# **Completing Some Partial Latin Squares**

#### Jaromy Kuhl

University of West Florida



æ





크



### 2 Classical Results





- 2 Classical Results
- 3 Recent Results





- 2 Classical Results
- 3 Recent Results
- 4 Open Problems
- 5 Other Completion Problems

< 🗐 🕨

# **Current Section**

# 1 Introduction

- 2 Classical Results
- 3 Recent Results
- Open Problems
- Other Completion Problems

< 4 →

- A 🖻 🕨

### Partial latin squares

#### **Definition 1**

A partial latin square (PLS) of order n is an  $n \times n$  array of n symbols in which each symbol occurs at most once in each row and column.

< ロ > < 同 > < 回 > < 回 >

# Partial latin squares

#### **Definition 1**

A partial latin square (PLS) of order n is an  $n \times n$  array of n symbols in which each symbol occurs at most once in each row and column.

#### Definition 2

A PLS of order n is called a latin square (LS) of order n if each cell is nonempty.

# Partial latin squares

#### **Definition 1**

A partial latin square (PLS) of order n is an  $n \times n$  array of n symbols in which each symbol occurs at most once in each row and column.

#### Definition 2

A PLS of order n is called a latin square (LS) of order n if each cell is nonempty.

| 1 |   | 4 |   |   |  |
|---|---|---|---|---|--|
| 2 |   |   |   | 3 |  |
|   | 1 |   | 3 |   |  |
|   |   | 2 |   | 5 |  |
| 3 |   |   |   | 1 |  |

| 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
| 2 | 4 | 1 | 5 | 3 |
| 5 | 1 | 2 | 3 | 4 |
| 4 | 3 | 5 | 1 | 2 |
| 3 | 5 | 4 | 2 | 1 |

#### **Definition 3**

# A PLS P is called completable if there is a LS of the same order containing P.

#### **Definition 3**

A PLS P is called completable if there is a LS of the same order containing P.



When can a PLS be completed?

When can a PLS be completed?

| 1 |   | 3 |   |   |
|---|---|---|---|---|
| 2 |   |   |   | 3 |
|   | 2 | 4 | 3 | 5 |
|   |   | 5 |   | 2 |
| 3 |   |   |   | 1 |

When can a PLS be completed?

| 1 |   | 3 |   |   |
|---|---|---|---|---|
| 2 |   |   |   | 3 |
|   | 2 | 4 | 3 | 5 |
|   |   | 5 |   | 2 |
| 3 |   |   |   | 1 |

• The problem of completing PLSs is NP-complete. (Colbourn, 1984)

When can a PLS be completed?

| 1 |   | 3 |   |   |
|---|---|---|---|---|
| 2 |   |   |   | 3 |
|   | 2 | 4 | 3 | 5 |
|   |   | 5 |   | 2 |
| 3 |   |   |   | 1 |

- The problem of completing PLSs is NP-complete. (Colbourn, 1984)
- A good characterization of completable partial latin square is unlikely.

A PLS *P* of order *n* is a subset of  $[n] \times [n] \times [n]$  in which  $(r, c, s) \in P$  if and only if symbol *s* occurs in cell (r, c).

A PLS *P* of order *n* is a subset of  $[n] \times [n] \times [n]$  in which  $(r, c, s) \in P$  if and only if symbol *s* occurs in cell (r, c).



 $(2, 1, 2), (4, 3, 5) \in P$ 

• • • • • • • • • • • • •

# **Equivalent Objects**

### A LS of order *n* is equivalent to a properly *n*-edge-colored $K_{n,n}$ .

イロト イポト イヨト イヨ

# **Equivalent Objects**

A LS of order *n* is equivalent to a properly *n*-edge-colored  $K_{n,n}$ .

|     | 1 | 2 | 3 |
|-----|---|---|---|
| L = | 2 | 3 | 1 |
|     | 3 | 1 | 2 |

イロト イポト イヨト イヨ

# **Equivalent Objects**

A LS of order *n* is equivalent to a properly *n*-edge-colored  $K_{n,n}$ .

|     | 1 | 2 | 3 |
|-----|---|---|---|
| L = | 2 | 3 | 1 |
|     | 3 | 1 | 2 |

Theorem 1 (König, 1916)

Let G be a bipartite graph with  $\Delta(G) = m$ . Then  $\chi'(G) = m$ .

< ロ > < 同 > < 回 > < 回 >

Let  $P \in PLS(n)$  and  $S_n$  be the symmetric group acting on [n].

イロト イポト イヨト イヨ

Let  $P \in PLS(n)$  and  $S_n$  be the symmetric group acting on [n]. Let  $\theta = (\alpha, \beta, \gamma) \in S_n \times S_n \times S_n$ .

Let  $P \in PLS(n)$  and  $S_n$  be the symmetric group acting on [n].

Let  $\theta = (\alpha, \beta, \gamma) \in S_n \times S_n \times S_n$ .

The PLS in which the rows, columns, and symbols of *P* are permuted according to  $\alpha$ ,  $\beta$ , and  $\gamma$  respectively is  $\theta(P) \in PLS(n)$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let  $P \in PLS(n)$  and  $S_n$  be the symmetric group acting on [n].

- Let  $\theta = (\alpha, \beta, \gamma) \in S_n \times S_n \times S_n$ .
- The PLS in which the rows, columns, and symbols of *P* are permuted according to  $\alpha$ ,  $\beta$ , and  $\gamma$  respectively is  $\theta(P) \in PLS(n)$ .

The mapping  $\theta$  is called an isotopism, and *P* and  $\theta(P)$  are said to be isotopic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let  $P \in PLS(n)$  and  $S_n$  be the symmetric group acting on [n].

- Let  $\theta = (\alpha, \beta, \gamma) \in S_n \times S_n \times S_n$ .
- The PLS in which the rows, columns, and symbols of *P* are permuted according to  $\alpha$ ,  $\beta$ , and  $\gamma$  respectively is  $\theta(P) \in PLS(n)$ .

The mapping  $\theta$  is called an isotopism, and P and  $\theta(P)$  are said to be isotopic.



• • • • • • • • • • • •

Let  $P \in PLS(n)$  and  $S_n$  be the symmetric group acting on [n].

- Let  $\theta = (\alpha, \beta, \gamma) \in S_n \times S_n \times S_n$ .
- The PLS in which the rows, columns, and symbols of *P* are permuted according to  $\alpha$ ,  $\beta$ , and  $\gamma$  respectively is  $\theta(P) \in PLS(n)$ .

The mapping  $\theta$  is called an isotopism, and *P* and  $\theta(P)$  are said to be isotopic.



• • • • • • • • • • • •

The PLS in which the coordinates of each triple of *P* are uniformly permuted is called a conjugate of *P*.

• • • • • • • • • • • • •

The PLS in which the coordinates of each triple of *P* are uniformly permuted is called a conjugate of *P*.



• • • • • • • • • • • •

The PLS in which the coordinates of each triple of *P* are uniformly permuted is called a conjugate of *P*.



Introduction

# Isotopisms and Congujates

#### Theorem 2

#### A PLS P is completable if and only if an isotopism of P is completable.

イロト イポト イヨト イヨ

Introduction

# Isotopisms and Congujates

#### Theorem 2

A PLS P is completable if and only if an isotopism of P is completable.

