Completing Some Partial Latin Squares

Jaromy Kuhl

University of West Florida

Contents

(1) Introduction

Contents

(9) Introduction
(2) Classical Results

Contents

(9) Introduction
(2) Classical Results
(3) Recent Results

Contents

(9) Introduction
(2) Classical Results
(3) Recent Results

4 Open Problems

Contents

(9) Introduction
(2) Classical Results
(3) Recent Results

4 Open Problems
(5) Other Completion Problems

Current Section

(9) Introduction
(2) Classical Results
(3) Recent Results

4 Open Problems
(5) Other Completion Problems

Partial latin squares

Definition 1

A partial latin square (PLS) of order n is an $n \times n$ array of n symbols in which each symbol occurs at most once in each row and column.

Partial latin squares

Definition 1

A partial latin square (PLS) of order n is an $n \times n$ array of n symbols in which each symbol occurs at most once in each row and column.

Definition 2

A PLS of order n is called a latin square (LS) of order n if each cell is nonempty.

Partial latin squares

Definition 1

A partial latin square (PLS) of order n is an $n \times n$ array of n symbols in which each symbol occurs at most once in each row and column.

Definition 2

A PLS of order n is called a latin square (LS) of order n if each cell is nonempty.

1		4		
2				3
	1		3	
		2		5
3			1	

1	2	3	4	5
2	4	1	5	3
5	1	2	3	4
4	3	5	1	2
3	5	4	2	1

Completing PLS

Definition 3

A PLS P is called completable if there is a LS of the same order containing P.

Completing PLS

Definition 3

A PLS P is called completable if there is a LS of the same order containing P.

1	2	3	4	5
2	4	1	5	3
5	1	2	3	4
4	3	5	1	2
3	5	4	2	1

Completing PLS

When can a PLS be completed?

Completing PLS

When can a PLS be completed?

1		3		
2				3
	2	4	3	5
		5		2
3				1

Completing PLS

When can a PLS be completed?

1		3		
2				3
	2	4	3	5
		5		2
3				1

- The problem of completing PLSs is NP-complete. (Colbourn, 1984)

Completing PLS

When can a PLS be completed?

1		3		
2				3
	2	4	3	5
		5		2
3				1

- The problem of completing PLSs is NP-complete. (Colbourn, 1984)
- A good characterization of completable partial latin square is unlikely.

Equivalent Objects

A PLS P of order n is a subset of $[n] \times[n] \times[n]$ in which $(r, c, s) \in P$ if and only if symbol s occurs in cell (r, c).

Equivalent Objects

A PLS P of order n is a subset of $[n] \times[n] \times[n]$ in which $(r, c, s) \in P$ if and only if symbol s occurs in cell (r, c).

$(2,1,2),(4,3,5) \in P$

Equivalent Objects

A LS of order n is equivalent to a properly n-edge-colored $K_{n, n}$.

Equivalent Objects

A LS of order n is equivalent to a properly n-edge-colored $K_{n, n}$.

$$
L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}
$$

Equivalent Objects

A LS of order n is equivalent to a properly n-edge-colored $K_{n, n}$.

$$
L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}
$$

Theorem 1 (König, 1916)
Let G be a bipartite graph with $\Delta(G)=m$. Then $\chi^{\prime}(G)=m$.

Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and S_{n} be the symmetric group acting on $[n]$.

Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and S_{n} be the symmetric group acting on [$\left.n\right]$.
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.

Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and S_{n} be the symmetric group acting on [n].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of P are permuted according to α, β, and γ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and S_{n} be the symmetric group acting on [$\left.n\right]$.
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of P are permuted according to α, β, and γ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

The mapping θ is called an isotopism, and P and $\theta(P)$ are said to be isotopic.

Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and S_{n} be the symmetric group acting on [n].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of P are permuted according to α, β, and γ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

The mapping θ is called an isotopism, and P and $\theta(P)$ are said to be isotopic.

Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and S_{n} be the symmetric group acting on [n].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of P are permuted according to α, β, and γ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

The mapping θ is called an isotopism, and P and $\theta(P)$ are said to be isotopic.

Isotopisms and Congujates

The PLS in which the coordinates of each triple of P are uniformly permuted is called a conjugate of P.

Isotopisms and Congujates

The PLS in which the coordinates of each triple of P are uniformly permuted is called a conjugate of P.

Isotopisms and Congujates

The PLS in which the coordinates of each triple of P are uniformly permuted is called a conjugate of P.

