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Part 1:
Self-Distributivity and

Representations of Braid Groups



XX Coloring invariants for positive braids

Self-distributivity: ‘ (a<b)<dc=(a<c)<a(bxc) ‘

Diagram colorings by (S, <) b~N/a<b
for positive braids: a J\, b

C — (a<b)<c c oladce)<(b<c)
b~~~ N\b<c Rill bN/_)bQC
P s by

| End(S™) «Bf | Rl | (a<b)<dc=(a<c)<(b<c) |

B\ is the monoid of positive braids.




X2/ Coloring invariants for braids

Diagram colorings by (S, <) b~N,a<b a<b \/> b
for braids: a /\> b b“/S a

RIl , Rl
X0 T 7 X

End(S™) «+ B\ RIII (a<b)<c=(a<c)<(bxc) | shelf
Aut(S™) «+ Bn & RII VYb, a — a < b invertible rack
S < (S™)Bn ada=a quandle
a—(a,...,a)

B, is the group of braids.



>3/ Recovering familiar B,,-representations

End(S™) «+ B;. RIII (a<b)<c=(a<c)<(bxc) | shelf
Aut(S™) <+ Bn & RII Vb, a — a < b invertible rack
S < (S™)Bn ada=a quandle
ar (a,...,a)
Examples:
S a<b (S,<)isa in braid theory

Z[til]MOd ta + (1 *t)b

quandle | (red.) Burau: B;, — GL,(Z[t¥])




>3 X Recovering familiar B,,-representations

End(S™) < B\ RIII (a<b)<c=(a<c)<(b<xc) | shelf
Aut(S™) <+ By, & RII Vb, a — a < b invertible rack
S < (S™)Bn ada=a quandle
a— (a,...,a)
Examples:
S a<b (S,<) isa in braid theory
ziezMod | ta+ (1 —t)b | quandle | (red.) Burau: B, — GLn (Z[t%])
group b~ Tab quandle Artin: By, — Aut(Fy,)
twisted linear quandle Lawrence-Krammer—Bigelow
Z ‘ a+1 ‘ rack lg(w), Ik
free shelf Dehornoy: order on By,
Laver tables 77




<&/ Coloring counting invariants for knots

Theorem (Joyce & Matveev ’82):

v The number of colorings of a diagram D of a knot K by a quandle (S, <)
yields a knot invariant.

v #COIS,Q(D) = #HomQuandle(Q(K)>S) = Tr(ps(B))

e Q(K) = fundamental quandle of K
(a weak universal knot invariant);
e closure(p) = K;
e ps: By — Aut(S™) is the S-coloring invariant for braids.



Part 2:
Self-Distributivity and

the Yang—Baxter Equation



—\/\\5/\Upper strands matter!

Diagram colorings by (S, o):

b /ab
a/Sbg

G(a)b) = (ba)ab)
Ex.: osp(a,b) = (b,a < b)

RIll-compatibility <= set-theoretic Yang—Baxter equation:

010,07 = 020707: $%3 — §%3

01 =0 X |d5, GzZIds g

In particular,

[YBE for osp —

self-distributivity for <1]

Drinfel’d *92:
linearize

deform

Set-theoretic solutions ~AANANA~ AN~ linear solutions.

Example: o(a,b) = (b,a) ~A~~~» R-matrices.



XX YBE as a unifying framework

b ~/ab o(a,b) = (bg,a®)

Di lorings by (S, 0):
lagram colorings by (3, 0 a/NSb,  Ex:o4(a,b)=(b,a<b)

RIll-compatibility <> set-theoretic Yang—Baxter equation:

0102071 2020102:SX3—>SX3 01 :G><|d5,02:|d5 X0O

Exotic example: o(a,b) = (b,a) ~N~ A~~~
OLie(a®b)=b® a+hl® [a,b], where [1,a] = [a,1] =0:

[YBE for o ie — Leibniz relation for []]

Very exotic example: 05ss(a,b) = (a*xb, 1), where 1 xa = a:

[YBE for oass <= associativity for *j




/QXYBE and braids and knots

b Yab O'((l,b) - (ba)ab)

Di lori by (S, 0):
lagram colorings by (3, ) a/Sb,  Ex:og(a,b)=(b,a<b)

RIII 0102071 = 0207102 YB operator

o invertible & .
& RII b birack
Vb, a — a® and a — ay, invertible

3 a bijection t
& RI a blection biquandle

such that o(t(a), a) = (t(a), a)

Result: Coloring invariants of braids and knots.

Bad news: These invariants give nothing new!

Unrelated question: Describe free biracks and biquandles.



/\8\/\From biracks to racks

Thm (Soloviev & Lu-Yan-Zhu’00, L.—Vendramin’17):

v Birack (S, 0) ~ its structure rack (S, <g):
r
a L;/\ a<gb

v This is a projection Birack — Rack along involutive biracks:
o Jy_=<;
e g trivial — o? =Id.

v The structure rack remembers a lot about the birack:
e (S,<¢) quandle > (S, o) biquandle;

e 0 and <y induce isomorphic By, -actions on S™

= same braid and knot invariants.

A\ (S,0) 2 (S,04,) as biracks!



