Self-distributive cohomology: Why care, and how to compute

Victoria LEBED, Trinity College Dublin (Ireland)

Denver, July 2017

$$
(\mathrm{a} \triangleleft \mathrm{~b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})
$$

Previously...

Knot diagram colorings

$$
\text { by }(S, \triangleleft) \text { : }
$$

RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
shelf	
RII	$\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a} \triangleleft \mathrm{b}$ invertible
rack	
RI	$\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$
quandle	

Theorem (Joyce \& Matveev '82):
\checkmark The number of colorings of a diagram D of a knot K by a quandle $(\mathrm{S}, \triangleleft)$ yields a knot invariant.

$$
\checkmark \# \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})=\text { Hom }_{\mathrm{Quandle}}(\mathrm{Q}(\mathrm{~K}), \mathrm{S})
$$

where $Q(K)=$ fundamental quandle of K (a weak universal knot invariant).

Part 1:

You Could Have Invented SD
Cohomology If You Were...

diagrams:
colorings:

D	$\stackrel{\text { R-move }}{\rightsquigarrow}$	D^{\prime}
C	\rightsquigarrow	C^{\prime}

coloring sets:

$\operatorname{Col}_{S, \triangleleft}(D) \quad \stackrel{1: 1}{\longleftrightarrow} \quad \operatorname{Col}_{S, \triangleleft}\left(D^{\prime}\right)$

Counting invariants: $\# \operatorname{Col}_{S, \triangleleft}(\mathrm{D})=\#_{\operatorname{Col}_{S, \triangleleft}}\left(\mathrm{D}^{\prime}\right)$.

Question: Extract more information?

$$
\begin{gathered}
\omega(\mathcal{C})=\omega\left(\mathcal{C}^{\prime}\right) \\
\Downarrow \\
\left\{\omega(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})\right\} \stackrel{\left.\left(\mathcal{C}^{\prime}\right) \mid \mathcal{C}^{\prime} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}\left(\mathrm{D}^{\prime}\right)\right\} .}{=\{\omega}
\end{gathered}
$$

Answer (Carter-Jelsovsky-Kamada-Langford-Saito '03): State-sums over crossings, and Boltzmann weights:

$$
\phi: S \times S \rightarrow \mathbb{Z}_{\mathfrak{m}} \quad \sim \quad \omega_{\phi}(\mathcal{C})=\sum_{\mathrm{b} \lambda} \pm \phi(a, b)
$$

Conditions on ϕ :

Quandle cocycle invariants: $\left\{\omega_{\phi}(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})\right\}$.

$$
\phi: S \times S \rightarrow \mathbb{Z}_{\mathfrak{m}} \quad \sim \quad \omega_{\phi}(\mathcal{C})=\sum_{\substack{ \\a^{\prime}}} \pm \phi(a, b)
$$

Quandle cocycle invariants: $\left\{\omega_{\phi}(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})\right\}$.
Example: $\phi=0 \quad \sim \quad$ counting invariants.
Quandle cocycle invariants \supsetneq counting invariants.
Conjecture (Clark-Saito-...):
Finite quandle cocycle invariants distinguish all knots.
Generalisation: $K^{n} \hookrightarrow \mathbb{R}^{n+2}$ and $\phi: S^{\times(n+1)} \rightarrow \mathbb{Z}_{\mathrm{m}}$.
Wish:
$d^{n+1} \phi=0 \Longrightarrow \phi$ refines counting invariants for n-knots, $\phi=\mathrm{d}^{\mathrm{n}} \psi \Longrightarrow$ the refinement is trivial.

2. ... a Hopf Algebraist

Very open question: Classify nice Hopf algebras over \mathbb{C}.
Here "nice" = finite-dimensional pointed.