Isotopisms and Congujates

Theorem 2
 A PLS P is completable if and only if an isotopism of P is completable.

Isotopisms and Congujates

Theorem 2
 A PLS P is completable if and only if an isotopism of P is completable.

Theorem 3
A PLS P is completable if and only if a conjugate of P is completable.

Current Section

(1) Introduction

(2) Classical Results

(3) Recent Results

Hall's Theorem

Theorem 4 (Hall's Theorem, 1940)
Let $r, n \in \mathbb{Z}$ such that $r \leq n$. Let $P \in \operatorname{PLS}(n)$ with r completed rows and $n-r$ empty rows. Then P can be completed to a LS of order n.

Hall's Theorem

Theorem 4 (Hall's Theorem, 1940)
Let $r, n \in \mathbb{Z}$ such that $r \leq n$. Let $P \in \operatorname{PLS}(n)$ with r completed rows and $n-r$ empty rows. Then P can be completed to a LS of order n.

Rows can be replaced with columns or symbols.

Hall's Theorem

1	2	3	4	5	6	7
2	6	1	7	3	4	5
5	1	7	3	4	2	6

Hall's Theorem

1	2	3				
2	6	1				
3	1	7				
4	5	6				
5	7	2				
6	4	5				
7	3	4				

Hall's Theorem

1	2	3				
2		1				3
3	1	2				
			1	2	3	
	3		2	1		
			3		1	2
				3	2	1

Ryser's Theorem

Theorem 5 (Ryser's Theorem, 1950)

Let $r, s, n \in \mathbb{Z}$ such that $r, s \leq n$. Let $P \in \operatorname{PLS}(n)$ with a $r \times s$ block of symbols and empty cells elsewhere. Then P can be completed if and only if each symbol occurs $r+s-n$ times in P.

Ryser's Theorem

Theorem 5 (Ryser's Theorem, 1950)

Let $r, s, n \in \mathbb{Z}$ such that $r, s \leq n$. Let $P \in \operatorname{PLS}(n)$ with a $r \times s$ block of symbols and empty cells elsewhere. Then P can be completed if and only if each symbol occurs $r+s-n$ times in P.

1	2	3
2	4	5
5	1	2

1	2	3	7
2	4	5	6
5	1	2	4
3	5	6	1

1	2	3	5
2	4	5	6
5	1	2	4
3	5	6	1

Evans' Conjecture

Theorem 6
If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then P can be completed.

Evans' Conjecture

Theorem 6
 If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$

Evans' Conjecture

Theorem 6

If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$
- Smetaniuk (1981) for all n

Evans' Conjecture

Theorem 6

If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$
- Smetaniuk (1981) for all n
- Andersen and Hilton (1983) for all n

Evans' Conjecture

Theorem 6

If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then P can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$
- Smetaniuk (1981) for all n
- Andersen and Hilton (1983) for all n

1						
		5		4		
5						
			3			
	1					

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1					
		5		4	
5					
	1				

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7
2	7	5	1	4	6
5	4	6	2	7	1
6	5	1	7	2	4
7	6	2	4	1	5
4	1	7	6	5	2

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4	6	
5	4	6	2	7	1	
6	5	1	7	2	4	
7	6	2	4	1	5	
4	1	7	6	5	2	

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4	6	
5	4	6	2	7	1	
6	5	1	7	2	4	
7	6	2	4	1	5	
4	1	7	6	5	2	

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4		6
5	4	6	2		1	7
6	5	1		2	4	7
7	6		4	1	5	2
4		7	6	5	2	1

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4		6
5	4	6	2		1	7
6	5	1		2	4	7
7	6		4	1	5	2
4		7	6	5	2	1

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4		6
5	4	6	2		1	7
6	5	1		7	4	2
7	6		4	1	5	2
4		7	6	5	2	1

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4		6
5	4	6	2		1	7
6	5	1		7	4	2
7	6		4	2	5	1
4		7	6	5	2	1

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	
2	7	5	1	4		6
5	4	6	2		1	7
6	5	1		7	4	2
7	6		4	2	5	1
4		7	6	1	2	5

Evans' Conjecture

1						
	4	5				
5						
			3			
				1		

1	2	4	5	6	7	3
2	7	5	1	4	3	6
5	4	6	2	3	1	7
6	5	1	3	7	4	2
7	6	3	4	2	5	1
4	3	7	6	1	2	5

There are incompletable PLSs of order n with n non-empty cells.

There are incompletable PLSs of order n with n non-empty cells.

1			
2			
3			
	4		

There are incompletable PLSs of order n with n non-empty cells.

