More algebraic connections: SD and the Yang-Baxter equation, Leibniz algebras etc.

Victoria LEBED, Trinity College Dublin (Ireland)

Denver, July 2017

Part 1:

Self-Distributivity and

Representations of $\mathcal{B r a i d}$ Groups

1 Coloring invariants for positive braids

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$

Diagram colorings by ($\mathrm{S}, \triangleleft$) for positive braids:

$$
\begin{gathered}
\mathrm{b} \\
\mathrm{a}
\end{gathered} \lambda_{\mathrm{b}}^{>\mathrm{a} \triangleleft \mathrm{~b}}
$$

$\operatorname{End}\left(\mathrm{S}^{\mathrm{n}}\right) \leftarrow \mathrm{B}_{\mathrm{n}}^{+}$	RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$

B_{n}^{+}is the monoid of positive braids.

22 Coloring invariants for braids

Diagram colorings by $(\mathrm{S}, \triangleleft)$ for braids:

$\underset{b}{a<b} \nrightarrow \underset{a}{b}$

End $\left(S^{n}\right) \leftarrow \mathrm{B}_{n}^{+}$	RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$	shelf
$\operatorname{Aut}\left(S^{n}\right) \leftarrow \mathrm{B}_{\mathrm{n}}$	\& RII	$\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a} \triangleleft \mathrm{b}$ invertible	rack
$\mathrm{S} \hookrightarrow\left(\mathrm{S}^{n}\right)^{\mathrm{B}_{n}}$		$\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$	quandle

B_{n} is the group of braids.

3/ Recovering familiar B_{n}-representations

$\operatorname{End}\left(\mathrm{S}^{\mathrm{n}}\right) \leftarrow \mathrm{B}_{\mathrm{n}}^{+}$	RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
shelf		
	$\&$ RII	$\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a} \triangleleft \mathrm{b}$ invertible
$\mathrm{S} \hookrightarrow\left(\mathrm{S}^{\mathfrak{n}}\right)^{\mathrm{B}_{\mathrm{n}}}$		$\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$
quandle		
$\mathrm{a} \mapsto(\mathrm{a}, \ldots, \mathrm{a})$		

Examples:

S	$\mathrm{a} \triangleleft \mathrm{b}$	$(\mathrm{S}, \triangleleft)$ is a	in braid theory
$\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]$Mod	$\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$	quandle	(red.) Burau: $\mathrm{B}_{\mathrm{n}} \rightarrow \mathrm{GL}_{\mathrm{n}}\left(\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]\right)$

$$
\begin{aligned}
& \mathrm{n} \longrightarrow \\
& \rho_{B}(\quad \bar{i})=I_{i-1} \oplus\left(\begin{array}{cc}
1-t & 1 \\
t & 0
\end{array}\right) \oplus I_{n-i-1}
\end{aligned}
$$

3. Recovering familiar B_{n}-representations

$\operatorname{End}\left(S^{n}\right) \leftarrow \mathrm{B}_{n}^{+}$	RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$	shelf
$\operatorname{Aut}\left(S^{n}\right) \leftarrow B_{n}$	\& RII	$\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a} \triangleleft \mathrm{b}$ invertible	rack
$\mathrm{S} \hookrightarrow\left(\mathrm{S}^{n}\right)^{\mathrm{B}_{n}}$		$\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$	quandle

Examples:

S	$\mathrm{a} \triangleleft \mathrm{b}$	$(\mathrm{S}, \triangleleft)$ is a	in braid theory
$\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]$Mod	$\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$	quandle	(red.) Burau: $\mathrm{B}_{\mathrm{n}} \rightarrow \mathrm{GL}_{\mathrm{n}}\left(\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]\right)$
group	$\mathrm{b}^{-1} \mathrm{ab}$	quandle	Artin: $\mathrm{B}_{\mathrm{n}} \hookrightarrow \operatorname{Aut}\left(\mathrm{F}_{\mathrm{n}}\right)$
twisted linear quandle		Lawrence-Krammer-Bigelow	
\mathbb{Z}	$\mathrm{a}+1$	rack	$\lg (w), l k_{i, j}$
free shelf			Dehornoy: order on B_{n}
Laver tables			???

