1) choose a partition $\pi:=\left\{\delta, \pi_{2}, \ldots, \pi_{q}\right\}$ of $\overline{1, n}$, $f_{i_{k+1}}, \ldots, f_{i_{n}}$ such that for every $r \in \overline{2, q}$ a tuple $\left\{f_{j} \mid j \in \pi_{r}\right\}$ is π_{r}-retractly orthogonal;
2) for every $j \in \pi_{2}$, operation g_{j} is constructed by

where

r) for every $j \in \pi_{r}, r=3, \ldots, q$, operation g_{j} is constructed by
(8), where

Complementing orthogonal n-ary operations

Algorithm 1.

Let $\delta=\left\{i_{1}, \ldots, i_{k}\right\} \subset \overline{1, n}$ and $g_{i_{1}}, \ldots, g_{i_{k}}$ are δ-retractly orthogonal Operations $g_{i_{k+1}}, \ldots, g_{i_{n}}$ are constructed by

1) choose a partition $\pi:=\left\{\delta, \pi_{2}, \ldots, \pi_{q}\right\}$ of $\overline{1, n}$,
$f_{i_{k+1}}, \ldots, f_{i_{n}}$ such that for every $r \in \overline{2, q}$ a tuple $\left\{f_{j} \mid j \in \pi_{r}\right\}$ is π_{r}-retractly orthogonal;
2) for every $j \in \pi_{2}$, operation g_{j} is constructed by

$$
\begin{equation*}
g_{j}\left(x_{1}, \ldots, x_{n}\right):=f_{j}\left(t_{1}, \ldots, t_{n}\right) \tag{8}
\end{equation*}
$$

where

$$
t_{s}:= \begin{cases}g_{s}\left(x_{1}, \ldots, x_{n}\right), & \text { if } s \in \delta \\ x_{s}, & \text { otherwise }\end{cases}
$$

for every $j \in \pi_{r}, r=3, \ldots, q$, operation g_{j} is constructed by (8), where

Complementing orthogonal n-ary operations

Algorithm 1.

Let $\delta=\left\{i_{1}, \ldots, i_{k}\right\} \subset \overline{1, n}$ and $g_{i_{1}}, \ldots, g_{i_{k}}$ are δ-retractly orthogonal Operations $g_{i_{k+1}}, \ldots, g_{i_{n}}$ are constructed by

1) choose a partition $\pi:=\left\{\delta, \pi_{2}, \ldots, \pi_{q}\right\}$ of $\overline{1, n}$,
$f_{i_{k+1}}, \ldots, f_{i_{n}}$ such that for every $r \in \overline{2, q}$ a tuple $\left\{f_{j} \mid j \in \pi_{r}\right\}$ is π_{r}-retractly orthogonal;
2) for every $j \in \pi_{2}$, operation g_{j} is constructed by

$$
\begin{equation*}
g_{j}\left(x_{1}, \ldots, x_{n}\right):=f_{j}\left(t_{1}, \ldots, t_{n}\right) \tag{8}
\end{equation*}
$$

where

$$
t_{s}:= \begin{cases}g_{s}\left(x_{1}, \ldots, x_{n}\right), & \text { if } s \in \delta \\ x_{s}, & \text { otherwise }\end{cases}
$$

r) for every $j \in \pi_{r}, r=3, \ldots, q$, operation g_{j} is constructed by (8), where

$$
t_{s}:= \begin{cases}g_{s}\left(x_{1}, \ldots, x_{n}\right), & \text { if } s \in \delta \cup \pi_{2} \cup \cdots \cup \pi_{r-1} \\ x_{s}, & \text { otherwise }\end{cases}
$$

Complementing orthogonal n-ary operations

Theorem 4 (I. Fryz, 2017)

A $(n-k)$-tuple of n-ary operations $g_{i_{k+1}}, \ldots, g_{i_{n}}$ constructed by Algorithm 1 is a complement of a k-tuple of δ-retractly orthogonal n-ary operations $g_{i_{1}}, \ldots, g_{i_{k}}$ to an n-tuple of orthogonal n-ary operations.

If partition $\pi:=\left\{\delta, \pi_{1}, \ldots, \pi_{q}\right\}$ of $\overline{1, n}$, where $\pi_{r}=:\left\{i_{k+r}\right\}$ for all $r \in \overline{1, n-k}$, then constructed complements are trivial. Thus, we have to take $i_{k+1^{-}}, \ldots, i_{n}$-invertible n-ary operations.

Estimation of complements

Theorem 6 (I. Fryz, 2017)

The number of all complements constructed by Algorithm 1 of a k-tuple of δ-retractly orthogonal n-ary operations $(|\delta|=k$, $k<n$) on Q of order m to an n-tuple of orthogonal n-ary operations is greater than

$$
\frac{(m!)^{(n-k) m^{n-1}}}{(n-k)!}
$$

Complementing orthogonal k-ary operations

Algorithm 2.

Let $\delta \subset \overline{1, n}$ and h_{1}, \ldots, h_{k} be orthogonal k-ary operations.