1			
2			
3			
	4		

1			
	1		
		1	
			2

1			
2			
	3	4	

1	2		
		3	
		4	

1			
	1		
		2	
		3	

There are incompletable PLSs of order n with n non-empty cells.

1			
2			
3			
	4		

1			
2			
	3	4	

1			
	1		
		2	
		3	

Let $B_{k, n} \in \operatorname{PLS}(n)$ with symbol 1 in the first k diagonal cells and symbols $2,3, \ldots, n-k+1$ in the last $n-k$ cells of column $k+1$.

Theorem 7 (Andersen and Hilton, 1983)
Let $P \in \operatorname{PLS}(n)$ with exactly n non-empty cells. Then P can be completed if and only if P is not a species of $B_{k, n}$ for each $k<n$.

Current Section

(1) Introduction

(2) Classical Results

One Nonempty Row, Column, and Symbol

Let $P \in \operatorname{PLS}(n)$.

One Nonempty Row, Column, and Symbol

Let $P \in \operatorname{PLS}(n)$.
If there exists r, c, and s such that for each $(x, y, z) \in P$ either $x=r$, $y=c$, or $z=s$, then P satisfies the RCS-property.

1	4	3	2	5	6
2	1				
3		1			
4			1		
5				1	
6					1

1	4	3	2	5	6
2	1				
3		1			
4			1		
5				1	
6					1

Casselgren and Häggkvist conjectured that if P satisfies the $R C S$-property, $(r, c, s) \in P$, and $n \notin\{3,4,5\}$, then P can be completed.

1	4	3	2	5	6
2	1				
3		1			
4			1		
5				1	
6					1

Casselgren and Häggkvist conjectured that if P satisfies the $R C S$-property, $(r, c, s) \in P$, and $n \notin\{3,4,5\}$, then P can be completed.
They confirmed (2013) $n \in\{6,7\}$ and $n=4 k$ for all $k \geq 2$.

1	3	2	4	5
2	1			
3		1		
4			1	
5				1

2	3		4	5
	1			
3		1		
4			1	
5				1

Theorem 8 (Kuhl and Schroeder, 2016)

Let $P \in \operatorname{PLS}(n)$ satisfy the RCS-property. If $n \notin\{3,4,5\}$ and P does not contain a species of $B_{k, n}$ for each $k \in[n-1]$, then a completion of P exists.

One Nonempty Row, Column, and Symbol

1	5	2	6	7	3	4
2	1					
3		1				
4			1			
5				1		
6					1	
7						1

1	5	7	2	6	3	4
2	1					
5		1				
3			1			
4				1		
6					1	
7						1

One Nonempty Row, Column, and Symbol

1	5	2	6	7	3	4
2	1					
3		1				
4			1			
5				1		
6					1	
7						1

1	5	2	7	6	3	4
2	1					
5			1			
3		1				
4				1		
6					1	
7						1

One Nonempty Row, Column, and Symbol

1	5	2	6	7	3	4
2	1					
3		1				
4			1			
5				1		
6					1	
7						1

1	5	2	7	6	3	4
2	1					
5		1				
3			1			
4				1		
6					1	
7						1

One Nonempty Row, Column, and Symbol

1	5	2	6	7	3	4
2	1					
3		1				
4			1			
5				1		
6					1	
7						1

1	5	2	7	6	3	4
2	1					
5		1	4			
3		4	1			
4				1		
6					1	
7						1

One Nonempty Row, Column, and Symbol

1	5	2	6	7	3	4
2	1					
3		1				
4			1			
5				1		
6					1	
7						1

1	5	2	7	6	3	4
2	1					
5		1	4			
3		4	1			7
4				1	6	
6				4	1	
7			3			1

1	5	2						
2	1	5						
5	2	1		7	6	3	4	
:---	:---	:---	:---	:---	:---	:---	:---	
6	7	4	3					
4	3	7	6					
3	4	6	7		4	6	4	7
:---	:---	:---	:---					
4	7	3	6					
6	3	7	4					
7	4	6	2	\quad	2	1	6	5
:---	:---	:---	:---					
5	4	1	2					
3	5	2	1					

1	5	2	7	6	3	4
2	1	5	6	7	4	3
5	2	1	4	3	7	6
3	6	4	1	2	5	7
4	7	3	2	1	6	5
6	3	7	5	4	1	2
7	4	6	3	5	2	1

1	5	2	7	6	3	4
2	1	5	6	7	4	3
5	2	4	1	3	7	6
3	6	1	4	2	5	7
4	7	3	2	1	6	5
6	3	7	5	4	1	2
7	4	6	3	5	2	1

One Nonempty Row, Column, and Symbol

4	5	2	6	7	3	1
2					1	
3				1		
7			1			
5		1				
6	1					
1						

Completed Rows and Columns

When can a PLS with exactly a rows and b columns be completed?