4. Coloring counting invariants for knots

Theorem (Joyce \& Matveev '82):
\checkmark The number of colorings of a diagram D of a knot K by a quandle $(\mathrm{S}, \triangleleft)$ yields a knot invariant.
$\checkmark \quad \# \operatorname{Col}_{S, \triangleleft}(\mathrm{D})=\# \operatorname{Hom}_{\text {Quandle }}(\mathrm{Q}(\mathrm{K}), \mathrm{S})=\operatorname{Tr}\left(\rho_{\mathrm{S}}(\beta)\right)$

- $\mathrm{Q}(\mathrm{K})=$ fundamental quandle of K
(a weak universal knot invariant);
- closure $(\beta)=K$;
- $\rho_{\mathrm{S}}: \mathrm{B}_{\mathrm{n}} \rightarrow \operatorname{Aut}\left(\mathrm{S}^{\mathrm{n}}\right)$ is the S -coloring invariant for braids.

Part 2:

Self-Distributivity and

the Yang-Baxter Equation

5. Upper strands matter!

Diagram colorings by (S, σ) :

$\begin{array}{cl} & \sigma(a, b)=\left(b_{a}, a^{b}\right) \\ \text { Ex.: } & \sigma_{S D}(a, b)=(b, a \triangleleft b)\end{array}$
RIII-compatibility \Longleftrightarrow set-theoretic Yang-Baxter equation:

$$
\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: S^{\times 3} \rightarrow S^{\times 3}
$$

In particular,

Drinfel' d '92:
Set-theoretic solutions linearize deform

Example: $\sigma(a, b)=(b, a) \sim$ R-matrices.

6. YBE as a unifying framework

Diagram colorings by (S, σ) :

$$
\begin{gathered}
\sigma(a, b)=\left(b_{a}, a^{b}\right) \\
\text { Ex.: } \sigma_{\triangleleft}(a, b)=(b, a \triangleleft b)
\end{gathered}
$$

RIII-compatibility \Longleftrightarrow set-theoretic Yang-Baxter equation:

$$
\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: S^{\times 3} \rightarrow S^{\times 3} \quad \sigma_{1}=\sigma \times \mathrm{Id}_{\mathrm{S}}, \sigma_{2}=\mathrm{Id}_{\mathrm{S}} \times \sigma
$$

Exotic example: $\sigma(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a})$

$$
\sigma_{\text {Lie }}(a \otimes b)=b \otimes a+\hbar 1 \otimes[a, b], \text { where }[1, a]=[a, 1]=0:
$$

Very exotic example: $\sigma_{\text {Ass }}(a, b)=(a * b, 1)$, where $1 * a=a$:

7 YBE and braids and knots

Diagram colorings by (S, σ) :

$$
\begin{gathered}
\sigma(\mathrm{a}, \mathrm{~b})=\left(\mathrm{b}_{\mathrm{a}}, \mathrm{a}^{\mathrm{b}}\right) \\
\text { Ex.: } \sigma_{\triangleleft}(\mathrm{a}, \mathrm{~b})=(\mathrm{b}, \mathrm{a} \triangleleft \mathrm{~b})
\end{gathered}
$$

RIII	$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$	YB operator
\& RII	 $\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a}^{\mathrm{b}}$ and $\mathrm{a} \mapsto \mathrm{a}_{\mathrm{b}}$ invertible	birack
\& RI	\exists a bijection t such that $\sigma(t(a), a)=(t(a), a)$	biquandle

Result: Coloring invariants of braids and knots.
Bad news: These invariants give nothing new!
Unrelated question: Describe free biracks and biquandles.

Thm (Soloviev \& Lu-Yan-Zhu '00, L.-Vendramin '17):
\checkmark Birack $(S, \sigma) \quad \leadsto \quad i t s$ structure $\operatorname{rack}\left(S, \triangleleft_{\sigma}\right)$:

\checkmark This is a projection Birack \rightarrow Rack along involutive biracks:

- $\triangleleft_{\sigma_{\triangleleft}}=\triangleleft ;$
- \triangleleft_{σ} trivial $\quad \Longleftrightarrow \quad \sigma^{2}=$ Id.
\checkmark The structure rack remembers a lot about the birack:
- $\left(\mathrm{S}, \triangleleft_{\sigma}\right)$ quandle $\quad \Longleftrightarrow \quad(\mathrm{S}, \sigma)$ biquandle;
- σ and \triangleleft_{σ} induce isomorphic B_{n}-actions on S^{n}
\Longrightarrow same braid and knot invariants.
今 $(S, \sigma) \not \equiv\left(S, \sigma_{\triangleleft_{\sigma}}\right)$ as biracks!