#### Theorem 3

A PLS P is completable if and only if a conjugate of P is completable.

# **Current Section**

# Introduction

- 2 Classical Results
- 3 Recent Results
- Open Problems
- Other Completion Problems

< 4 →

### Hall's Theorem

#### Theorem 4 (Hall's Theorem, 1940)

Let  $r, n \in \mathbb{Z}$  such that  $r \leq n$ . Let  $P \in PLS(n)$  with r completed rows and n - r empty rows. Then P can be completed to a LS of order n.

∃ >

### Hall's Theorem

#### Theorem 4 (Hall's Theorem, 1940)

Let  $r, n \in \mathbb{Z}$  such that  $r \leq n$ . Let  $P \in PLS(n)$  with r completed rows and n - r empty rows. Then P can be completed to a LS of order n.

Rows can be replaced with columns or symbols.

A D b 4 A b

# Hall's Theorem

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 6 | 1 | 7 | 3 | 4 | 5 |
| 5 | 1 | 7 | 3 | 4 | 2 | 6 |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |

æ

## Hall's Theorem

| 1 | 2 | 3 |  |  |
|---|---|---|--|--|
| 2 | 6 | 1 |  |  |
| 3 | 1 | 7 |  |  |
| 4 | 5 | 6 |  |  |
| 5 | 7 | 2 |  |  |
| 6 | 4 | 5 |  |  |
| 7 | 3 | 4 |  |  |

æ

イロト イヨト イヨト イヨト

## Hall's Theorem

| 1      | 2 | 3 |        |   |   |   |
|--------|---|---|--------|---|---|---|
| 2<br>3 |   | 1 |        |   |   | 3 |
| 3      | 1 | 2 |        |   |   |   |
|        |   |   | 1      | 2 | 3 |   |
|        | 3 |   | 2<br>3 | 1 |   |   |
|        |   |   | 3      |   | 1 | 2 |
|        |   |   |        | 3 | 2 | 1 |

æ

イロト イヨト イヨト イヨト

## Ryser's Theorem

#### Theorem 5 (Ryser's Theorem, 1950)

Let  $r, s, n \in \mathbb{Z}$  such that  $r, s \le n$ . Let  $P \in PLS(n)$  with a  $r \times s$  block of symbols and empty cells elsewhere. Then P can be completed if and only if each symbol occurs r + s - n times in P.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Ryser's Theorem

#### Theorem 5 (Ryser's Theorem, 1950)

Let  $r, s, n \in \mathbb{Z}$  such that  $r, s \le n$ . Let  $P \in PLS(n)$  with a  $r \times s$  block of symbols and empty cells elsewhere. Then P can be completed if and only if each symbol occurs r + s - n times in P.



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Theorem 6

If  $P \in PLS(n)$  with at most n - 1 non-empty cells, then P can be completed.

• • • • • • • • • • • • •

#### Theorem 6

If  $P \in PLS(n)$  with at most n - 1 non-empty cells, then P can be completed.

Confirmed independently by:

● Häggkvist (1979) for *n* ≥ 1111

#### Theorem 6

If  $P \in PLS(n)$  with at most n - 1 non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for *n* ≥ 1111
- Smetaniuk (1981) for all n

< < >> < <</p>

#### Theorem 6

If  $P \in PLS(n)$  with at most n - 1 non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for *n* ≥ 1111
- Smetaniuk (1981) for all n
- Andersen and Hilton (1983) for all n

4 A N

#### Theorem 6

If  $P \in PLS(n)$  with at most n - 1 non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for *n* ≥ 1111
- Smetaniuk (1981) for all n
- Andersen and Hilton (1983) for all n

4 A N

#### **Classical Results**

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   |   | 5 |   | 4 |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   | 1 |   |   |   |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

◆□▶ ◆圖▶ ◆理≯ ◆理≯

Ξ.

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 |   |   |   |  |
|---|---|---|---|--|
|   |   | 5 | 4 |  |
| 5 |   |   |   |  |
|   |   |   |   |  |
|   | 1 |   |   |  |
|   |   |   |   |  |

イロト イヨト イヨト イヨト

크

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 | 6 |
| 5 | 4 | 6 | 2 | 7 | 1 |
| 6 | 5 | 1 | 7 | 2 | 4 |
| 7 | 6 | 2 | 4 | 1 | 5 |
| 4 | 1 | 7 | 6 | 5 | 2 |

イロト イヨト イヨト イヨト

æ

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |  |
|---|---|---|---|---|---|--|
| 2 | 7 | 5 | 1 | 4 | 6 |  |
| 5 | 4 | 6 | 2 | 7 | 1 |  |
| 6 | 5 | 1 | 7 | 2 | 4 |  |
| 7 | 6 | 2 | 4 | 1 | 5 |  |
| 4 | 1 | 7 | 6 | 5 | 2 |  |
|   |   |   |   |   |   |  |

イロト イ団ト イヨト イヨト

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |  |
|---|---|---|---|---|---|--|
| 2 | 7 | 5 | 1 | 4 | 6 |  |
| 5 | 4 | 6 | 2 | 7 | 1 |  |
| 6 | 5 | 1 | 7 | 2 | 4 |  |
| 7 | 6 | 2 | 4 | 1 | 5 |  |
| 4 | 1 | 7 | 6 | 5 | 2 |  |
|   |   |   |   |   |   |  |

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 |   | 6 |
| 5 | 4 | 6 | 2 |   | 1 | 7 |
| 6 | 5 | 1 |   | 2 | 4 | 7 |
| 7 | 6 |   | 4 | 1 | 5 | 2 |
| 4 |   | 7 | 6 | 5 | 2 | 1 |
|   |   |   |   |   |   |   |

イロト イ理ト イヨト イヨト

æ

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 |   | 6 |
| 5 | 4 | 6 | 2 |   | 1 | 7 |
| 6 | 5 | 1 |   | 2 | 4 | 7 |
| 7 | 6 |   | 4 | 1 | 5 | 2 |
| 4 |   | 7 | 6 | 5 | 2 | 1 |
|   |   |   |   |   |   |   |

イロト イヨト イヨト イヨト

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 |   | 6 |
| 5 | 4 | 6 | 2 |   | 1 | 7 |
| 6 | 5 | 1 |   | 7 | 4 | 2 |
| 7 | 6 |   | 4 | 1 | 5 | 2 |
| 4 |   | 7 | 6 | 5 | 2 | 1 |
|   |   |   |   |   |   |   |

イロト イ団ト イヨト イヨト

æ

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 |   | 6 |
| 5 | 4 | 6 | 2 |   | 1 | 7 |
| 6 | 5 | 1 |   | 7 | 4 | 2 |
| 7 | 6 |   | 4 | 2 | 5 | 1 |
| 4 |   | 7 | 6 | 5 | 2 | 1 |
|   |   |   |   |   |   |   |

イロト イ団ト イヨト イヨト

æ

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 |   | 6 |
| 5 | 4 | 6 | 2 |   | 1 | 7 |
| 6 | 5 | 1 |   | 7 | 4 | 2 |
| 7 | 6 |   | 4 | 2 | 5 | 1 |
| 4 |   | 7 | 6 | 1 | 2 | 5 |
|   |   |   |   |   |   |   |