<3/ Braided cohomology

Carter-Elhamdadi-Saito’04 & L.’13:
C;(Sazn) = Map(SXk)Zn))

Kt T
(dEf)(ar,...,axe1) = Z(*Ulf] (flary..oyai—1y (Qig1ye ey Qreg1)ay)
im1
—f(lary...,ai1)%, aig1y.enyarg))

[ S e —
o
ag4]————

@
Q] —_— t

aj

~+ Braided cohomology HX (S, Z,).



/\W\V\Why | like braided cohomology

(1D (Higher) braid and knot invariants:

d2¢ =0 = ¢ refines (positive) braid coloring invariants,
¢ =dlp = the refinement is trivial.

Question: New invariants?

Answer: | don’t know!

@ d2¢p =0 = diagonal deformations of o:
0q(a,b) = q*'“"o(a,b).
(Freyd-Yetter ’89, Eisermann ’05)



/\W\V\Why | like braided cohomology

(3) Unifies cohomology theories for

v self-distributive structures osp(a,b) = (b < a,a)
GAss(aab) = (Cl * ba 1)

OLie(a®b)=b®a+1®[a,b]

v  associative structures

v Lie algebras

+ explains parallels between them,

+ suggests theories for new structures.



/\W\V\Why | like braided cohomology

(4) For certain o, computes the group cohomology of

As(S,0) =(S|ab=Dbq a®, where o(a,b) = (bg, a®) )

Example: As(S,o0sp)=(S|ab=b(a<b))=As(S, ).

methods
VS

YB world

~— 7
examples

Applications: Cohomology of factorized groups & plactic monoids.

Rmk: Structure racks know a lot about structure groups.




Part 3:
Self-Distributivity and

Leibniz Algebras



/\W\/\Leibniz algebras and their cohomology

Bloh 65, Loday & Cuvier ’91: A Leibniz algebra is a vector space V endowed
with a bracket [,] satisfying the Leibniz identity

v, w, ul] = [[v,w],u] — [[v,u],w].

It is a Lie algebra if [,] is antisymmetric: [v, w] = —[w, v].

Leibniz (Loday) cohomology:

Lei V+—— (Hom(T(V), X), d{ .;) Cuvier-Loday
anti- anti-
symm. symm.
Lie Vi (Hom(A(V), X),d¢g) Chevalley-Eilenberg
dtgﬂf(w V) = Z (—1Y (v, ceVis iy vilvigr sy o)

1<i<j<k



Leibniz (Loday) cohomology:

Lei Vi—— (Hom(T(V), X), d} .;) Cuvier-Loday
anti- anti-
J\lsymm. T isymm.
Lie Vi (Hom(A(V),X),d¢g) Chevalley—Eilenberg
d}f;i]f(\)] ...Vk) = Z (—1)]_11:(\)] ...vi,1[vi)vj]vi+1 \/); ...Vk)
1<i<j<k

Remark: This is the braided cohomology of
OLic(a®b)=b®a+1® [a, b,
where [1, a] = [a, 1] = 0. Also, recall that

[YBE for oy ie — Leibniz relation for []]

This is one of the explanations of the choice of the Leibniz lift of the Jacobi
identity for Lie algebras.



2/ Coquecigrue problem

Lie groups 77

Question (Loday '93):

Lie algebras  Leibniz algebras’
Suggestion (Kinyon ’07): ??? = Lie rack (= smooth rack).
Criterion 1 Lie’s third theorem:

integration (1)
LeiAlg ———————=LieRack

tangent (2)
j Conj
integration
LieAlg LieGroup
tangent

(2) Kinyon 07,

(1) Covez *10: locally,
Bordemann-Wagemann ’16: globally, not functorially.



<3/ Coquecigrue problem

Lie groups 77

ti Loday ’93): = .
Question (Loday '93) Lie algebras  Leibniz algebras

Suggestion (Kinyon ’07): ??? = Lie rack (= smooth rack).
Criterion 2 Cohomological:

(Loday ’95): A graded algebra morphism, which is iso in degree 1:

H*CE (g) X) — H{ei(g> X)

(Covez ’12): A graded algebra morphism, injective in degree 1:

HG(G, X) — H(Conj(G), X).



Part 4:
Self-Distributivity and

Cryptography



/\W\V\S D-based authentication scheme

Dehornoy ’06: For certain shelves (S, <), it is difficult to reconstruct
b from (a, a < b).

~ Authentication scheme:
v Adam’s private key: s € S.
v Public key: (p,p’) € S x S, satisfyingp’ =p < s.

v’ Procedure: Adam chooses r € S, and sends to Eve

x=p<dr,
x'=p'<ar,
y=s<ar.

Eve checks x’ =x <y, i.e,

pas)<dr=(p<ar)<(s<ar).



<8 Multi-distributivity

Multi-shelf = set S + operations (<1i)ic1 satisfying

((1 < b) Qj c = ((1 Qj C) <y (b <]j C). (MD)

Kalka-Teicher *13: SD-based key establishment protocol.

Take IA, IB - I and SA,SB - S.

v/ Adam chooses a private key (a,c,j) € S x SA x I, and sends to Eve
a <j cand xg <j c for generators xg of Sg.

v’ Eve chooses a private key (b,1) € Sg X Ip, and sends to Adam x4 <I; b
for generators x4 of Sa.

v/ Both compute the key (MD).

Suitable types of multi-shelves: S is a group, fi, gi,hi € End(G), a; € G
Ny < x = fi(x 1)gi(y)hi(x),
2)y < x =xfi(ylaifi(x ).
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