Completed Rows and Columns

When can a PLS with exactly a rows and b columns be completed?

1	2	4	5	6	7	3
2	7	5	1	3	6	4
5	4					
6	5					
3	6					
4	1					
7	3					

Completed Rows and Columns

When can a PLS with exactly a rows and b columns be completed?

1	2	4	5	6	7	3
2	7	5	1	3	6	4
5	4					
6	5					
3	6					
4	1					
7	3					

- Buchanan solved problem for $a=b=2$ in dissertation (2007)

Completed Rows and Columns

When can a PLS with exactly a rows and b columns be completed?

1	2	4	5	6	7	3
2	7	5	1	3	6	4
5	4					
6	5					
3	6					
4	1					
7	3					

- Buchanan solved problem for $a=b=2$ in dissertation (2007)
- Adam, Bryant, and Buchanan shortened dissertation (2008)

Completed Rows and Columns

When can a PLS with exactly a rows and b columns be completed?

1	2	4	5	6	7	3
2	7	5	1	3	6	4
5	4					
6	5					
3	6					
4	1					
7	3					

- Buchanan solved problem for $a=b=2$ in dissertation (2007)
- Adam, Bryant, and Buchanan shortened dissertation (2008)
- Kuhl and McGinn proved same result and more (2017)

Completed Rows and Columns

$$
Y=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 3 & 4 & 2 & 1 \\
\hline 2 & 3 & & \\
\hline 4 & 1 & & \\
\hline
\end{array} \quad Z=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 3 & 1 & 2 & 5 & 4 \\
\hline 2 & 3 & & & \\
\hline 4 & 5 & & & \\
\hline 5 & 4 & & & \\
\hline
\end{array}
$$

Completed Rows and Columns

Let Γ denote the set of all isotopisms of Y and Z.

Theorem 9

Let $n \geq 2$ and $A \in \operatorname{PLS}(2,2 ; n)$. The partial latin square A can be completed if and only if $A \notin \Gamma$.

Completed Rows and Columns

There is a symbol not in an intercalate.

Completed Rows and Columns

There is a symbol not in an intercalate.

1	2	4	5	6	7	3
2	7	5	1	3	6	4
5	4					
6	5					
3	6					
4	1					
7	3					

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3
2	7	1	3	6	5
7	3				
6	5				
3	6				
5	1				

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3
2	7	1	3	6	5
7	3	2	1	5	6
6	5	3	7	2	1
3	6	7	5	1	2
5	1	6	2	3	7

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3	
2	7	1	3	6	5	
7	3	2	1	5	6	
6	5	3	7	2	1	
3	6	7	5	1	2	
5	1	6	2	3	7	

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3	
2	7	1	3	6		5
7	3	2	1		6	5
6	5	3		2	1	7
3	6		5	1	2	7
5		6	2	3	7	1

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3	
2	7	1	3	6		5
7	3	2	1		5	6
6	5	3		2	1	7
3	6		7	5	2	1
5		6	2	1	7	3

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3	2	1	4	5	6
6	5	3	4	2	1	7
3	6	4	7	5	2	1
5	4	6	2	1	7	3

Completed Rows and Columns

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3					
6	5					
3	6					
5	4					
4	1					

1	2	5	6	7	3	4
2	7	1	3	6	4	5
7	3	2	1	4	5	6
6	5	3	4	2	1	7
3	6	4	7	5	2	1
5	4	6	2	1	7	3
4	1	7	5	3	6	2

Completed Rows and Columns

Each symbol is in an intercalate.

