Constructing right conjugacy closed loops

Mark Greer

Department of Mathematics

Fourth Mile High Conference 1 August 2017

Definition

For a loop Q, we define:
left and right translations of a by x right section of Q
right multiplication group of Q multiplication group of Q inner mapping group of Q

$$
a L_{x}=x a \quad a R_{x}=a x
$$

$$
R_{Q}=\left\{R_{x} \mid x \in Q\right\}
$$

$$
\operatorname{Mlt}_{\rho}(Q)=\left\langle R_{Q}\right\rangle
$$

$$
\operatorname{Mlt}(Q)=\left\langle L_{x}, R_{x} \mid \forall x \in Q\right\rangle
$$

$$
\operatorname{lnn}(Q)=\{\theta \in \operatorname{MIt}(Q) \mid 1 \theta=1\}
$$

Definition

A subset S of a group G is closed under conjugation if $x^{-1} y x \in S$ for all $x, y \in S$.

Defintion

A loop Q is a right conjugacy closed loop (or RCC loop) if R_{Q} is closed under conjugation.
Note: $R_{x}^{-1} R_{y} R_{x} \in R_{Q}$ for all $x, y \in Q$.

Proposition

For a loop Q, the following are equivalent:
(1) Q is an RCC loop,
(2) The following holds for all $x, y, z \in Q$:

$$
\begin{equation*}
R_{x}^{-1} R_{y} R_{x}=R_{x \backslash y x} \tag{1}
\end{equation*}
$$

(3) The following holds for all $x, y, z \in Q$:

$$
\begin{equation*}
(x y) z=(x z) \cdot z \backslash(y z) \tag{2}
\end{equation*}
$$

Definition

For a loop Q, a subset S of Q is a subloop if $(S, \cdot, \backslash, /)$ is a loop. A subloop N of a loop Q is a normal subloop, $N \unlhd Q$, if it is invariant under $\operatorname{Inn}(Q)$.

Definitions

the left nucleus of Q, the middle nucleus of Q, the right nucleus of Q, the nucleus of Q, the commutant of Q, the center of Q,
$N_{\lambda}(Q)=\{a \in Q \mid a \cdot x y=a x \cdot y \forall x, y \in Q\}$,
$N_{\mu}(Q)=\{a \in Q \mid x \cdot a y=x a \cdot y \forall x, y \in Q\}$, $N_{\rho}(Q)=\{a \in Q \mid x \cdot y a=x y \cdot a \forall x, y \in Q\}$, $N(Q)=N_{\lambda}(Q) \cap N_{\mu}(Q) \cap N_{\rho}(Q)$,
$C(Q)=\{a \in Q \mid x a=a x \forall x \in Q\}$,
$Z(Q)=N(Q) \cap C(Q)$.

Proposition

Let Q be a loop. Then $a \in C(Q) \cap N_{\lambda}(Q) \Leftrightarrow R_{a} \in Z\left(M / t_{\rho}(Q)\right)$.

Proposition

Let Q be a RCC loop. Then
(i) $N_{\mu}(Q)=N_{\rho}(Q) \unlhd Q$ and
(ii) $C(Q) \leq N_{\lambda}(Q)$.

Setup

Let \mathbb{F}_{q} be the finite field of order where $q=p^{n}$ for a prime p and some $n>0$. Take $f(x)=x^{2}-r x+s$ be irreducible in $\mathbb{F}_{q}[x]$. For each $b \in \mathbb{F}_{q}$, define

$$
M_{(0, b)}=\left(\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right)
$$

and for $a \neq 0$,

$$
M_{(a, b)}=\left(\begin{array}{cc}
r-b & \frac{f(b)}{-a} \\
a & b
\end{array}\right)
$$

Note: The conjugacy class of all matrices in $G L(2, q)$ with characteristic polynomial $f(x)$ is precisely the set $\left\{M_{(a, b)} \mid a, b \in \mathbb{F}_{q}\right\}$ for $a \neq 0$.

Theorem (Hall, Artic \& Hiss, G.)