96/Braided cohomology

Carter-Elhamdadi-Saito '04 \& L. '13:
$C_{B r}^{k}\left(S, \mathbb{Z}_{n}\right)=\operatorname{Map}\left(S^{\times k}, \mathbb{Z}_{n}\right)$,
$\left(d_{B r}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right)=\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, a_{i-1},\left(a_{i+1}, \ldots, a_{k+1}\right) a_{i}\right)\right.$
$\left.-f\left(\left(a_{1}, \ldots, a_{i-1}\right)^{a_{i}}, a_{i+1}, \ldots, a_{k+1}\right)\right)$

\sim Braided cohomology $\mathrm{H}_{\mathrm{Br}}^{\mathrm{k}}\left(\mathrm{S}, \mathbb{Z}_{n}\right)$.

10/ Why I like braided cohomology

(1) (Higher) braid and knot invariants:
$\mathrm{d}_{\mathrm{Br}}^{2} \phi=0 \Longrightarrow \phi$ refines (positive) braid coloring invariants, $\phi=d_{\mathrm{Br}}^{1} \psi \Longrightarrow$ the refinement is trivial.

Question: New invariants?
Answer: I don't know!
(2) $\mathrm{d}_{\mathrm{Br}}^{2} \phi=0 \Longrightarrow$ diagonal deformations of σ :

$$
\begin{aligned}
\sigma_{\mathrm{q}}(\mathrm{a}, \mathrm{~b})= & \mathrm{q}^{\phi(\mathrm{a}, \mathrm{~b})} \sigma(\mathrm{a}, \mathrm{~b}) \\
& (\text { Freyd-Yetter ' } 89, \text { Eisermann '05 })
\end{aligned}
$$

(3) Unifies cohomology theories for
\checkmark self-distributive structures
\checkmark associative structures
\checkmark Lie algebras

$$
\begin{array}{r}
\sigma_{S D}(a, b)=(b \triangleleft a, a) \\
\sigma_{\text {Ass }}(a, b)=(a * b, 1) \\
\sigma_{\text {Lie }}(a \otimes b)=b \otimes a+1 \otimes[a, b]
\end{array}
$$

+ explains parallels between them,
+ suggests theories for new structures.

10/ Why I like braided cohomology

(4) For certain σ, computes the group cohomology of

$$
\left.\operatorname{As}(S, \sigma)=\langle S| a b=b_{a} a^{b}, \text { where } \sigma(a, b)=\left(b_{a}, a^{b}\right)\right\rangle
$$

Example: $\quad \operatorname{As}\left(\mathrm{S}, \sigma_{\mathrm{SD}}\right)=\langle\mathrm{S} \mid \mathrm{ab}=\mathrm{b}(\mathrm{a} \triangleleft \mathrm{b})\rangle=\operatorname{As}(\mathrm{S}, \triangleleft)$.

Applications: Cohomology of factorized groups \& plactic monoids.
Rmk: Structure racks know a lot about structure groups.

Part 3:

Self-Distributivity and

Leibniz Algebras

Bloh '65, Loday \& Cuvier '91: A Leibniz algebra is a vector space V endowed with a bracket [,] satisfying the Leibniz identity

$$
[v,[w, u]]=[[v, w], u]-[[v, u], w] .
$$

It is a Lie algebra if [,] is antisymmetric: $[v, w]=-[w, v]$.
Leibniz (Loday) cohomology:

Cuvier-Loday

Chevalley-Eilenberg

$$
\mathrm{d}_{\mathrm{Lei}}^{\mathrm{k}-1} \mathrm{f}\left(v_{1} \ldots v_{k}\right)=\sum_{1 \leqslant i<j \leqslant k}(-1)^{j-1} \mathrm{f}\left(v_{1} \ldots v_{i-1}\left[v_{i}, v_{j}\right] v_{i+1} \ldots \widehat{v_{j}} \ldots v_{k}\right)
$$

Leibniz (Loday) cohomology:

$$
\begin{aligned}
& \mathrm{d}_{\text {Lei }}^{k-1} \mathrm{f}\left(v_{1} \ldots v_{k}\right)=\sum_{1 \leqslant i<j \leqslant k}(-1)^{j-1} \mathrm{f}\left(v_{1} \ldots v_{i-1}\left[v_{i}, v_{j}\right] v_{i+1} \ldots \widehat{v_{j}} \ldots v_{k}\right)
\end{aligned}
$$

Remark: This is the braided cohomology of

$$
\sigma_{L i e}(a \otimes b)=b \otimes a+1 \otimes[a, b]
$$

where $[1, a]=[a, 1]=0$. Also, recall that

This is one of the explanations of the choice of the Leibniz lift of the Jacobi identity for Lie algebras.