1	2	3	4	5	6	7
2	3	1	5	4	7	6
3	1					
6	4					
4	6					
5	7					
7	5					

1	2	3	4	6	5
2	3	1	5	4	6
3	1				
6	4				
5	6				
4	5				

Completed Rows and Columns

1	2	3	4	5	6	7
2	3	1	5	4	7	6
3	1					
6	4					
4	6					
5	7					
7	5					

1	2	3	4	6	5
2	3	1	5	4	6
3	1	4	6	5	2
6	4	5	1	2	3
5	6	2	3	1	4
4	5	6	2	3	1

Completed Rows and Columns

1	2	3	4	5	6	7
2	3	1	5	4	7	6
3	1					
6	4					
4	6					
5	7					
7	5					

4	3	1	6	5	2	
3	1	2	4	6	5	
1	2	3	5	4	6	
5	6	4	1	2	3	
2	5	6	3	1	4	
6	4	5	2	3	1	

Completed Rows and Columns

1	2	3	4	5	6	7
2	3	1	5	4	7	6
3	1					
6	4					
4	6					
5	7					
7	5					

4	3	1	6	5	2	
3	1	2	4	6		5
1	2	3	5		6	4
5	6	4		2	3	1
2	5		3	1	4	6
6		5	2	3	1	4

Completed Rows and Columns

1	2	3	4	5	6	7
2	3	1	5	4	7	6
3	1					
6	4					
4	6					
5	7					
7	5					

4	3	1	6	5	2	
3	1	2	4	6		5
1	2	3	5		6	4
5	6	4		2	3	1
2	5		3	1	4	6
6		5	2	4	1	3

Completed Rows and Columns

1	2	3	4	5	6	7
2	3	1	5	4	7	6
3	1					
6	4					
4	6					
5	7					
7	5					

4	3	1	6	5	2	7
3	1	2	4	6	7	5
1	2	3	5	7	6	4
5	6	4	7	2	3	1
2	5	7	3	1	4	6
6	7	5	2	4	1	3
7	4	6	1	3	5	2

Theorem 10 (Kuhl and McGinn, 2017)
Let $A \in \operatorname{PLS}(2, b ; n)$ and cells $[2] \times[b]$ consist only of symbols from $[b]$. If $n \geq 2 b^{2}-2 b+5$ and $\sigma_{A}([n] \backslash[b])$ contains a cycle of length at least $\frac{n+3}{2}$, then A can be completed.

Theorem 10 (Kuhl and McGinn, 2017)
Let $A \in \operatorname{PLS}(2, b ; n)$ and cells $[2] \times[b]$ consist only of symbols from $[b]$. If $n \geq 2 b^{2}-2 b+5$ and $\sigma_{A}([n] \backslash[b])$ contains a cycle of length at least $\frac{n+3}{2}$, then A can be completed.

Conjecture 1
Let $A \in \operatorname{PLS}(2, b ; n)$. If $n \geq 2 b+2$, then A can be completed.

Current Section

(1) Introduction

(2) Classical Results
(3) Recent Results

4 Open Problems
(5) Other Completion Problems

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)
If $P \in \operatorname{PLS}(n r)$ with all non-empty cells in at most $n-1$ pairwise disjoint $r \times r$ blocks, then P can be completed.

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)
If $P \in \operatorname{PLS}(n r)$ with all non-empty cells in at most $n-1$ pairwise disjoint $r \times r$ blocks, then P can be completed.

- $n=1$ is trivial

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)
If $P \in \operatorname{PLS}(n r)$ with all non-empty cells in at most $n-1$ pairwise disjoint $r \times r$ blocks, then P can be completed.

- $n=1$ is trivial
- $r=1$ is Evans' conjecture

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)
If $P \in \operatorname{PLS}(n r)$ with all non-empty cells in at most $n-1$ pairwise disjoint $r \times r$ blocks, then P can be completed.

- $n=1$ is trivial
- $r=1$ is Evans' conjecture
- $n=2$ is solved by Ryser's Theorem

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)
If $P \in \operatorname{PLS}(n r)$ with all non-empty cells in at most $n-1$ pairwise disjoint $r \times r$ blocks, then P can be completed.

- $n=1$ is trivial
- $r=1$ is Evans' conjecture
- $n=2$ is solved by Ryser's Theorem
- $n=3$ was solved by Denly and Häggkvist (2003)

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)

If $P \in \operatorname{PLS}(n r)$ with all non-empty cells in at most $n-1$ pairwise disjoint $r \times r$ blocks, then P can be completed.

- $n=1$ is trivial
- $r=1$ is Evans' conjecture
- $n=2$ is solved by Ryser's Theorem
- $n=3$ was solved by Denly and Häggkvist (2003)
- Kuhl and Denley confirmed Conjecture 1 for latin $r \times r$ blocks (2008)

Block Diagonal

Theorem 11 (Kuhl and Schroeder, 2015)
Let n and r be positive integers.

- If $n \geq r+1$, then for every $A \in \operatorname{LS}(r ;[n r])$, $n A$ is completable.
- If $n \leq r-1$, then there exists $A \in \operatorname{LS}(r ;[n r])$ for which $n A$ is not completable.