Let $f(x)=x^{2}-r x+s$ be irreducible in $\mathbb{F}_{p}[x]$. Let $Q=\mathbb{F}_{q}^{2} \backslash\{[0,0]\}$, written as a set of row vectors. Define a binary operation \circ_{f} on Q by

$$
[a, b] \circ_{f}[c, d]=[a, b] M_{(c, d)}
$$

Then $\left(Q, \circ_{f}\right)$ is a loop.
Note: In $\left(Q, \circ_{f}\right)$, we have
(i) $[a, b] \circ_{f}[c, d]=\left[a(r-d)+b c, \frac{-a f(d)}{c}+b d\right]$
$c \neq 0$,
(ii) $[a, b] \circ_{f}[c, d]=[a d, b d]$
$c=0$,

Elements

Let $q=3$ and so the elements of $\left(Q, \circ_{f}\right)$ are

$$
\{[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2]\} .
$$

Conjugacy Class

Let $f(x)=x^{2}+2 x+2$, irreducible in \mathbb{F}_{3}.

$$
\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right)\right\}
$$

Full Set of Matrices

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right)\right\}
$$

Visualizing the construction

Visualizing the construction

$$
\left(\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right)
$$

Visualizing the construction

Right Section

$$
\begin{aligned}
& R_{\left(Q, \mathrm{o}_{f}\right)}=\{(),(1,2)(3,6)(4,8)(5,7),(1,3,4,7,2,6,8,5),(1,4,5,6,2,8,7,3) \\
& \quad(1,5,3,8,2,7,6,4),(1,6,7,4,2,3,5,8),(1,7,8,3,2,5,4,6),(1,8,6,5,2,4,3,7)\} .
\end{aligned}
$$

Loop $\left(Q, \circ_{f}\right)$

\circ_{f}	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	6	8	7	3	5	4
3	3	6	4	1	8	5	2	7
4	4	8	7	5	1	2	6	3
5	5	7	1	6	3	8	4	2
6	6	3	8	2	4	7	1	5
7	7	5	2	3	6	4	8	1
8	8	4	5	7	2	1	3	6

Table: Multiplication Table for $\left(Q, \circ_{f}\right)$

Lemma (G.)

$\ln \left(Q, \circ_{f}\right)$
(i) for $a \neq 0, R_{[a, b]}^{-1}=M_{(a, b)}^{-1}=\left(\begin{array}{cc}r-b & \frac{f(b)}{-a} \\ a & b\end{array}\right)^{-1}=\frac{1}{s}\left(\begin{array}{cc}b & f(b) / a \\ -a & r-b\end{array}\right)=\frac{1}{s} M_{[-a, r-b]}$,
(ii) $R_{[0, b]}^{-1}=\frac{1}{b}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$,
(iii) $R_{[a, b],[c, d]}=M_{(a, b)} M_{(c, d)} M_{[a, b] \circ f[c, d]}^{-1}=$
$\left(\begin{array}{cc}s & \frac{-\left(a^{2} s f(d)-a b c d s-a b c d+a b c r+a c d r-a c r^{2}+a c r s+c^{2} f(b)\right)}{(a c(b c-a d+a r))} \\ 0 & 1\end{array}\right)$,
(iv) $R_{[a, b],[0, d]}=M_{(a, b)} M_{(0, d)} M_{[a, b]]_{f}[0, d]}^{-1}=\left(\begin{array}{cc}d^{2} & \frac{(d-1)(b-r+b d)}{d} \\ 0 & 1\end{array}\right)$,
(v) $\left.R_{[0, b],[c, d]}=M_{(0, b)} M_{(c, d)} M_{[0, b]}^{-1}{ }_{f}[c, d]\right]=\left(\begin{array}{cc}b^{2} & \frac{(b-1)(d-r+b d)}{c} \\ 0 & 1\end{array}\right)$ and
(vi) $R_{[0, b],[0, d]}=M_{(0, b)} M_{(0, d)} M_{[0, b] \rho f[0, d]}^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Theorem (Artic \& Hiss, G.)

$\left(Q, \circ_{f}\right)$ is an RCC loop.