イロト イヨト イヨト イヨト

| 1 |   |   |   |   |  |
|---|---|---|---|---|--|
|   | 4 | 5 |   |   |  |
| 5 |   |   |   |   |  |
|   |   |   | 3 |   |  |
|   |   |   |   | 1 |  |
|   |   |   |   |   |  |
|   |   |   |   |   |  |

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 4 | 3 | 6 |
| 5 | 4 | 6 | 2 | 3 | 1 | 7 |
| 6 | 5 | 1 | 3 | 7 | 4 | 2 |
| 7 | 6 | 3 | 4 | 2 | 5 | 1 |
| 4 | 3 | 7 | 6 | 1 | 2 | 5 |
|   |   |   |   |   |   |   |

イロト イヨト イヨト イヨト

크

イロト イヨト イヨト イヨト



Э.

| 1 |   |  | 1 | 2 | 3 |   | 1 |   |   |   |
|---|---|--|---|---|---|---|---|---|---|---|
| 2 |   |  |   |   |   | 4 |   | 1 |   |   |
| 3 |   |  |   |   |   |   |   |   | 1 |   |
|   | 4 |  |   |   |   |   |   |   |   | 2 |
|   |   |  |   |   |   |   |   |   |   |   |

| 1 |   |   |  |
|---|---|---|--|
| 2 |   |   |  |
|   |   |   |  |
|   | 3 | 4 |  |

| 1 | 2 |   |  |
|---|---|---|--|
|   |   | 3 |  |
|   |   | 4 |  |
|   |   |   |  |

| 1 |   |   |  |
|---|---|---|--|
|   | 1 |   |  |
|   |   | 2 |  |
|   |   | 3 |  |

크



Let  $B_{k,n} \in PLS(n)$  with symbol 1 in the first k diagonal cells and symbols 2, 3, ..., n - k + 1 in the last n - k cells of column k + 1.

#### Theorem 7 (Andersen and Hilton, 1983)

Let  $P \in PLS(n)$  with exactly n non-empty cells. Then P can be completed if and only if P is not a species of  $B_{k,n}$  for each k < n.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### **Current Section**

## 1 Introduction

#### 2 Classical Results

#### 3 Recent Results

#### Open Problems

#### 5 Other Completion Problems

< 4 →

## One Nonempty Row, Column, and Symbol

Let  $P \in PLS(n)$ .

## One Nonempty Row, Column, and Symbol

Let  $P \in PLS(n)$ .

If there exists r, c, and s such that for each  $(x, y, z) \in P$  either x = r, y = c, or z = s, then P satisfies the *RCS*-property.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

|   | 1      | 4 | 3 | 2 | 5 | 6 |
|---|--------|---|---|---|---|---|
|   | 2      | 1 |   |   |   |   |
| 4 | 2<br>3 |   | 1 |   |   |   |
|   | 4      |   |   | 1 |   |   |
| ! | 4<br>5 |   |   |   | 1 |   |
|   | 6      |   |   |   |   | 1 |

Ξ.

◆□▶ ◆圖▶ ◆理≯ ◆理≯

| 1      | 4 | 3 | 2 | 5 | 6 |
|--------|---|---|---|---|---|
| 2      | 1 |   |   |   |   |
| 2<br>3 |   | 1 |   |   |   |
| 4      |   |   | 1 |   |   |
| 4<br>5 |   |   |   | 1 |   |
| 6      |   |   |   |   | 1 |

Casselgren and Häggkvist conjectured that if *P* satisfies the *RCS*-property,  $(r, c, s) \in P$ , and  $n \notin \{3, 4, 5\}$ , then *P* can be completed.

| 1      | 4 | 3 | 2 | 5 | 6 |
|--------|---|---|---|---|---|
| 2      | 1 |   |   |   |   |
| 2<br>3 |   | 1 |   |   |   |
| 4      |   |   | 1 |   |   |
| 4<br>5 |   |   |   | 1 |   |
| 6      |   |   |   |   | 1 |

Casselgren and Häggkvist conjectured that if *P* satisfies the *RCS*-property,  $(r, c, s) \in P$ , and  $n \notin \{3, 4, 5\}$ , then *P* can be completed.

They confirmed (2013)  $n \in \{6,7\}$  and n = 4k for all  $k \ge 2$ .

| 1 | 2 | 3 |
|---|---|---|
| 2 | 1 |   |
| 3 |   | 1 |

| 1 | 3 | 4 | 2 |
|---|---|---|---|
| 2 | 1 |   |   |
| 3 |   | 1 |   |
| 4 |   |   | 1 |

| 1 | 3 | 2 | 4 | 5 |
|---|---|---|---|---|
| 2 | 1 |   |   |   |
| 3 |   | 1 |   |   |
| 4 |   |   | 1 |   |
| 5 |   |   |   | 1 |

| 2 | 3 |   | 4 | 5 |
|---|---|---|---|---|
|   | 1 |   |   |   |
| 3 |   | 1 |   |   |
| 4 |   |   | 1 |   |
| 5 |   |   |   | 1 |

▲口▶ ▲圖▶ ▲理≯ ▲理≯

æ

#### Theorem 8 (Kuhl and Schroeder, 2016)

Let  $P \in PLS(n)$  satisfy the RCS-property. If  $n \notin \{3, 4, 5\}$  and P does not contain a species of  $B_{k,n}$  for each  $k \in [n-1]$ , then a completion of P exists.

< □ > < 同 > < 三 > < 三 >

# One Nonempty Row, Column, and Symbol

| 1      | 5 | 2 | 6 | 7 | 3 | 4 |  |
|--------|---|---|---|---|---|---|--|
| 2      | 1 |   |   |   |   |   |  |
| 2<br>3 |   | 1 |   |   |   |   |  |
| 4      |   |   | 1 |   |   |   |  |
| 4<br>5 |   |   |   | 1 |   |   |  |
| 6      |   |   |   |   | 1 |   |  |
| 7      |   |   |   |   |   | 1 |  |

| 1           | 5 | 7 | 2 | 6 | 3 | 4 |
|-------------|---|---|---|---|---|---|
| 2           | 1 |   |   |   |   |   |
| 2<br>5<br>3 |   | 1 |   |   |   |   |
| 3           |   |   | 1 |   |   |   |
| 4           |   |   |   | 1 |   |   |
| 6           |   |   |   |   | 1 |   |
| 7           |   |   |   |   |   | 1 |

イロト イポト イヨト イヨ

# One Nonempty Row, Column, and Symbol

| 1           | 5 | 2 | 6 | 7 | 3 | 4 |
|-------------|---|---|---|---|---|---|
| 2           | 1 |   |   |   |   |   |
| 2<br>3<br>4 |   | 1 |   |   |   |   |
| 4           |   |   | 1 |   |   |   |
| 5           |   |   |   | 1 |   |   |
| 6           |   |   |   |   | 1 |   |
| 7           |   |   |   |   |   | 1 |

| 1      | 5 | 2 | 7 | 6 | 3 | 4 |
|--------|---|---|---|---|---|---|
| 2      | 1 |   |   |   |   |   |
| 2<br>5 |   |   | 1 |   |   |   |
| 3      |   | 1 |   |   |   |   |
| 4      |   |   |   | 1 |   |   |
| 6      |   |   |   |   | 1 |   |
| 7      |   |   |   |   |   | 1 |

