CONSTRUCTING RIGHT CONJUGACY CLOSED LOOPS

Mark Greer

Department of Mathematics

Fourth Mile High Conference 1 August 2017

Mark Greer (UNA)

RCC Loops

1 / 20

3

イロト 不得 トイヨト イヨト

Definition

For a loop Q, we define: left and right translations of a by x right section of Q right multiplication group of Q multiplication group of Q inner mapping group of Q

$$\begin{array}{ll} aL_x = xa & aR_x = ax \\ R_Q = \{R_x \mid x \in Q\} \\ \operatorname{Mlt}_{\rho}(Q) = \langle R_Q \rangle \\ \operatorname{Mlt}(Q) = \langle L_x, R_x \mid \forall x \in Q \rangle \\ \operatorname{Inn}(Q) = \{\theta \in \operatorname{Mlt}(Q) | 1\theta = 1\} \end{array}$$

Definition

A subset S of a group G is closed under conjugation if $x^{-1}yx \in S$ for all $x, y \in S$.

Defintion

A loop Q is a right conjugacy closed loop (or RCC loop) if R_Q is closed under conjugation. **Note:** $R_x^{-1}R_yR_x \in R_Q$ for all $x, y \in Q$.

Mark Greer (UNA)

Proposition

For a loop Q, the following are equivalent:

- (1) Q is an RCC loop,
- (2) The following holds for all $x, y, z \in Q$:

$$R_x^{-1}R_yR_x = R_{x\setminus yx}.$$
 (RCC₁)

(3) The following holds for all $x, y, z \in Q$:

$$(xy)z = (xz) \cdot z \setminus (yz). \tag{RCC}_2$$

イロト 不得 トイヨト イヨト

Definition

For a loop Q, a subset S of Q is a subloop if $(S, \cdot, \backslash, /)$ is a loop. A subloop N of a loop Q is a *normal subloop*, $N \leq Q$, if it is invariant under Inn(Q).

Definitions

the left nucleus of Q, the middle nucleus of Q, the right nucleus of Q, the nucleus of Q, the commutant of Q, the center of Q.

$$\begin{split} & \mathsf{N}_{\lambda}(Q) = \{ a \in Q \mid a \cdot xy = ax \cdot y \ \forall x, y \in Q \}, \\ & \mathsf{N}_{\mu}(Q) = \{ a \in Q \mid x \cdot ay = xa \cdot y \ \forall x, y \in Q \}, \\ & \mathsf{N}_{\rho}(Q) = \{ a \in Q \mid x \cdot ya = xy \cdot a \ \forall x, y \in Q \}, \\ & \mathsf{N}(Q) = \mathsf{N}_{\lambda}(Q) \cap \mathsf{N}_{\mu}(Q) \cap \mathsf{N}_{\rho}(Q), \\ & \mathsf{C}(Q) = \{ a \in Q \mid xa = ax \ \forall x \in Q \}, \\ & \mathsf{Z}(Q) = \mathsf{N}(Q) \cap \mathsf{C}(Q). \end{split}$$

イロト 不得下 イヨト イヨト 二日

Background

Proposition

Let Q be a loop. Then $a \in C(Q) \cap N_{\lambda}(Q) \Leftrightarrow R_a \in Z(Mlt_{\rho}(Q))$.

Proposition

Let Q be a RCC loop. Then (i) $N_{\mu}(Q) = N_{\rho}(Q) \leq Q$ and (ii) $C(Q) \leq N_{\lambda}(Q)$.

Mark Greer (UNA)

イロト 不得 トイヨト イヨト 二日

Setup

Let \mathbb{F}_q be the finite field of order where $q = p^n$ for a prime p and some n > 0. Take $f(x) = x^2 - rx + s$ be irreducible in $\mathbb{F}_q[x]$. For each $b \in \mathbb{F}_q$, define

$$M_{(0,b)} = \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}$$

and for $a \neq 0$,

$$M_{(a,b)} = \begin{pmatrix} r-b & rac{f(b)}{-a} \\ a & b \end{pmatrix}.$$

Note: The conjugacy class of all matrices in GL(2, q) with characteristic polynomial f(x) is precisely the set $\{M_{(a,b)} \mid a, b \in \mathbb{F}_q\}$ for $a \neq 0$.

イロト 不得下 イヨト イヨト 二日

Theorem (Hall, Artic & Hiss, G.)

Let $f(x) = x^2 - rx + s$ be irreducible in $\mathbb{F}_p[x]$. Let $Q = \mathbb{F}_q^2 \setminus \{[0, 0]\}$, written as a set of row vectors. Define a binary operation \circ_f on Q by

$$[a, b] \circ_f [c, d] = [a, b] M_{(c, d)}.$$

Then
$$(Q, \circ_f)$$
 is a loop.
Note: In (Q, \circ_f) , we have
(i) $[a, b] \circ_f [c, d] = [a(r - d) + bc, \frac{-af(d)}{c} + bd]$ $c \neq 0$,
(ii) $[a, b] \circ_f [c, d] = [ad, bd]$ $c = 0$,

Mark Greer (UNA)

イロン 不通 と 不良 と 不良 と 一項

Elements

Let q = 3 and so the elements of (Q, \circ_f) are

 $\{[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2]\}.$

Conjugacy Class Let $f(x) = x^2 + 2x + 2$, irreducible in \mathbb{F}_3 . $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} \right\}.$

Full Set of Matrices

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} \right\},$$

Mark Greer (UNA)

Visualizing the construction

イロト イポト イヨト イヨト 二日

Visualizing the construction

イロト イ団ト イヨト イヨト 三日

Visualizing the construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ 今へ?