Block Diagonal

Theorem 11 (Kuhl and Schroeder, 2015)
Let n and r be positive integers.

- If $n \geq r+1$, then for every $A \in \operatorname{LS}(r ;[n r]), n A$ is completable.
- If $n \leq r-1$, then there exists $A \in \operatorname{LS}(r ;[n r])$ for which $n A$ is not completable.

1	2				
2	3				
		1	2		
		2	3		
				1	2
				2	3

Block Diagonal

Theorem 12 (Kuhl and Schroeder, 2015)
Let n and r be positive integers.

- If $n \geq r+1$, then for every $A \in \operatorname{LS}(r ;[n r])$, $n A$ is completable.
- If $n \leq r-1$, then there exists $A \in \operatorname{LS}(r ;[n r])$ for which $n A$ is not completable.

Conjecture 3
Let n and r be positive integers. If $n \geq r$, then for every $A \in \operatorname{LS}(r ;[n r])$, $n A$ is completable.

Disjoint Subsquares

$\operatorname{PLS}\left(a^{s}, b^{t}\right)$: PLSs with $s+t$ pairwise disjoint subsquares, where s subsquares have order a and t subsquares have order b.

Disjoint Subsquares

$\operatorname{PLS}\left(a^{s}, b^{t}\right)$: PLSs with $s+t$ pairwise disjoint subsquares, where s subsquares have order a and t subsquares have order b.

1	2							
2	1							
		3	4					
		4	3					
				5	6			
				6	5			
						7	8	9
						8	9	7
						9	7	8

Disjoint Subsquares

Theorem 13 (Heinrich, 1982)

- Each element of $\operatorname{PLS}(a, b, c)$ is completable if and only if $a=b=c$.
- Each element of $\operatorname{PLS}(a, b, c, d)$ is completable if and only if $a=b=c$ and $d \leq 2 a$.

Disjoint Subsquares

Theorem 13 (Heinrich, 1982)

- Each element of $\operatorname{PLS}(a, b, c)$ is completable if and only if $a=b=c$.
- Each element of $\operatorname{PLS}(a, b, c, d)$ is completable if and only if $a=b=c$ and $d \leq 2 a$.

Theorem 14 (Heinrich, 1982)
Suppose that $a<b$.

- If $s \geq 3$ and $t \geq 3$, then each element of $\operatorname{PLS}\left(a^{s}, b^{t}\right)$ is completable.
- Each element of $\operatorname{PLS}\left(a, b^{t}\right)$ is completable if and only if $t \geq 3$.
- Each element of $\operatorname{PLS}\left(a^{s}, b\right)$ is completable if and only if $(s-1) a \geq b$.

Disjoint Subsquares

Theorem 15 (Kuhl and Schroeder, 2017)
Suppose that $a<b$.

- Each element of $\operatorname{PLS}\left(a^{2}, b^{t}\right)$ is completable if and only if $t \geq 3$.
- Each element of $\operatorname{PLS}\left(a^{s}, b^{2}\right)$ is completable if and only if $a s \geq b$.

Disjoint Subsquares

Theorem 15 (Kuhl and Schroeder, 2017)
Suppose that $a<b$.

- Each element of $\operatorname{PLS}\left(a^{2}, b^{t}\right)$ is completable if and only if $t \geq 3$.
- Each element of $\operatorname{PLS}\left(a^{s}, b^{2}\right)$ is completable if and only if as $\geq b$.

Problems:

- Find conditions on s, t, and u that guarantee completions of the elements of $\operatorname{PLS}\left(a^{s}, b^{t}, c^{u}\right)$.

Disjoint Subsquares

Theorem 15 (Kuhl and Schroeder, 2017)
Suppose that $a<b$.

- Each element of $\operatorname{PLS}\left(a^{2}, b^{t}\right)$ is completable if and only if $t \geq 3$.
- Each element of $\operatorname{PLS}\left(a^{s}, b^{2}\right)$ is completable if and only if as $\geq b$.

Problems:

- Find conditions on s, t, and u that guarantee completions of the elements of $\operatorname{PLS}\left(a^{s}, b^{t}, c^{u}\right)$.
- Classify the completable elements of $\operatorname{PLS}(a, b, c, d, e)$.

Diagonally Cyclic Latin Squares

Definition 4
 A LS L is diagonally cyclic if for each $(i, j, k) \in L,(i+1, j+1, k+1) \in L$.