イロン イ理 とくほとく ほ

# One Nonempty Row, Column, and Symbol

| 1      | 5 | 2 | 6 | 7 | 3 | 4 |
|--------|---|---|---|---|---|---|
| 2      | 1 |   |   |   |   |   |
| 2<br>3 |   | 1 |   |   |   |   |
| 4      |   |   | 1 |   |   |   |
| 4<br>5 |   |   |   | 1 |   |   |
| 6      |   |   |   |   | 1 |   |
| 7      |   |   |   |   |   | 1 |

| 1           | 5 | 2 | 7 | 6 | 3 | 4 |
|-------------|---|---|---|---|---|---|
| 2           | 1 |   |   |   |   |   |
| 2<br>5<br>3 |   | 1 |   |   |   |   |
| 3           |   |   | 1 |   |   |   |
| 4           |   |   |   | 1 |   |   |
| 6           |   |   |   |   | 1 |   |
| 7           |   |   |   |   |   | 1 |

イロト イポト イヨト イヨ

# One Nonempty Row, Column, and Symbol

| 1           | 5 | 2 | 6 | 7 | 3 | 4 |
|-------------|---|---|---|---|---|---|
| 2           | 1 |   |   |   |   |   |
| 2<br>3<br>4 |   | 1 |   |   |   |   |
| 4           |   |   | 1 |   |   |   |
| 5           |   |   |   | 1 |   |   |
| 6           |   |   |   |   | 1 |   |
| 7           |   |   |   |   |   | 1 |

| 1           | 5 | 2 | 7 | 6 | 3 | 4 |
|-------------|---|---|---|---|---|---|
| 2           | 1 |   |   |   |   |   |
| 2<br>5<br>3 |   | 1 | 4 |   |   |   |
| 3           |   | 4 | 1 |   |   |   |
| 4           |   |   |   | 1 |   |   |
| 6           |   |   |   |   | 1 |   |
| 7           |   |   |   |   |   | 1 |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# One Nonempty Row, Column, and Symbol

| 1      | 5 | 2 | 6 | 7 | 3 | 4 |
|--------|---|---|---|---|---|---|
| 2      | 1 |   |   |   |   |   |
| 2<br>3 |   | 1 |   |   |   |   |
| 4<br>5 |   |   | 1 |   |   |   |
| 5      |   |   |   | 1 |   |   |
| 6      |   |   |   |   | 1 |   |
| 7      |   |   |   |   |   | 1 |

| 1           | 5 | 2 | 7 | 6 | 3 | 4 |
|-------------|---|---|---|---|---|---|
| 2           | 1 |   |   |   |   |   |
| 2<br>5<br>3 |   | 1 | 4 |   |   |   |
| 3           |   | 4 | 1 |   |   | 7 |
| 4           |   |   |   | 1 | 6 |   |
| 6           |   |   |   | 4 | 1 |   |
| 7           |   |   | 3 |   |   | 1 |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

| 1 | 5 | 2 |
|---|---|---|
| 2 | 1 |   |
| 5 |   | 1 |

| 7 | 6 | 3 | 4 |
|---|---|---|---|
|   |   |   |   |
| 4 |   |   |   |
| 3 | 4 | 6 | 7 |

| 3 | 4 | 7 |
|---|---|---|
| 4 |   | 6 |
| 6 |   | 4 |
| 7 |   | 3 |

| 1 |   |   | 7 |
|---|---|---|---|
|   | 1 | 6 |   |
|   | 4 | 1 |   |
| 3 |   |   | 1 |

イロン 不通 とくほど 不良とう

æ

| 1 | 5 | 2 |
|---|---|---|
| 2 | 1 | 5 |
| 5 | 2 | 1 |

| 7 | 6 | 3 | 4 |
|---|---|---|---|
| 6 | 7 | 4 | 3 |
| 4 | 3 | 7 | 6 |
| 3 | 4 | 6 | 7 |

| 3 | 6 | 4 | 7 |
|---|---|---|---|
| 4 | 7 | 3 | 6 |
| 6 | 3 | 7 | 4 |
| 7 | 4 | 6 | 3 |

| 1 | 2 | 5 | 7 |
|---|---|---|---|
| 2 | 1 | 6 | 5 |
| 5 | 4 | 1 | 2 |
| 3 | 5 | 2 | 1 |

イロン 不通 とくほど 不良とう

æ

| 1 |   | 5 | 2 | 7 | 6 | 3 | 4 |
|---|---|---|---|---|---|---|---|
| 2 | 2 | 1 | 5 | 6 | 7 | 4 | 3 |
| 5 | 5 | 2 | 1 | 4 | 3 | 7 | 6 |
| З | 3 | 6 | 4 | 1 | 2 | 5 | 7 |
| 4 | ŀ | 7 | 3 | 2 | 1 | 6 | 5 |
| 6 | 5 | 3 | 7 | 5 | 4 | 1 | 2 |
| 7 | , | 4 | 6 | 3 | 5 | 2 | 1 |

Ξ.

◆□▶ ◆圖▶ ◆理≯ ◆理≯

| 1 | 5 | 2 | 7 | 6 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 1 | 5 | 6 | 7 | 4 | 3 |
| 5 | 2 | 4 | 1 | 3 | 7 | 6 |
| 3 | 6 | 1 | 4 | 2 | 5 | 7 |
| 4 | 7 | 3 | 2 | 1 | 6 | 5 |
| 6 | 3 | 7 | 5 | 4 | 1 | 2 |
| 7 | 4 | 6 | 3 | 5 | 2 | 1 |

◆□▶ ◆圖▶ ◆理≯ ◆理≯

# One Nonempty Row, Column, and Symbol

| 4 | 5 | 2 | 6 | 7 | 3 | 1 |
|---|---|---|---|---|---|---|
| 2 |   |   |   |   | 1 |   |
| 3 |   |   |   | 1 |   |   |
| 7 |   |   | 1 |   |   |   |
| 5 |   | 1 |   |   |   |   |
| 6 | 1 |   |   |   |   |   |
| 1 |   |   |   |   |   |   |

イロト イヨト イヨト イヨト

When can a PLS with exactly a rows and b columns be completed?