Right Section

$$\begin{split} R_{(Q,\circ_f)} &= \{(), (1,2)(3,6)(4,8)(5,7), (1,3,4,7,2,6,8,5), (1,4,5,6,2,8,7,3), \\ &(1,5,3,8,2,7,6,4), (1,6,7,4,2,3,5,8), (1,7,8,3,2,5,4,6), (1,8,6,5,2,4,3,7)\}. \end{split}$$

Loop (Q, \circ_f)

Table: Multiplication Table for (Q, \circ_f)

Lemma (G.)

In (*Q*, ∘_f)

(i) for
$$a \neq 0$$
, $R_{[a,b]}^{-1} = M_{(a,b)}^{-1} = \begin{pmatrix} r-b & \frac{f(b)}{-a} \\ a & b \end{pmatrix}^{-1} = \frac{1}{s} \begin{pmatrix} b & f(b)/a \\ -a & r-b \end{pmatrix} = \frac{1}{s} M_{[-a,r-b]},$
(ii) $R_{[0,b]}^{-1} = \frac{1}{b} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$
(iii) $R_{[a,b],[c,d]} = M_{(a,b)} M_{(c,d)} M_{[a,b] \circ f[c,d]}^{-1} = \begin{pmatrix} s & \frac{-(a^2 s f(d) - a b c ds - a b c d + a b c r + a c dr^2 + a c r s + c^2 f(b))}{(a c (b c - a d + a r))} \end{pmatrix},$
(iv) $R_{[a,b],[0,d]} = M_{(a,b)} M_{(0,d)} M_{[a,b] \circ f[0,d]}^{-1} = \begin{pmatrix} d^2 & \frac{(d-1)(b-r+bd)}{a} \\ 0 & 1 \end{pmatrix},$
(v) $R_{[0,b],[c,d]} = M_{(0,b)} M_{(c,d)} M_{[0,b] \circ f[c,d]}^{-1} = \begin{pmatrix} b^2 & \frac{(b-1)(d-r+bd)}{a} \\ 0 & 1 \end{pmatrix}$ and
(vi) $R_{[0,b],[0,d]} = M_{(0,b)} M_{(0,d)} M_{[0,b] \circ f[0,d]}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

Mark Greer (UNA)

Simple Right Conjugacy Closed loops

Theorem (Artic & Hiss, G.)

 (Q, \circ_f) is an RCC loop.

Lemma

 $C(Q, \circ_f) = \{[0, b] \mid \forall b \in \mathbb{F}_q \ b \neq 0\}.$ That is, the only elements of $C(Q, \circ_f)$ are in the set $\{R_{[a,b]} \mid [a,b] \in C(Q, \circ_f)\}.$

Lemma (G.)

Let $q \neq 3$. Then $C(Q, \circ_f) = N_{\lambda}(Q, \circ_f)$. If q = 3 and $r \neq 0$, then $C(Q, \circ_f) = N_{\lambda}(Q, \circ_f)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Note:

Let Q be a RCC-loop with $N \leq Q$ and consider $R_N = \{R_x \mid x \in N\}$. Fix $x \in N$ and then $\forall y \in Q$, $R_y R_x R_y^{-1} = R_{(yx/y)} \in R_N$ since $yx/y \in N$. Hence, normal subloops of Q correspond to unions of conjugacy classes in R_Q .

Note

Since normal subloops of Q correspond to unions of conjugacy classes of matrices in GL(2, q) which are contained in $R_{(Q,\circ_f)}$. $R_{(Q,\circ_f)}$ itself is the union of conjugacy classes, namely, $\{M_{(a,b)}|a, b \in Q, a, b \neq 0\}$, which has size $q^2 - q$, and the q - 1 one-element conjugacy classes in the center of GL(2, q). Since the order of a normal subloop of Q must divide $|Q| = q^2 - 1$.

Lemma (G.)

The only non-trivial normal subgroups of (Q, \circ_f) are $C(Q, \circ_f)$ and $\{[0, 1], [0, -1]\}$.

Simple Right Conjugacy Closed loops

Theorem (G.)

Let $f(x) = x^2 - rx + s$ be irreducible. (i) If $r \neq 0$, then (Q, \circ_f) is simple. (ii) If r = 0, then $Z(Q, \circ_f) = \{[0, \pm 1]\}$ and $(Q, \circ_f)/Z(Q, \circ_f)$ is simple.

Mark Greer (UNA)

イロト 不得 トイヨト イヨト 二日

Irreducible Polynomials

Isomorphism Classes

Theorem

Let $f(x) = x^2 - r_1 x + s_1$ and $g(x) = x^2 - r_2 x + s_2$ be irreducible in $\mathbb{F}_q[x]$. Then $\phi : (Q, \circ_f) \to (Q, \circ_g)$ is an isomorphism *if and only if* $[a, b]\phi = [\alpha(a), \alpha(b)]$ for some $\alpha \in \operatorname{Aut}(\mathbb{F}_q)$.

Theorem

Let *p* be a prime number and $q = p^n$. The number of nonisomorphic RCC loops constructed from GL(2, q) is $\lfloor \frac{q^2-q}{2n} \rfloor + \left(\frac{q^2-q}{2} \mod n \right)$.

Isomorphism Classes

Exhausted Search

- This construction gives all simple RCC loops of order \leq 15.
- (Artic) There are 471,995 RCC loops of order 24, with 17 simple.
- This construction gives 10 RCC loops from matrices in *GL*(2,5) and 3 RCC loops from matrices in *GL*(2,7), with 11 simple.
- The other 6 have $\operatorname{Mlt}\rho(Q) = GL(2,3) \times S_3$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Isomorphism Classes

THANKS!

Mark Greer (UNA)

20 / 20