Diagonally Cyclic Latin Squares

Definition 4

A LS L is diagonally cyclic if for each $(i, j, k) \in L,(i+1, j+1, k+1) \in L$.

0	2	4	1	3
4	1	3	0	2
3	0	2	4	1
2	4	1	3	0
1	3	0	2	4

Diagonally Cyclic Latin Squares

Definition 4

A $L S L$ is diagonally cyclic if for each $(i, j, k) \in L,(i+1, j+1, k+1) \in L$.

0	2	4	1	3
4	1	3	0	2
3	0	2	4	1
2	4	1	3	0
1	3	0	2	4

- A diagonally cyclic LS is determined by its first row.

Diagonally Cyclic Latin Squares

Definition 4

A $L S L$ is diagonally cyclic if for each $(i, j, k) \in L,(i+1, j+1, k+1) \in L$.

0	2	4	1	3
4	1	3	0	2
3	0	2	4	1
2	4	1	3	0
1	3	0	2	4

- A diagonally cyclic LS is determined by its first row.
- Suppose that $\left(0, i, s_{i}\right) \in L$. If $s_{i}-i \not \equiv s_{j}-j$ for each i, j, then L is diagonally cyclic.

Diagonally Cyclic Latin Squares

Definition 4

A LS L is diagonally cyclic if for each $(i, j, k) \in L,(i+1, j+1, k+1) \in L$.

0	2	4	1	3
4	1	3	0	2
3	0	2	4	1
2	4	1	3	0
1	3	0	2	4

- A diagonally cyclic LS is determined by its first row.
- Suppose that $\left(0, i, s_{i}\right) \in L$. If $s_{i}-i \not \equiv s_{j}-j$ for each i, j, then L is diagonally cyclic.
- There are no diagonally cyclic LSs of even order.

Diagonally Cyclic Latin Squares

Let $P \in \operatorname{PLS}(n)$ with k diagonals completed cyclically. Can P be completed to a diagonally cyclic LS?

Diagonally Cyclic Latin Squares

Let $P \in \operatorname{PLS}(n)$ with k diagonals completed cyclically. Can P be completed to a diagonally cyclic LS?

Diagonally Cyclic Latin Squares

0	2							1
0	1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8	0
2	3	4	5	6	7	8	0	1
3	4	5	6	7	8	0	1	2
4	5	6	7	8	0	1	2	3
5	6	7	8	0	1	2	3	4
6	7	8	0	1	2	3	4	5
7	8	0	1	2	3	4	5	6
8	0	1	2	3	4	5	6	7

Diagonally Cyclic Latin Squares

0	2	7	6	8	4	3	5	1
0	1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8	0
2	3	4	5	6	7	8	0	1
3	4	5	6	7	8	0	1	2
4	5	6	7	8	0	1	2	3
5	6	7	8	0	1	2	3	4
6	7	8	0	1	2	3	4	5
7	8	0	1	2	3	4	5	6
8	0	1	2	3	4	5	6	7

Diagonally Cyclic Latin Squares

Let $N(k)$ be the smallest integer in which all PLSs of odd order $n \geq N(k)$ with k cyclic diagonals can be completed cyclically.

Diagonally Cyclic Latin Squares

Let $N(k)$ be the smallest integer in which all PLSs of odd order $n \geq N(k)$ with k cyclic diagonals can be completed cyclically.

- $N(k) \geq 3 k-1$ for $k \geq 3$ (Grüttmüller, 2003)

Diagonally Cyclic Latin Squares

Let $N(k)$ be the smallest integer in which all PLSs of odd order $n \geq N(k)$ with k cyclic diagonals can be completed cyclically.

- $N(k) \geq 3 k-1$ for $k \geq 3$ (Grüttmüller, 2003)
- $N(2)=3$ (Grüttmüller, 2003)

Diagonally Cyclic Latin Squares

Let $N(k)$ be the smallest integer in which all PLSs of odd order $n \geq N(k)$ with k cyclic diagonals can be completed cyclically.

- $N(k) \geq 3 k-1$ for $k \geq 3$ (Grüttmüller, 2003)
- $N(2)=3$ (Grüttmüller, 2003)
- PLSs of prime order (at least 11) with 3 cyclic diagonals can be completed cyclically (Cavenagh, Hämäläinen, Adrian; 2009)

Diagonally Cyclic Latin Squares

Let $N(k)$ be the smallest integer in which all PLSs of odd order $n \geq N(k)$ with k cyclic diagonals can be completed cyclically.