• • • • • • • • • • • • •

When can a PLS with exactly a rows and b columns be completed?

| 1      | 2 | 4 | 5 | 6 | 7 | 3 |
|--------|---|---|---|---|---|---|
| 2      | 7 | 5 | 1 | 3 | 6 | 4 |
| 2<br>5 | 4 |   |   |   |   |   |
| 6      | 5 |   |   |   |   |   |
| 3      | 6 |   |   |   |   |   |
| 4      | 1 |   |   |   |   |   |
| 7      | 3 |   |   |   |   |   |

When can a PLS with exactly a rows and b columns be completed?

| 1      | 2 | 4 | 5 | 6 | 7 | 3 |
|--------|---|---|---|---|---|---|
| 2      | 7 | 5 | 1 | 3 | 6 | 4 |
| 2<br>5 | 4 |   |   |   |   |   |
| 6      | 5 |   |   |   |   |   |
| 3      | 6 |   |   |   |   |   |
| 4      | 1 |   |   |   |   |   |
| 7      | 3 |   |   |   |   |   |

• Buchanan solved problem for a = b = 2 in dissertation (2007)

A D b 4 A b 4

When can a PLS with exactly a rows and b columns be completed?

| 1      | 2 | 4 | 5 | 6 | 7 | 3 |
|--------|---|---|---|---|---|---|
| 2      | 7 | 5 | 1 | 3 | 6 | 4 |
| 2<br>5 | 4 |   |   |   |   |   |
| 6      | 5 |   |   |   |   |   |
| 3      | 6 |   |   |   |   |   |
| 4      | 1 |   |   |   |   |   |
| 7      | 3 |   |   |   |   |   |

• Buchanan solved problem for a = b = 2 in dissertation (2007)

Adam, Bryant, and Buchanan shortened dissertation (2008)

When can a PLS with exactly a rows and b columns be completed?

| 1      | 2 | 4 | 5 | 6 | 7 | 3 |
|--------|---|---|---|---|---|---|
| 2      | 7 | 5 | 1 | 3 | 6 | 4 |
| 2<br>5 | 4 |   |   |   |   |   |
| 6      | 5 |   |   |   |   |   |
| 3      | 6 |   |   |   |   |   |
| 4      | 1 |   |   |   |   |   |
| 7      | 3 |   |   |   |   |   |

- Buchanan solved problem for a = b = 2 in dissertation (2007)
- Adam, Bryant, and Buchanan shortened dissertation (2008)
- Kuhl and McGinn proved same result and more (2017)

### **Completed Rows and Columns**

|     | 1 | 2 | 3 | 4 |   |
|-----|---|---|---|---|---|
| V _ | 3 | 4 | 2 | 1 | 7 |
| ' - | 2 | 3 |   |   |   |
|     | 4 | 1 |   |   |   |

|            | 1 | 2 | 3 | 4 | 5 |
|------------|---|---|---|---|---|
|            | 3 | 1 | 2 | 5 | 4 |
| <b>Z</b> = | 2 | 3 |   |   |   |
|            | 4 | 5 |   |   |   |
|            | 5 | 4 |   |   |   |

イロト イ理ト イヨト イヨト

Jaromy Kuhl (UWF)

**Completing Partial Latin Squares** 

50 / 83

크

## **Completed Rows and Columns**



Let  $\Gamma$  denote the set of all isotopisms of *Y* and *Z*.

#### Theorem 9

Let  $n \ge 2$  and  $A \in PLS(2, 2; n)$ . The partial latin square A can be completed if and only if  $A \notin \Gamma$ .

There is a symbol not in an intercalate.

There is a symbol not in an intercalate.

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
|---|---|---|---|---|---|---|
| 2 | 7 | 5 | 1 | 3 | 6 | 4 |
| 5 | 4 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |
| 7 | 3 |   |   |   |   |   |

| 1      | 2 | 5 | 6 | 7 | 3 | 4 |
|--------|---|---|---|---|---|---|
| 2      | 7 | 1 | 3 | 6 | 4 | 5 |
| 7      | 3 |   |   |   |   |   |
| 6      | 5 |   |   |   |   |   |
| 3<br>5 | 6 |   |   |   |   |   |
| 5      | 4 |   |   |   |   |   |
| 4      | 1 |   |   |   |   |   |

## **Completed Rows and Columns**

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1      | 2 | 5 | 6 | 7 | 3 |
|--------|---|---|---|---|---|
| 2      | 7 | 1 | 3 | 6 | 5 |
| 2      | 3 |   |   |   |   |
| 6      | 5 |   |   |   |   |
| 3<br>5 | 6 |   |   |   |   |
| 5      | 1 |   |   |   |   |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1 |   | 2 | 5 | 6 | 7 | 3 |
|---|---|---|---|---|---|---|
| 2 | 2 | 7 | 1 | 3 | 6 | 5 |
| 7 | , | 3 | 2 | 1 | 5 | 6 |
| 6 | ; | 5 | 3 | 7 | 2 | 1 |
| 3 |   | 6 | 7 | 5 | 1 | 2 |
| 5 |   | 1 | 6 | 2 | 3 | 7 |

### Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1 | 2 | 5 | 6 | 7 | 3 |  |
|---|---|---|---|---|---|--|
| 2 | 7 | 1 | 3 | 6 | 5 |  |
| 7 | 3 | 2 | 1 | 5 | 6 |  |
| 6 | 5 | 3 | 7 | 2 | 1 |  |
| 3 | 6 | 7 | 5 | 1 | 2 |  |
| 5 | 1 | 6 | 2 | 3 | 7 |  |
|   |   |   |   |   |   |  |

### Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1 | 2 | 5 | 6 | 7 | 3 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 |   | 5 |
| 7 | 3 | 2 | 1 |   | 6 | 5 |
| 6 | 5 | 3 |   | 2 | 1 | 7 |
| 3 | 6 |   | 5 | 1 | 2 | 7 |
| 5 |   | 6 | 2 | 3 | 7 | 1 |
|   |   |   |   |   |   |   |

### Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1 | 2 | 5 | 6 | 7 | 3 |   |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 |   | 5 |
| 7 | 3 | 2 | 1 |   | 5 | 6 |
| 6 | 5 | 3 |   | 2 | 1 | 7 |
| 3 | 6 |   | 7 | 5 | 2 | 1 |
| 5 |   | 6 | 2 | 1 | 7 | 3 |
|   |   |   |   |   |   |   |

### Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 | 2 | 1 | 4 | 5 | 6 |
| 6 | 5 | 3 | 4 | 2 | 1 | 7 |
| 3 | 6 | 4 | 7 | 5 | 2 | 1 |
| 5 | 4 | 6 | 2 | 1 | 7 | 3 |
|   |   |   |   |   |   |   |

### Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |   |   |   |   |   |
| 6 | 5 |   |   |   |   |   |
| 3 | 6 |   |   |   |   |   |
| 5 | 4 |   |   |   |   |   |
| 4 | 1 |   |   |   |   |   |

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
|---|---|---|---|---|---|---|
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 | 2 | 1 | 4 | 5 | 6 |
| 6 | 5 | 3 | 4 | 2 | 1 | 7 |
| 3 | 6 | 4 | 7 | 5 | 2 | 1 |
| 5 | 4 | 6 | 2 | 1 | 7 | 3 |
| 4 | 1 | 7 | 5 | 3 | 6 | 2 |

Each symbol is in an intercalate.