1) choose $(n-k+1)$-ary 1 -invertible operations p_{1}, \ldots, p_{k} and a permutation $\sigma \in \mathrm{S}_{n}$ such that $\sigma^{-1} \delta=\overline{1, k}$;
2) operations f_{1}, \ldots, f_{k} are constructed by

3) operations $g_{i_{1}}, \ldots, g_{i_{k}}$ are obtained from f_{1}, \ldots, f_{k} in the following way:

4) implementation of Algorithm 1

Complementing orthogonal k-ary operations

Algorithm 2.

Let $\delta \subset \overline{1, n}$ and h_{1}, \ldots, h_{k} be orthogonal k-ary operations.

1) choose ($n-k+1$)-ary 1 -invertible operations p_{1}, \ldots, p_{k} and a permutation $\sigma \in \mathrm{S}_{n}$ such that ${ }^{\sigma^{-1}} \delta=\overline{1, k}$;
2) operations f_{1}, \ldots, f_{k} are constructed by

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right):=p_{1}\left(h_{1}\left(x_{1}, \ldots, x_{k}\right), x_{k+1}, \ldots, x_{n}\right), \tag{9}\\
\ldots \\
f_{k}\left(x_{1}, \ldots, x_{n}\right):=p_{k}\left(h_{k}\left(x_{1}, \ldots, x_{k}\right), x_{k+1}, \ldots, x_{n}\right) ;
\end{array}\right.
$$

3) operations $g_{i_{1}}, \ldots, g_{i_{k}}$ are obtained from f_{1}, \ldots, f_{k} in the following way:

[^0]
Complementing orthogonal k-ary operations

Algorithm 2.

Let $\delta \subset \overline{1, n}$ and h_{1}, \ldots, h_{k} be orthogonal k-ary operations.

1) choose ($n-k+1$)-ary 1 -invertible operations p_{1}, \ldots, p_{k} and a permutation $\sigma \in \mathrm{S}_{n}$ such that ${ }^{\sigma^{-1}} \delta=\overline{1, k}$;
2) operations f_{1}, \ldots, f_{k} are constructed by

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right):=p_{1}\left(h_{1}\left(x_{1}, \ldots, x_{k}\right), x_{k+1}, \ldots, x_{n}\right), \tag{9}\\
\ldots \\
f_{k}\left(x_{1}, \ldots, x_{n}\right):=p_{k}\left(h_{k}\left(x_{1}, \ldots, x_{k}\right), x_{k+1}, \ldots, x_{n}\right) ;
\end{array}\right.
$$

3) operations $g_{i_{1}}, \ldots, g_{i_{k}}$ are obtained from f_{1}, \ldots, f_{k} in the following way:

$$
g_{i_{1}}:={ }^{\sigma} f_{1}, \quad \ldots, \quad g_{i_{k}}:={ }^{\sigma} f_{k} ;
$$

4) implementation of Algorithm 1

Complementing orthogonal k-ary operations

Algorithm 2.

Let $\delta \subset \overline{1, n}$ and h_{1}, \ldots, h_{k} be orthogonal k-ary operations.

1) choose ($n-k+1$)-ary 1 -invertible operations p_{1}, \ldots, p_{k} and a permutation $\sigma \in \mathrm{S}_{n}$ such that ${ }^{\sigma^{-1}} \delta=\overline{1, k}$;
2) operations f_{1}, \ldots, f_{k} are constructed by

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right):=p_{1}\left(h_{1}\left(x_{1}, \ldots, x_{k}\right), x_{k+1}, \ldots, x_{n}\right) \tag{9}\\
\left.\ldots \ldots \ldots, \ldots \ldots x_{n}\right):=p_{k}\left(h_{k}\left(x_{1}, \ldots, x_{k}\right), x_{k+1}, \ldots, x_{n}\right) \\
f_{k}\left(x_{1}, \ldots, x_{n}\right.
\end{array}\right.
$$

3) operations $g_{i_{1}}, \ldots, g_{i_{k}}$ are obtained from f_{1}, \ldots, f_{k} in the following way:

$$
g_{i_{1}}:={ }^{\sigma} f_{1_{1}}, \quad \ldots, \quad g_{i_{k}}:={ }^{\sigma} f_{k_{k}}
$$

4) implementation of Algorithm 1.

Complementing orthogonal k-ary operations

Theorem 5 (I. Fryz, 2017)

Algorithm 2 complements a k-tuple of orthogonal k-ary operations to an n-tuple of orthogonal n-ary operations.

Estimation of complements

Theorem (l. Fryz, 2017)

The number of all complements constructed by Algorithm 2 of a k-tuple of orthogonal k-ary operations on a set Q of order m to an n-tuple of orthogonal n-ary operations is greater than

$$
\frac{(m!)^{k m^{n-k}+(n-k) m^{n-1}}}{(n-k)!}
$$

Thank you for your attention

[^0]: 4) implementation of Algorithm 1