Applications:

\checkmark cohomology of H-spaces, e.g. Lie groups (Hopf '41);
\checkmark invariants of knots and 3-manifolds, TQFT;
\checkmark non-commutative geometry;
\checkmark condensed-matter physics, string theory,

Examples:

\checkmark group algebras $\mathbb{k} G$;
\checkmark enveloping algebras of Lie algebras $\mathrm{U}(\mathfrak{g})$;
\checkmark quantum groups: deformations $\mathrm{U}_{\mathrm{q}}(\mathfrak{g})$ for semisimple \mathfrak{g},

Classification program (Andruskiewitsch-Graña-Schneider '98):
nice Hopf algebra A
ζ
Yetter-Drinfel'd module $V \in \underset{H}{\mathrm{H}} \mathrm{YD}$

$$
\text { braided vector space }(\mathrm{V}, \sigma) \quad \sim \quad \operatorname{rack}(\mathrm{S}, \triangleleft) \& \phi: S \times S \rightarrow \mathbb{Z}_{\mathrm{m}}
$$

Nichols algebra $B(V)$
bosonization Hopf algebra $B(V) \# H$

$$
\& V \in{ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{YD}
$$

$\checkmark \mathrm{G}(A)=$ the group of group-like elements of $A, \quad H(A)=\mathbb{C G}(A)$;
$\checkmark \mathrm{R}(A)=$ coinvariants of $\operatorname{gr}(A) \rightarrow \operatorname{gr}(A)_{0}=\mathrm{H}(A), \mathrm{V}(A)=\operatorname{Prim}(\mathrm{R}(A))$;
$\checkmark \sigma \in \operatorname{Aut}(\mathrm{V} \otimes \mathrm{V}), \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$,

$$
\text { where } \sigma_{1}=\sigma \times \mathrm{Id}_{\mathrm{S}}, \quad \sigma_{2}=\operatorname{Id}_{\mathrm{S}} \times \sigma \text {; }
$$

\checkmark in red: "arrows with a large image";
$\checkmark \operatorname{gr}(A) \cong R(A) \# H(A)=[$ conjecturally $]=B(V(A)) \# H(A)$.
braided vector space $\left(\mathbb{C S}, \sigma_{\triangleleft, \phi}\right) \sim \operatorname{rack}(S, \triangleleft) \& \phi: S \times S \rightarrow \mathbb{Z}_{\mathfrak{m}}$

$$
\sigma_{\triangleleft, \phi}:(a, b) \mapsto q^{\phi(a, b)}(b, a \triangleleft b)
$$

Here q is an mth root of unity, or transcendental.
Wish:

$$
\mathrm{d}^{2} \phi=0 \Longrightarrow\left(\mathbb{C S}, \sigma_{\triangleleft, \phi}\right) \text { is a braided vector space, }
$$

$$
\phi-\phi^{\prime}=\mathrm{d}^{1} \psi \Longrightarrow \text { the braided vector spaces are isomorphic. }
$$

Rack classification in 3 steps (Joyce '82, Andruskiewitsch-Graña '03):

1) Simple racks, i.e., without non-trivial quotients:
\checkmark permutation racks $S=\mathbb{Z}_{p}, a \triangleleft b=a+1$, p prime;
\checkmark Alexander (= affine) racks $S=\mathbb{Z}_{p^{k}}, a \triangleleft b=t a+(1-t) b$,
p prime, t generates $\mathbb{Z}_{\mathfrak{p}^{k}}$ over $\mathbb{Z}_{\mathfrak{p}}$;
\checkmark certain twisted conjugacy racks: subracks of (G,a $\mathrm{a} \triangleleft \mathrm{b}=\mathrm{f}\left(\mathrm{b}^{-1} \mathrm{a}\right) \mathrm{b}$),
G a group, $f \in \operatorname{Aut}(G), \quad|S|$ divisible by $\geqslant 2$ different primes.
\} repeated extensions
2) Indecomposable (= connected) racks, i.e., having only 1 orbit w.r.t. \triangleleft.
\} (various!) glueings
3) General racks.

A rack extension of S is a rack surjection $R \rightarrow S$.
If S is indecomposable, then $R \cong S \times{ }_{\alpha} X$, which is $S \times X$ with

$$
(a, x) \triangleleft(b, y)=(a \triangleleft b, \alpha(a, b, x, y))
$$

where X is a set, and $\alpha: S \times S \times X \times X \rightarrow X$ satisfies certain axioms.
Important class: abelian rack extensions, i.e., with X an abelian group and

$$
\alpha(a, b, x, y)=x+\phi(a, b), \quad \phi: S \times S \rightarrow X
$$

Wish:
$d^{2} \phi=0 \Longrightarrow \phi$ defines an abelian extension, $\phi=d^{1} \psi \Longrightarrow$ the extension is trivial.