|   | ~ | • |          | - | • | - | 1 |   |   |   |   |   |
|---|---|---|----------|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4        | 5 | 6 | 1 |   | 4 | 0 | 2 | 1 | Γ |
| 2 | 3 | 1 | 5        | 4 | 7 | 6 |   | 1 | 2 | 3 | 4 |   |
|   |   | • | <u> </u> | • | - |   |   | 2 | 3 | 1 | 5 |   |
| 3 | 1 |   |          |   |   |   |   |   | 4 |   |   |   |
| 6 | 4 |   |          |   |   |   | ] | 3 | 1 |   |   |   |
|   |   |   |          |   |   |   |   | 6 | 4 |   |   |   |
| 4 | 6 |   |          |   |   |   |   |   | ~ |   |   |   |
| 5 | 7 |   |          |   |   |   | 1 | 5 | 6 |   |   |   |
| 5 | 1 |   |          |   |   |   |   | 4 | 5 |   |   |   |
| 7 | 5 |   |          |   |   |   |   | - |   |   |   |   |

6 5

4 6

ъ

# **Completed Rows and Columns**

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |   |   |   |   |   |
| 6 | 4 |   |   |   |   |   |
| 4 | 6 |   |   |   |   |   |
| 5 | 7 |   |   |   |   |   |
| 7 | 5 |   |   |   |   |   |

| 1 | 2 | 3 | 4 | 6 | 5 |
|---|---|---|---|---|---|
| 2 | 3 | 1 | 5 | 4 | 6 |
| 3 | 1 | 4 | 6 | 5 | 2 |
| 6 | 4 | 5 | 1 | 2 | 3 |
| 5 | 6 | 2 | 3 | 1 | 4 |
| 4 | 5 | 6 | 2 | 3 | 1 |

## **Completed Rows and Columns**

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |   |   |   |   |   |
| 6 | 4 |   |   |   |   |   |
| 4 | 6 |   |   |   |   |   |
| 5 | 7 |   |   |   |   |   |
| 7 | 5 |   |   |   |   |   |

| 4 | 3 | 1 | 6 | 5 | 2 |  |
|---|---|---|---|---|---|--|
| 3 | 1 | 2 | 4 | 6 | 5 |  |
| 1 | 2 | 3 | 5 | 4 | 6 |  |
| 5 | 6 | 4 | 1 | 2 | 3 |  |
| 2 | 5 | 6 | 3 | 1 | 4 |  |
| 6 | 4 | 5 | 2 | 3 | 1 |  |
|   |   |   |   |   |   |  |

## Completed Rows and Columns

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |   |   |   |   |   |
| 6 | 4 |   |   |   |   |   |
| 4 | 6 |   |   |   |   |   |
| 5 | 7 |   |   |   |   |   |
| 7 | 5 |   |   |   |   |   |

| 4 | 3 | 1 | 6 | 5 | 2 |   |
|---|---|---|---|---|---|---|
| 3 | 1 | 2 | 4 | 6 |   | 5 |
| 1 | 2 | 3 | 5 |   | 6 | 4 |
| 5 | 6 | 4 |   | 2 | 3 | 1 |
| 2 | 5 |   | 3 | 1 | 4 | 6 |
| 6 |   | 5 | 2 | 3 | 1 | 4 |
|   |   |   |   |   |   |   |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## Completed Rows and Columns

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |   |   |   |   |   |
| 6 | 4 |   |   |   |   |   |
| 4 | 6 |   |   |   |   |   |
| 5 | 7 |   |   |   |   |   |
| 7 | 5 |   |   |   |   |   |

| 4 | 3 | 1 | 6 | 5 | 2 |   |
|---|---|---|---|---|---|---|
| 3 | 1 | 2 | 4 | 6 |   | 5 |
| 1 | 2 | 3 | 5 |   | 6 | 4 |
| 5 | 6 | 4 |   | 2 | 3 | 1 |
| 2 | 5 |   | 3 | 1 | 4 | 6 |
| 6 |   | 5 | 2 | 4 | 1 | 3 |
|   |   |   |   |   |   |   |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### **Completed Rows and Columns**

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |   |   |   |   |   |
| 6 | 4 |   |   |   |   |   |
| 4 | 6 |   |   |   |   |   |
| 5 | 7 |   |   |   |   |   |
| 7 | 5 |   |   |   |   |   |

| 4 | 3 | 1 | 6 | 5 | 2 | 7 |
|---|---|---|---|---|---|---|
| 3 | 1 | 2 | 4 | 6 | 7 | 5 |
| 1 | 2 | 3 | 5 | 7 | 6 | 4 |
| 5 | 6 | 4 | 7 | 2 | 3 | 1 |
| 2 | 5 | 7 | 3 | 1 | 4 | 6 |
| 6 | 7 | 5 | 2 | 4 | 1 | 3 |
| 7 | 4 | 6 | 1 | 3 | 5 | 2 |

イロト イポト イヨト イヨ

#### Theorem 10 (Kuhl and McGinn, 2017)

Let  $A \in PLS(2, b; n)$  and cells  $[2] \times [b]$  consist only of symbols from [b]. If  $n \ge 2b^2 - 2b + 5$  and  $\sigma_A([n] \setminus [b])$  contains a cycle of length at least  $\frac{n+3}{2}$ , then A can be completed.

#### Theorem 10 (Kuhl and McGinn, 2017)

Let  $A \in PLS(2, b; n)$  and cells  $[2] \times [b]$  consist only of symbols from [b]. If  $n \ge 2b^2 - 2b + 5$  and  $\sigma_A([n] \setminus [b])$  contains a cycle of length at least  $\frac{n+3}{2}$ , then A can be completed.

#### **Conjecture 1**

Let  $A \in PLS(2, b; n)$ . If  $n \ge 2b + 2$ , then A can be completed.

#### **Current Section**

### 1 Introduction

- 2 Classical Results
- 3 Recent Results
- Open Problems
- 5 Other Completion Problems

< 47 ▶

#### Conjecture 2 (Häggkvist, 1979)

If  $P \in PLS(nr)$  with all non-empty cells in at most n - 1 pairwise disjoint  $r \times r$  blocks, then P can be completed.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Conjecture 2 (Häggkvist, 1979)

If  $P \in PLS(nr)$  with all non-empty cells in at most n - 1 pairwise disjoint  $r \times r$  blocks, then P can be completed.

• n = 1 is trivial

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Conjecture 2 (Häggkvist, 1979)

If  $P \in PLS(nr)$  with all non-empty cells in at most n - 1 pairwise disjoint  $r \times r$  blocks, then P can be completed.

- n = 1 is trivial
- *r* = 1 is Evans' conjecture

#### Conjecture 2 (Häggkvist, 1979)

If  $P \in PLS(nr)$  with all non-empty cells in at most n - 1 pairwise disjoint  $r \times r$  blocks, then P can be completed.

- n = 1 is trivial
- *r* = 1 is Evans' conjecture
- n = 2 is solved by Ryser's Theorem

### Häggkvist Conjecture

#### Conjecture 2 (Häggkvist, 1979)

If  $P \in PLS(nr)$  with all non-empty cells in at most n - 1 pairwise disjoint  $r \times r$  blocks, then P can be completed.

- n = 1 is trivial
- *r* = 1 is Evans' conjecture
- n = 2 is solved by Ryser's Theorem
- n = 3 was solved by Denly and Häggkvist (2003)

### Häggkvist Conjecture

#### Conjecture 2 (Häggkvist, 1979)

If  $P \in PLS(nr)$  with all non-empty cells in at most n - 1 pairwise disjoint  $r \times r$  blocks, then P can be completed.