Coquecigrue problem

Question (Loday '93): $\frac{\text { Lie groups }}{\text { Lie algebras }}=\frac{\text { ??? }}{\text { Leibniz algebras }}$.
Suggestion (Kinyon '07): ??? = Lie rack (= smooth rack).
Criterion 1 Lie's third theorem:

(2) Kinyon '07;
(1) Covez '10: locally, Bordemann-Wagemann'16: globally, not functorially.

Coquecigrue problem

Question (Loday '93): $\frac{\text { Lie groups }}{\text { Lie algebras }}=\frac{? ? ?}{\text { Leibniz algebras }}$.
Suggestion (Kinyon '07): ??? = Lie rack (= smooth rack).
Criterion 2 Cohomological:
(Loday '95): A graded algebra morphism, which is iso in degree 1:

$$
\mathrm{H}_{\mathrm{CE}}^{*}(\mathfrak{g}, \mathrm{X}) \rightarrow \mathrm{H}_{\mathrm{Lei}}^{*}(\mathfrak{g}, \mathrm{X}) .
$$

(Covez '12): A graded algebra morphism, injective in degree 1:

$$
\mathrm{H}_{\mathrm{G}}^{*}(\mathrm{G}, \mathrm{X}) \rightarrow \mathrm{H}_{\mathrm{R}}^{*}(\operatorname{Conj}(\mathrm{G}), X)
$$

Part 4:

Self-Distributivity and

Cryptography

Dehornoy '06: For certain shelves (S, \triangleleft), it is difficult to reconstruct b from ($a, a \triangleleft b$).

Authentication scheme:
\checkmark Adam's private key: $s \in S$.
\checkmark Public key: $\left(p, p^{\prime}\right) \in S \times S$, satisfying $p^{\prime}=p \triangleleft s$.
\checkmark Procedure: Adam chooses $r \in S$, and sends to Eve

$$
\begin{aligned}
& x=p \triangleleft r, \\
& x^{\prime}=p^{\prime} \triangleleft r, \\
& y=s \triangleleft r .
\end{aligned}
$$

Eve checks $x^{\prime}=x \triangleleft y$, i.e.,

$$
(\mathrm{p} \triangleleft \mathrm{~s}) \triangleleft \mathrm{r}=(\mathrm{p} \triangleleft \mathrm{r}) \triangleleft(\mathrm{s} \triangleleft \mathrm{r}) .
$$

Multi-shelf $=$ set $S+$ operations $\left(\triangleleft_{\mathfrak{i}}\right)_{i \in I}$ satisfying

$$
\begin{equation*}
\left(\mathrm{a} \triangleleft_{\mathfrak{i}} \mathrm{b}\right) \triangleleft_{\mathfrak{j}} \mathrm{c}=\left(\mathrm{a} \triangleleft_{\mathfrak{j}} \mathrm{c}\right) \triangleleft_{\mathfrak{i}}\left(\mathrm{b} \triangleleft_{\mathfrak{j}} \mathrm{c}\right) \tag{MD}
\end{equation*}
$$

Kalka-Teicher '13: SD-based key establishment protocol.
Take $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}} \subseteq \mathrm{I}$ and $\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}} \subseteq \mathrm{S}$.
\checkmark Adam chooses a private key $(a, c, j) \in S \times S_{A} \times I_{A}$, and sends to Eve $a \triangleleft_{j} c$ and $x_{\beta} \triangleleft_{j} c$ for generators x_{β} of S_{B}.
\checkmark Eve chooses a private key $(b, i) \in S_{B} \times I_{B}$, and sends to Adam $x_{\alpha} \triangleleft_{i} b$ for generators x_{α} of S_{A}.
\checkmark Both compute the key (MD).
Suitable types of multi-shelves: S is a group, $f_{i}, g_{i}, h_{i} \in \operatorname{End}(G), a_{i} \in G$

1) $y \triangleleft_{i} x=f_{i}\left(x^{-1}\right) g_{i}(y) h_{i}(x)$,
2) $y \triangleleft_{i} x=x f_{i}(y) a_{i} f_{i}\left(x^{-1}\right)$.