- $N(k) \geq 3 k-1$ for $k \geq 3$ (Grüttmüller, 2003)
- $N(2)=3$ (Grüttmüller, 2003)
- PLSs of prime order (at least 11) with 3 cyclic diagonals can be completed cyclically (Cavenagh, Hämäläinen, Adrian; 2009)

Conjecture 4
$N(3)=9$.

є-dense PLSs

Let $P \in \operatorname{PLS}(n)$. We say that P is ϵ-dense if each row, column, and symbol is used at most ϵn times.

є-dense PLSs

Let $P \in \operatorname{PLS}(n)$. We say that P is ϵ-dense if each row, column, and symbol is used at most ϵn times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)
All $\frac{1}{4}$-dense PLSs are completable.

ϵ-dense PLSs

Let $P \in \operatorname{PLS}(n)$. We say that P is ϵ-dense if each row, column, and symbol is used at most ϵn times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)
All $\frac{1}{4}$-dense PLSs are completable.

Theorem 16 (Daykin and Häggkvist, 1984)
If $n=16 k$, then all $\frac{1}{2^{9} \sqrt{n}}$-dense PLSs of order n are completable.

ϵ-dense PLSs

Let $P \in \operatorname{PLS}(n)$. We say that P is ϵ-dense if each row, column, and symbol is used at most ϵn times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)
All $\frac{1}{4}$-dense PLSs are completable.
Theorem 16 (Daykin and Häggkvist, 1984)
If $n=16 k$, then all $\frac{1}{2^{9} \sqrt{n}}$-dense PLSs of order n are completable.
Theorem 17 (Bartlett, 2013)
All 10^{-4}-dense PLSs of order n are completable for $n>1.2 \times 10^{5}$.

Current Section

(2) Classical Results
(3) Recent Results
(4) Open Problems
(5) Other Completion Problems

Other Completion Problems

Conjecture 6

If P is a partial latin cube of order n with at most $n-1$ non-empty cells, then P can be completed to a latin cube of order n.

Theorem 18 (Kuhl and Denley, 2011)
If P is a partial latin cube of order n with at most $n-1$ non-empty cells, no two of which lie in the same row, then P can be completed to a latin cube of order n.

Other Completion Problems

Conjecture 7

Let $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells. Let $\mathcal{Q} \subseteq \operatorname{PLS}(n)$ be the PLSs that avoid P. For any $Q \in \mathcal{Q}, P$ can be completed to a LS that avoids Q.

Theorem 19 (Kuhl and Denley, 2012)
Let $P \in \operatorname{PLS}(4 k)$ with at most $k-1$ non-empty cells. Let $\mathcal{Q} \subseteq \operatorname{PLS}(n)$ be the PLSs that avoid P. For any $Q \in \mathcal{Q}, P$ can be completed to a $L S$ that avoids Q.

Other Completion Problems

Conjecture 8

Any two PLSs of order $n>5$ can be avoided simultaneously.

Other Completion Problems

Conjecture 8

Any two PLSs of order $n>5$ can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley) All PLSs of order $n \geq 4$ are avoidable.

Other Completion Problems

Conjecture 8
Any two PLSs of order $n>5$ can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley) All PLSs of order $n \geq 4$ are avoidable.

Theorem 21 (Kuhl and Hinojosa, 2012)

- Any two PLSs of order $4 k$ with $k>56$ can be avoided simultaneously.

Other Completion Problems

Conjecture 8

Any two PLSs of order $n>5$ can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley) All PLSs of order $n \geq 4$ are avoidable.

Theorem 21 (Kuhl and Hinojosa, 2012)

- Any two PLSs of order $4 k$ with $k>56$ can be avoided simultaneously.
- Any two PLSs of order mk with $k \geq \frac{m^{5}}{2}$ can be avoided simultaneously.

Other Completion Problems

Conjecture 8

Any two PLSs of order $n>5$ can be avoided simultaneously.

> Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley) All PLSs of order $n \geq 4$ are avoidable.

Theorem 21 (Kuhl and Hinojosa, 2012)

- Any two PLSs of order $4 k$ with $k>56$ can be avoided simultaneously.
- Any two PLSs of order mk with $k \geq \frac{m^{5}}{2}$ can be avoided simultaneously.

Conjecture 6

Let $P_{1}, \ldots, P_{t} \in \operatorname{PLS}(n)$. If $t<n / 3$, then P_{1}, \ldots, P_{t} can be avoided simultaneously.

Thank You!