- n = 1 is trivial
- *r* = 1 is Evans' conjecture
- n = 2 is solved by Ryser's Theorem
- n = 3 was solved by Denly and Häggkvist (2003)
- Kuhl and Denley confirmed Conjecture 1 for latin r × r blocks (2008)

- **→ → →** 

#### **Block Diagonal**

Theorem 11 (Kuhl and Schroeder, 2015)

Let n and r be positive integers.

- If  $n \ge r + 1$ , then for every  $A \in LS(r; [nr])$ , nA is completable.
- If n ≤ r − 1, then there exists A ∈ LS(r; [nr]) for which nA is not completable.

#### **Block Diagonal**

Theorem 11 (Kuhl and Schroeder, 2015)

Let n and r be positive integers.

- If  $n \ge r + 1$ , then for every  $A \in LS(r; [nr])$ , nA is completable.
- If n ≤ r − 1, then there exists A ∈ LS(r; [nr]) for which nA is not completable.

| 1 | 2 |   |   |   |        |
|---|---|---|---|---|--------|
| 2 | 3 |   |   |   |        |
|   |   | 1 | 2 |   |        |
|   |   | 2 | 3 |   |        |
|   |   |   |   | 1 | 2<br>3 |
|   |   |   |   | 2 | 3      |

#### Theorem 12 (Kuhl and Schroeder, 2015)

Let n and r be positive integers.

- If  $n \ge r + 1$ , then for every  $A \in LS(r; [nr])$ , nA is completable.
- If n ≤ r − 1, then there exists A ∈ LS(r; [nr]) for which nA is not completable.

#### Conjecture 3

Let n and r be positive integers. If  $n \ge r$ , then for every  $A \in LS(r; [nr])$ , nA is completable.

• • • • • • • • • • • •

PLS( $a^s$ ,  $b^t$ ): PLSs with s + t pairwise disjoint subsquares, where s subsquares have order a and t subsquares have order b.

A D M A A A M M

**∃** ▶ ∢

PLS( $a^s, b^t$ ): PLSs with s + t pairwise disjoint subsquares, where s subsquares have order a and t subsquares have order b.



Jaromy Kuhl (UWF)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Theorem 13 (Heinrich, 1982)

- Each element of PLS(a, b, c) is completable if and only if a = b = c.
- Each element of PLS(a, b, c, d) is completable if and only if a = b = c and d ≤ 2a.

< ロ > < 同 > < 回 > < 回 >

#### Theorem 13 (Heinrich, 1982)

- Each element of PLS(a, b, c) is completable if and only if a = b = c.
- Each element of PLS(a, b, c, d) is completable if and only if a = b = c and d ≤ 2a.

#### Theorem 14 (Heinrich, 1982)

Suppose that a < b.

- If s ≥ 3 and t ≥ 3, then each element of PLS(a<sup>s</sup>, b<sup>t</sup>) is completable.
- Each element of  $PLS(a, b^t)$  is completable if and only if  $t \ge 3$ .
- Each element of PLS(a<sup>s</sup>, b) is completable if and only if (s − 1)a ≥ b.

< ロ > < 同 > < 回 > < 回 >

Theorem 15 (Kuhl and Schroeder, 2017)

Suppose that a < b.

- Each element of  $PLS(a^2, b^t)$  is completable if and only if  $t \ge 3$ .
- Each element of  $PLS(a^s, b^2)$  is completable if and only if  $as \ge b$ .

Theorem 15 (Kuhl and Schroeder, 2017)

Suppose that a < b.

- Each element of  $PLS(a^2, b^t)$  is completable if and only if  $t \ge 3$ .
- Each element of  $PLS(a^s, b^2)$  is completable if and only if  $as \ge b$ .

Problems:

• Find conditions on *s*, *t*, and *u* that guarantee completions of the elements of PLS(*a<sup>s</sup>*, *b<sup>t</sup>*, *c<sup>u</sup>*).

Theorem 15 (Kuhl and Schroeder, 2017)

Suppose that a < b.

- Each element of  $PLS(a^2, b^t)$  is completable if and only if  $t \ge 3$ .
- Each element of  $PLS(a^s, b^2)$  is completable if and only if  $as \ge b$ .

Problems:

- Find conditions on *s*, *t*, and *u* that guarantee completions of the elements of PLS(*a*<sup>s</sup>, *b*<sup>t</sup>, *c*<sup>u</sup>).
- Classify the completable elements of PLS(*a*, *b*, *c*, *d*, *e*).

< 🗇 🕨 < 🖃 🕨

**Definition 4** 

A LS L is diagonally cyclic if for each  $(i, j, k) \in L$ ,  $(i + 1, j + 1, k + 1) \in L$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

**Definition 4** 

A LS L is diagonally cyclic if for each  $(i, j, k) \in L$ ,  $(i + 1, j + 1, k + 1) \in L$ .

| 0 | 2 | 4 | 1 | 3 |
|---|---|---|---|---|
| 4 | 1 | 3 | 0 | 2 |
| 3 | 0 | 2 | 4 | 1 |
| 2 | 4 | 1 | 3 | 0 |
| 1 | 3 | 0 | 2 | 4 |

イロト イ理ト イヨト イヨト

**Definition 4** 

A LS L is diagonally cyclic if for each  $(i, j, k) \in L$ ,  $(i + 1, j + 1, k + 1) \in L$ .

| 0 | 2 | 4 | 1 | 3 |
|---|---|---|---|---|
| 4 | 1 | 3 | 0 | 2 |
| 3 | 0 | 2 | 4 | 1 |
| 2 | 4 | 1 | 3 | 0 |
| 1 | 3 | 0 | 2 | 4 |

• A diagonally cyclic LS is determined by its first row.

**Definition 4** 

A LS L is diagonally cyclic if for each  $(i, j, k) \in L$ ,  $(i + 1, j + 1, k + 1) \in L$ .

| 0 | 2 | 4 | 1 | 3 |
|---|---|---|---|---|
| 4 | 1 | 3 | 0 | 2 |
| 3 | 0 | 2 | 4 | 1 |
| 2 | 4 | 1 | 3 | 0 |
| 1 | 3 | 0 | 2 | 4 |

- A diagonally cyclic LS is determined by its first row.
- Suppose that (0, *i*, *s<sub>i</sub>*) ∈ *L*. If *s<sub>i</sub>* − *i* ≠ *s<sub>j</sub>* − *j* for each *i*, *j*, then *L* is diagonally cyclic.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

**Definition 4** 

A LS L is diagonally cyclic if for each  $(i, j, k) \in L$ ,  $(i + 1, j + 1, k + 1) \in L$ .

| 0 | 2 | 4 | 1 | 3 |
|---|---|---|---|---|
| 4 | 1 | 3 | 0 | 2 |
| 3 | 0 | 2 | 4 | 1 |
| 2 | 4 | 1 | 3 | 0 |
| 1 | 3 | 0 | 2 | 4 |

- A diagonally cyclic LS is determined by its first row.
- Suppose that (0, *i*, *s<sub>i</sub>*) ∈ *L*. If *s<sub>i</sub>* − *i* ≠ *s<sub>j</sub>* − *j* for each *i*, *j*, then *L* is diagonally cyclic.
- There are no diagonally cyclic LSs of even order.