Fenn et al. ' 95 \& Carter et al. '03 \& Graña '00:
Shelf $(S, \triangleleft) \&$ abelian group $X \sim$ cochain complex

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Map}\left(S^{\times k}, X\right) \\
& \begin{aligned}
\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
& \left.-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right)
\end{aligned}
\end{aligned}
$$

\sim Rack cohomology $H_{R}^{k}(S, X)=\operatorname{Ker} d_{R}^{k} / \operatorname{Im} d_{R}^{k-1}$.
Quandle $(S, \triangleleft) \&$ abelian group $X \sim$ sub-complex of $\left(C_{R}^{k}, d_{R}^{k}\right)$:

$$
C_{Q}^{k}(S, X)=\left\{f: S^{\times k} \rightarrow X \mid f(\ldots, a, a, \ldots)=0\right\}
$$

\sim Quandle cohomology $\mathrm{H}_{\mathrm{Q}}^{\mathrm{k}}(\mathrm{S}, \mathrm{X})$.

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Map}\left(S^{\times k}, X\right) \\
& \begin{aligned}
&\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right)=\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
&\left.\quad-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right) ;
\end{aligned} \\
& C_{Q}^{k}(S, X)=\left\{f: S^{\times k} \rightarrow X \mid f(\ldots, a, a, \ldots)=0\right\} .
\end{aligned}
$$

In small degree:

$\left(d_{\mathrm{R}}^{0} \mathrm{f}\right)\left(\mathrm{a}_{1}\right)=0$
$\left(d_{R}^{1} f\right)\left(a_{1}, a_{2}\right)=f\left(a_{1} \triangleleft a_{2}\right)-f\left(a_{1}\right) \quad H_{R}^{1}(S, X) \cong \operatorname{Map}(\operatorname{Orb}(S), X)$
$\left(d_{R}^{2} f\right)(\bar{a})=f\left(a_{1} \triangleleft a_{2}, a_{3}\right)-f\left(a_{1}, a_{3}\right)+f\left(a_{1}, a_{2}\right)-f\left(a_{1} \triangleleft a_{3}, a_{2} \triangleleft a_{3}\right)$
$\mathrm{f} \in \mathrm{C}_{\mathrm{Q}}^{2} \Longleftrightarrow \mathrm{f}(\mathrm{a}, \mathrm{a})=0$.
Remark: $\mathrm{d}_{\mathrm{R}}^{2} \mathrm{~d}_{\mathrm{R}}^{1}=0 \Longleftrightarrow$ self-distributivity for \triangleleft.
This is what we were looking for! This construction yields:
\checkmark Boltzmann weights for constructing higher knot invariants;
\checkmark an important class of braided vector spaces giving nice Hopf algebras;
\checkmark a parametrization of abelian rack extensions.

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Map}\left(S^{\times k}, X\right), \\
& \left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right)=\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
& \left.\quad-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right) ; \\
& C_{Q}^{k}(S, X)=\left\{f: S^{\times k} \rightarrow X \mid f(\ldots, a, a, \ldots)=0\right\} .
\end{aligned}
$$

\checkmark For the trivial quandle $\mathrm{T}_{\mathrm{n}}=(\{1, \ldots, \mathrm{n}\}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{a})$, all $\mathrm{d}_{\mathrm{R}}^{\mathrm{k}}=0$, so

$$
H_{R}^{k}\left(T_{n}, X\right) \cong X^{n^{k}}, \quad H_{Q}^{k}\left(T_{n}, X\right) \cong X^{n(n-1)^{k-1}}
$$

\checkmark For the free rack on \mathfrak{n} generators $F R_{n}$,

$$
H_{R}^{k}\left(F R_{n}, X\right) \cong \begin{cases}X, & n=0 \\ X^{n}, & n=1 \\ 0, & n>1\end{cases}
$$

The quandle cohomology of free quandles has the same form. (Fenn-Rourke-Sanderson '07, Farinati-Guccione-Guccione '14)

Part 2:

How to Approach SD Cofiomology?