Lemma

$C\left(Q, \circ_{f}\right)=\left\{[0, b] \mid \forall b \in \mathbb{F}_{q} b \neq 0\right\}$. That is, the only elements of $C\left(Q, \circ_{f}\right)$ are in the set $\left\{R_{[a, b]} \mid[a, b] \in C\left(Q, \circ_{f}\right)\right\}$.

Lemma (G.)

Let $q \neq 3$. Then $C\left(Q, \circ_{f}\right)=N_{\lambda}\left(Q, \circ_{f}\right)$. If $q=3$ and $r \neq 0$, then $C\left(Q, \circ_{f}\right)=N_{\lambda}\left(Q, \circ_{f}\right)$.

Note:

Let Q be a RCC-loop with $N \unlhd Q$ and consider $R_{N}=\left\{R_{x} \mid x \in N\right\}$. Fix $x \in N$ and then $\forall y \in Q, R_{y} R_{x} R_{y}^{-1}=R_{(y x / y)} \in R_{N}$ since $y x / y \in N$. Hence, normal subloops of Q correspond to unions of conjugacy classes in R_{Q}.

Note

Since normal subloops of Q correspond to unions of conjugacy classes of matrices in $G L(2, q)$ which are contained in $R_{\left(Q, \circ_{f}\right)} . R_{\left(Q, \circ_{f}\right)}$ itself is the union of conjugacy classes, namely, $\left\{M_{(a, b)} \mid a, b \in Q, a, b \neq 0\right\}$, which has size $q^{2}-q$, and the $q-1$ one-element conjugacy classes in the center of $G L(2, q)$. Since the order of a normal subloop of Q must divide $|Q|=q^{2}-1$.

Lemma (G.)

The only non-trivial normal subgroups of $\left(Q, \circ_{f}\right)$ are $C\left(Q, \circ_{f}\right)$ and $\{[0,1],[0,-1]\}$.

Theorem (G.)

Let $f(x)=x^{2}-r x+s$ be irreducible.
(i) If $r \neq 0$, then $\left(Q, \circ_{f}\right)$ is simple.
(ii) If $r=0$, then $Z\left(Q, \circ_{f}\right)=\{[0, \pm 1]\}$ and $\left(Q, \circ_{f}\right) / Z\left(Q, \circ_{f}\right)$ is simple.

Irreducible Polynomials

For \mathbb{F}_{q}, there are $\frac{q^{2}-q}{2}$ irreducible polynomials (degree 2).

- $q=3, \frac{3^{2}-3}{2}=3$ and there are 3 nonisomorphic RCC loops constructed.
- $q=4, \frac{4^{2}-4}{2}=6$ and there are 3 nonisomorphic RCC loops constructed.
- $q=8, \frac{8^{2}-8}{2}=28$ and there are 10 nonisomorphic RCC loops constructed.

Theorem

Let $f(x)=x^{2}-r_{1} x+s_{1}$ and $g(x)=x^{2}-r_{2} x+s_{2}$ be irreducible in $\mathbb{F}_{q}[x]$. Then $\phi:\left(Q, \circ_{f}\right) \rightarrow\left(Q, \circ_{g}\right)$ is an isomorphism if and only if $[a, b] \phi=[\alpha(a), \alpha(b)]$ for some $\alpha \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$.

Theorem

Let p be a prime number and $q=p^{n}$. The number of nonisomorphic RCC loops constructed from $G L(2, q)$ is $\left\lfloor\frac{q^{2}-q}{2 n}\right\rfloor+\left(\frac{q^{2}-q}{2} \bmod n\right)$.

Exhausted Search

- This construction gives all simple RCC loops of order ≤ 15.
- (Artic) There are 471,995 RCC loops of order 24 , with 17 simple.
- This construction gives 10 RCC loops from matrices in $\operatorname{GL}(2,5)$ and 3 RCC loops from matrices in $G L(2,7)$, with 11 simple.
- The other 6 have $\operatorname{Mlt} \rho(Q)=G L(2,3) \times S_{3}$.

THANKS!