### Diagonally Cyclic Latin Squares

Let  $P \in PLS(n)$  with k diagonals completed cyclically. Can P be completed to a diagonally cyclic LS?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Diagonally Cyclic Latin Squares

Let  $P \in PLS(n)$  with k diagonals completed cyclically. Can P be completed to a diagonally cyclic LS?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# **Diagonally Cyclic Latin Squares**

| 0 | 2 |   |   |   |   |   |   | 1 |
|---|---|---|---|---|---|---|---|---|
|   |   | • | • |   | - | • | - | • |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 |
| 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 |
| 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 |
| 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 |
| 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Jaromy Kuhl (UWF)

크

イロト イ団ト イヨト イヨ

# **Diagonally Cyclic Latin Squares**

| 0 | 2 | 7 | 6 | 8 | 4 | 3 | 5 | 1 |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 |
| 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 |
| 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 |
| 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 |
| 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Jaromy Kuhl (UWF)

크

イロト イ団ト イヨト イヨ

Let N(k) be the smallest integer in which all PLSs of odd order  $n \ge N(k)$  with k cyclic diagonals can be completed cyclically.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let N(k) be the smallest integer in which all PLSs of odd order  $n \ge N(k)$  with k cyclic diagonals can be completed cyclically.

•  $N(k) \ge 3k - 1$  for  $k \ge 3$  (Grüttmüller, 2003)

イロト イポト イヨト イヨト

Let N(k) be the smallest integer in which all PLSs of odd order  $n \ge N(k)$  with k cyclic diagonals can be completed cyclically.

- $N(k) \ge 3k 1$  for  $k \ge 3$  (Grüttmüller, 2003)
- N(2) = 3 (Grüttmüller, 2003)

イロト イポト イヨト イヨト

Let N(k) be the smallest integer in which all PLSs of odd order  $n \ge N(k)$  with k cyclic diagonals can be completed cyclically.

- $N(k) \ge 3k 1$  for  $k \ge 3$  (Grüttmüller, 2003)
- *N*(2) = 3 (Grüttmüller, 2003)
- PLSs of prime order (at least 11) with 3 cyclic diagonals can be completed cyclically (Cavenagh, Hämäläinen, Adrian; 2009)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let N(k) be the smallest integer in which all PLSs of odd order  $n \ge N(k)$  with k cyclic diagonals can be completed cyclically.

- *N*(*k*) ≥ 3*k* − 1 for *k* ≥ 3 (Grüttmüller, 2003)
- N(2) = 3 (Grüttmüller, 2003)
- PLSs of prime order (at least 11) with 3 cyclic diagonals can be completed cyclically (Cavenagh, Hämäläinen, Adrian; 2009)

Conjecture 4 N(3) = 9.

イロト イ団ト イヨト イヨ

#### *ϵ*-dense PLSs

Let  $P \in PLS(n)$ . We say that P is  $\epsilon$ -dense if each row, column, and symbol is used at most  $\epsilon n$  times.

A D M A A A M M

#### $\epsilon$ -dense PLSs

Let  $P \in PLS(n)$ . We say that P is  $\epsilon$ -dense if each row, column, and symbol is used at most  $\epsilon n$  times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)

All  $\frac{1}{4}$ -dense PLSs are completable.

A D M A A A M M

#### $\epsilon$ -dense PLSs

Let  $P \in PLS(n)$ . We say that P is  $\epsilon$ -dense if each row, column, and symbol is used at most  $\epsilon n$  times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)

All  $\frac{1}{4}$ -dense PLSs are completable.

Theorem 16 (Daykin and Häggkvist, 1984)

If n = 16k, then all  $\frac{1}{2^9\sqrt{n}}$ -dense PLSs of order n are completable.

イロト イヨト イヨト イ

#### $\epsilon$ -dense PLSs

Let  $P \in PLS(n)$ . We say that P is  $\epsilon$ -dense if each row, column, and symbol is used at most  $\epsilon n$  times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)

All  $\frac{1}{4}$ -dense PLSs are completable.

Theorem 16 (Daykin and Häggkvist, 1984)

If n = 16k, then all  $\frac{1}{2^9\sqrt{n}}$ -dense PLSs of order n are completable.

#### Theorem 17 (Bartlett, 2013)

All  $10^{-4}$ -dense PLSs of order n are completable for  $n > 1.2 \times 10^{5}$ .

イロト イ団ト イヨト イヨト

#### **Current Section**

#### 1 Introduction

- 2 Classical Results
- 3 Recent Results
- Open Problems
- 5 Other Completion Problems

4 A N

#### Conjecture 6

If *P* is a partial latin cube of order *n* with at most n - 1 non-empty cells, then *P* can be completed to a latin cube of order *n*.

#### Theorem 18 (Kuhl and Denley, 2011)

If P is a partial latin cube of order n with at most n - 1 non-empty cells, no two of which lie in the same row, then P can be completed to a latin cube of order n.

#### Conjecture 7

Let  $P \in PLS(n)$  with at most n - 1 non-empty cells. Let  $Q \subseteq PLS(n)$  be the PLSs that avoid P. For any  $Q \in Q$ , P can be completed to a LS that avoids Q.

#### Theorem 19 (Kuhl and Denley, 2012)

Let  $P \in PLS(4k)$  with at most k - 1 non-empty cells. Let  $Q \subseteq PLS(n)$  be the PLSs that avoid P. For any  $Q \in Q$ , P can be completed to a LS that avoids Q.

• • • • • • • • • • • •

**Conjecture 8** 

Any two PLSs of order n > 5 can be avoided simultaneously.

< ロ > < 同 > < 回 > < 回 >

**Conjecture 8** 

Any two PLSs of order n > 5 can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley)

All PLSs of order  $n \ge 4$  are avoidable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

**Conjecture 8** 

Any two PLSs of order n > 5 can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley)

All PLSs of order  $n \ge 4$  are avoidable.

Theorem 21 (Kuhl and Hinojosa, 2012)

Any two PLSs of order 4k with k > 56 can be avoided simultaneously.

• • • • • • • • • • • •

**Conjecture 8** 

Any two PLSs of order n > 5 can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley)

All PLSs of order  $n \ge 4$  are avoidable.

#### Theorem 21 (Kuhl and Hinojosa, 2012)

- Any two PLSs of order 4k with k > 56 can be avoided simultaneously.
- Any two PLSs of order mk with  $k \ge \frac{m^5}{2}$  can be avoided simultaneously.

**Conjecture 8** 

Any two PLSs of order n > 5 can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley) All PLSs of order  $n \ge 4$  are avoidable.

#### Theorem 21 (Kuhl and Hinojosa, 2012)

Any two PLSs of order 4k with k > 56 can be avoided simultaneously.

• Any two PLSs of order mk with  $k \ge \frac{m^5}{2}$  can be avoided simultaneously.

#### **Conjecture 6**

Let  $P_1, \ldots, P_t \in PLS(n)$ . If t < n/3, then  $P_1, \ldots, P_t$  can be avoided simultaneously.

3

・ロト ・ 四ト ・ ヨト ・ ヨト ・

# Thank You!

æ

イロト イヨト イヨト イヨト