/6/Topological realization

Fenn-Rourke-Sanderson '95: Shelf $(S, \triangleleft) \leadsto$ rack (= classifying) space $B(S)$. It is a CW-complex: $\operatorname{deg} 0: *$ $\operatorname{deg} 1: * \xrightarrow{a} *$

$\operatorname{deg} 3$:

$\operatorname{deg} 3:$

Remark: the edges can be colored starting from the green corner $\Longleftrightarrow \triangleleft$ is self-distributive.

$\operatorname{deg} n: \coprod_{S \times n}[0,1]^{n}$

The coloring continues uniquely to other edges of $[0,1]^{n}$.
Boundaries: usual topological ones.

$$
\mathrm{H}_{\mathrm{R}}^{*}(\mathrm{~S}, \mathrm{X}) \cong \mathrm{H}^{*}(\mathrm{~B}(\mathrm{~S}), \mathrm{X})
$$

$\operatorname{deg} n: \coprod_{S \times n}[0,1]^{n}$

The coloring continues uniquely to other edges of $[0,1]^{n}$.
Boundaries: usual topological ones.

$$
\mathrm{H}_{\mathrm{R}}^{*}(\mathrm{~S}, \mathrm{X}) \cong \mathrm{H}^{*}(\mathrm{~B}(\mathrm{~S}), \mathrm{X})
$$

Nosaka '11: To get quandle cohomology, add 3-dimensional cells bounding

$$
\mathrm{H}_{\mathrm{R}}^{*}(\mathrm{~S}, \mathrm{X}) \cong \mathrm{H}^{*}(\mathrm{~B}(\mathrm{~S}), \mathrm{X})
$$

So, rack spaces bring topological tools in the study of $\mathrm{H}_{\mathrm{R}}^{*}$.
$\checkmark \quad \pi_{1}(\mathrm{~B}(\mathrm{~S})) \cong \mathrm{As}(\mathrm{S}) \quad$ where $\mathrm{As}(\mathrm{S}):=\langle\mathrm{S} \mid \mathrm{ab}=\mathrm{b}(\mathrm{a} \triangleleft \mathrm{b})\rangle$ is the associated $(=$ adjoint $=$ structure $=$ universal enveloping) group of (S, \triangleleft).

\checkmark Rack cohomology becomes a pre-cubical cohomology, i.e.,
$d_{R}^{k}=\sum_{i=1}^{k+1}(-1)^{i-1}\left(d_{i, 0}^{k}-d_{i, 1}^{k}\right), \quad d_{i, \varepsilon} d_{j, \zeta}=d_{j-1, \zeta} d_{i, \varepsilon} \quad$ for all $i<j$.
\checkmark Concrete computations (Fenn-Rourke-Sanderson '07):

1) Trivial quandle $T_{n}=(\{1, \ldots, n\}, a \triangleleft b=a): \quad B\left(T_{n}\right) \cong \Omega\left(\vee_{n} \mathbb{S}^{2}\right)$.
2) Free rack on n generators $F R_{n}: \quad B\left(F R_{n}\right) \cong V_{n} \mathbb{S}^{1}$.

(7) Graphical interpretation

$$
\begin{aligned}
& C_{R}^{k}\left(S, \mathbb{Z}_{m}\right)=\operatorname{Map}\left(S^{\times k}, \mathbb{Z}_{\mathfrak{m}}\right), \\
& \begin{aligned}
\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
& \left.\quad-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right)
\end{aligned}
\end{aligned}
$$

$$
\smile: C_{R}^{k} \otimes C_{R}^{n} \rightarrow C_{R}^{k+n}
$$

Theorem:

$\checkmark\left(\mathrm{C}_{\mathrm{R}}^{*}, \smile\right)$ is a differential graded associative algebra, graded commutative up to an explicit homotopy;
$\checkmark\left(\mathrm{H}_{\mathrm{R}}^{*}, \smile\right)$ is a graded commutative associative algebra (even better: a dendriform algebra).

$$
f \smile g\left(a_{1}, \ldots, a_{k+n}\right)=\sum_{\text {splittings }}(-1)^{\# 入}
$$

Theorem:

$\checkmark\left(\mathrm{C}_{\mathrm{R}}^{*}, \smile\right)$ is a differential graded associative algebra, graded commutative up to an explicit homotopy;
$\checkmark\left(H_{R}^{*}, \smile\right)$ is a graded commutative associative algebra (even better: a dendriform algebra).

Interpretations:

\checkmark quantum shuffle coproduct;
\checkmark topological cup product;
\checkmark cup product in cubical cohomology.
(Serre '51, Baues '98, Clauwens '11, Covez '12, L. '17.)

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Metti} \text { numbers }\left(S^{\times k}, X\right) \\
& \begin{aligned}
\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
& \left.-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right)
\end{aligned}
\end{aligned}
$$

Theorem (Etingof-Graña'03): If (S, \triangleleft) is a rack and $\# \operatorname{lnn}(S) \in X^{*}$, then

$$
H_{R}^{k}(S, X) \cong \operatorname{Map}\left(\operatorname{Orb}(S)^{\times k}, X\right) \quad \text { i.e., } b_{k}(S)=|\operatorname{Orb}(S)|^{k}
$$

$\checkmark \operatorname{Orb}(S)=\{$ orbits of S w.r.t. $a \sim a \triangleleft b\} ;$
$\checkmark \operatorname{lnn}(S)$ is the subgroup of $\operatorname{Aut}(S)$ generated by $t_{b}: a \mapsto a \triangleleft b$.
Bad news: If $\# \operatorname{lnn}(S) \in X^{*}$, then
quandle cocycle invariants = coloring invariants + linking numbers.
Hope: Look at $X=\mathbb{Z}_{p}$, or at the p-torsion of $H_{R}^{k}(S, \mathbb{Z})$, where $p \mid \# \operatorname{lnn}(S)$.

Theorem (Etingof-Graña '03): If (S, \triangleleft) is a rack and $\# \operatorname{lnn}(S) \in X^{*}$, then

$$
H_{R}^{\mathrm{k}}(S, X) \cong \operatorname{Map}\left(\operatorname{Orb}(S)^{\times k}, X\right) \quad \text { i.e., } b_{k}(S)=|\operatorname{Orb}(S)|^{\times k}
$$

$\checkmark \operatorname{Orb}(S)=\{$ orbits of S w.r.t. $a \sim a \triangleleft b\}$;
$\checkmark \operatorname{lnn}(S)$ is the subgroup of $\operatorname{Aut}(S)$ generated by $t_{b}: a \mapsto a \triangleleft b$.

Bad news: $\operatorname{If} \# \operatorname{Inn}(S) \in X^{*}$, then
quandle cocycle invariants = coloring invariants + linking numbers.
Hope: Look at $X=\mathbb{Z}_{p}$, or at the p-torsion of $H_{R}^{k}(S, \mathbb{Z})$, where $p \mid \# \operatorname{Inn}(S)$. It works, and yields interesting invariants! (Wait for Scott's talk).

Theorem (Dehornoy-L. '14, L. '16): If (S, \triangleleft) is a finite monogenic shelf (e.g., a Laver table $\left.A_{n}\right)$, then $H_{R}^{k}(S, X) \cong X$.

Remark: The classes of constant maps do not yield generators in general.
Question: Cohomology of infinite monogenic shelves? Of free shelves?

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Map}\left(S^{\times k}, X\right), \\
& C_{Q}^{k}(S, X)=\left\{f: S^{\times k} \rightarrow X \mid f(\ldots, a, a, \ldots)=0\right\}
\end{aligned}
$$

Theorem (Litherland-Nelson '03): The rack cohomology of a quandle splits:

$$
\mathrm{H}_{\mathrm{R}}^{\mathrm{k}} \cong \mathrm{H}_{\mathrm{Q}}^{\mathrm{k}} \oplus \mathrm{H}_{\mathrm{D}}^{\mathrm{k}}
$$

Here H_{D}^{k} is the cohomology of an explicit degenerate subcomplex of C_{R}^{k}.
Generalization (L.-Vendramin '17): A similar splitting holds for skew cubical cohomology.

Theorem (Przytycki-Putyra '16): Degenerate cohomology is degenerate. That is, $\mathrm{H}_{\mathrm{Q}}^{\mathrm{k}}$ completely determines $\mathrm{H}_{\mathrm{D}}^{\mathrm{k}}$.

The associated (= adjoint = structure = universal enveloping) group of (S, \triangleleft) :

$$
\operatorname{As}(\mathrm{S}):=\langle\mathrm{S} \mid \mathrm{ab}=\mathrm{b}(\mathrm{a} \triangleleft \mathrm{~b})\rangle
$$

Theorem (Joyce '82): One has a pair of adjoint functors

$$
\text { As : Rack } \rightleftarrows \text { Group : Conj . }
$$

Theorem (Etingof-Graña '03): $\mathrm{H}_{\mathrm{R}}^{2}(\mathrm{~S}, \mathrm{X}) \cong \mathrm{H}_{\mathrm{G}}^{1}(\operatorname{As}(\mathrm{~S}), \operatorname{Map}(\mathrm{S}, \mathrm{X}))$.
Theorem (García Iglesias \& Vendramin '16): For a finite indecomposable quandle S,

$$
H_{R}^{2}(S, X) \cong X \times \operatorname{Hom}(N(S), X)
$$

Here $N(S)$ is a finite group (the stabilizer of an $a_{0} \in S$ in $\left.[\operatorname{As}(S), \operatorname{As}(S)]\right)$.
Theorem. There is a graded algebra morphism $\mathrm{HH}^{*}(\mathrm{As}(\mathrm{S}), \mathrm{X}) \rightarrow \mathrm{H}_{\mathrm{R}}^{*}(\mathrm{~S}, \mathrm{X})$. Interpretations:
\checkmark explicit map: quantum symmetrizer (Covez '12, Farinati \& García Galofre '16);
$\checkmark \mathrm{B}(\mathrm{S}) \rightarrow \mathrm{B}(\mathrm{As}(\mathrm{S}))$ (Fenn-Rourke-Sanderson'95).

12/ Adding coefficients

Level 1: For $M \in{ }_{A s(S)} \operatorname{Mod}_{\mathrm{As}(S)}$, the cohomology $H_{R}^{*}(S, M)$ is defined by

$$
C_{R}^{k}(S, M)=\operatorname{Map}\left(S^{\times k}, M\right)
$$

$$
\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right)=\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right) \cdot a_{i}^{\prime}\right.
$$

$$
\left.-a_{i} \cdot f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right)
$$

$$
a_{i}^{\prime}=\left(\ldots\left(a_{i} \triangleleft a_{i+1}\right) \ldots\right) \triangleleft a_{k+1} .
$$

$M \in \operatorname{As}(S)^{\operatorname{Mod}_{A s(S)}} \sim \sim H_{R}^{*}(S, M)$.
Many of the above constructions and results generalize to this setting, e.g. the classifying space:

$$
\operatorname{deg} 0: m \in M,
$$

$$
\operatorname{deg} 1: m \xrightarrow{a} m \cdot a .
$$

Application: arc-and-region colorings for knots (Carter-Kamada-Saito ’01).

Examples of As(S)-(bi)modules:
\checkmark trivial actions;
$\checkmark \operatorname{As}(S) \in \operatorname{As}(S)^{\operatorname{Mod}_{\text {As }(S)} ;}$
$\checkmark \mathrm{S} \in \operatorname{Mod}_{\mathrm{As}(\mathrm{S})}$, with the action induced by $\mathrm{a} \cdot \mathrm{b}=\mathrm{a} \triangleleft \mathrm{b}$;
$\checkmark \operatorname{Mod}_{\mathbb{C}\left[t^{ \pm 1]}\right]} \subset \operatorname{Mod}_{\text {As }(S)}$, with the action induced by $a \cdot b=\mathrm{ta}$.

Level 2: M is a Beck module over S, i.e., an abelian group objects in the category Rack \downarrow S (Andruskiewitsch-Graña '03, Jackson '05):
$\checkmark \sim \mathrm{H}_{\mathrm{R}}^{*}(S, M)$;
\checkmark classification of a larger class of rack extensions.
Pursuing the homotopical approach further:
Theorem (Szymik '17): Quandle cohomology is a Quillen cohomology.

Applications:

\checkmark excision isomorphisms;
\checkmark Mayer-Vietoris exact sequences.

