Introduction to Vertex Algebras and a Classification Problem

Andrew Linshaw

University of Denver

August 3, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector \mathcal{V} with product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation ∂ .

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$.

Graded character $\chi_{\mathcal{V}}(q) = q^{-c/24} \sum_{n>0} \dim(\mathcal{V}[n])q^n$.

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector \mathcal{V} with product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation ∂ .

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$.

Graded character $\chi_{\mathcal{V}}(q) = q^{-c/24} \sum_{n>0} \dim(\mathcal{V}[n])q^n$.

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector \mathcal{V} with product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation ∂ .

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$.

Graded character $\chi_{\mathcal{V}}(q) = q^{-c/24} \sum_{n>0} \dim(\mathcal{V}[n])q^n$.

(ロ)、

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector \mathcal{V} with product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation ∂ .

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$.

Graded character $\chi_{\mathcal{V}}(q) = q^{-c/24} \sum_{n \geq 0} \dim(\mathcal{V}[n])q^n$.

(ロ)、

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector \mathcal{V} with product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation ∂ .

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$.

Graded character $\chi_{\mathcal{V}}(q) = q^{-c/24} \sum_{n \geq 0} \dim(\mathcal{V}[n]) q^n$

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector \mathcal{V} with product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation ∂ .

Conformal weight grading $\mathcal{V} = \bigoplus_{n \ge 0} \mathcal{V}[n]$.

Graded character $\chi_{\mathcal{V}}(q) = q^{-c/24} \sum_{n \ge 0} \dim(\mathcal{V}[n])q^n$.

Affine vertex algebra $V^k(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g} .

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.

Simple quotient $V_k(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$ -module.

Lattice vertex algebra V_L , L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Affine vertex algebra $V^k(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g} .

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.

Simple quotient $V_k(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$ -module.

Lattice vertex algebra V_L , L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Affine vertex algebra $V^k(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g} .

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.

Simple quotient $V_k(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$ -module.

Lattice vertex algebra V_L , L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Affine vertex algebra $V^k(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g} .

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.

Simple quotient $V_k(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$ -module.

Lattice vertex algebra V_L , L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Affine vertex algebra $V^k(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g} .

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.

Simple quotient $V_k(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$ -module.

Lattice vertex algebra V_L , L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Standard ways to construct new VAs from old ones: **orbifold**, **coset**, **extension**, **cohomology**.

Affine vertex algebra $V^k(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g} .

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.

Simple quotient $V_k(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$ -module.

Lattice vertex algebra V_L , L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}$.

Graded character

$$\chi_{V^{\natural}}(q) = 1 + 196884q^2 + 21493760q^3 + \dots = j(\tau) - 744.$$

 $q = e^{2\pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H} = \{x + yi | y > 0\}$. $j(\tau)$ is the classical *j*-function. Invariant under $SL_2(\mathbb{Z})$ action

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)(\tau) = \frac{a\tau + b}{c\tau + d}.$$

(日) (同) (三) (三) (三) (○) (○)

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}.$

Graded character

 $\chi_{V^{\natural}}(q) = 1 + 196884q^2 + 21493760q^3 + \dots = j(\tau) - 744.$

 $q = e^{2\pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H} = \{x + yi | y > 0\}$. $j(\tau)$ is the classical *j*-function. Invariant under $SL_2(\mathbb{Z})$ action

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(\tau) = \frac{a\tau + b}{c\tau + d}.$$

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}.$

Graded character

$$\chi_{V^{\natural}}(q) = 1 + 196884q^2 + 21493760q^3 + \dots = j(\tau) - 744.$$

 $q = e^{2\pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H} = \{x + yi | y > 0\}$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(\tau) = \frac{a\tau + b}{c\tau + d}.$$

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}.$

Graded character

$$\chi_{V^{\natural}}(q) = 1 + 196884q^2 + 21493760q^3 + \cdots = j(\tau) - 744.$$

 $q = e^{2\pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H} = \{x + yi | y > 0\}$.

j(au) is the classical j-function. Invariant under $\mathit{SL}_2(\mathbb{Z})$ action

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\tau) = \frac{a\tau + b}{c\tau + d}.$$

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}.$

Graded character

$$\chi_{V^{\natural}}(q) = 1 + 196884q^2 + 21493760q^3 + \dots = j(\tau) - 744.$$

 $q = e^{2\pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H} = \{x + yi | y > 0\}$. $j(\tau)$ is the classical *j*-function. Invariant under $SL_2(\mathbb{Z})$ action

$$\left(egin{array}{c} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}
ight) (au) = rac{\mathbf{a} au+\mathbf{b}}{\mathbf{c} au+\mathbf{d}}.$$

V a complex vector space.

A quantum operator is a linear map $a : V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

 $End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QQ(V)

V a complex vector space.

A quantum operator is a linear map $a: V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

 $End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QQ(V)

V a complex vector space.

A quantum operator is a linear map $a: V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

 $End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QQ(V)

V a complex vector space.

A quantum operator is a linear map $a: V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

 $End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on $QQ(V)^2_{2} \rightarrow \infty$

V a complex vector space.

A quantum operator is a linear map $a: V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

$End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on $QQ(V)^2_{2} \rightarrow \infty$

V a complex vector space.

A quantum operator is a linear map $a: V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

 $End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QQ(V)?

V a complex vector space.

A quantum operator is a linear map $a: V \to V((z))$, where V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent $a \in QO(V)$ as a formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in End(V)[[z, z^{-1}]]$$

such that for any fixed $v \in V$, a(n)v = 0 for $n \gg 0$.

 $End(V) \subset QO(V)$ subspace of constant maps.

End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QO(V)?

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick's procedure: Write $a(z) = a_{-}(z) + a_{+}(z)$, where

$$a_{-}(z) = \sum_{n < 0} a(n) z^{-n-1}, \qquad a_{+}(z) = \sum_{n \ge 0} a(n) z^{-n-1}.$$

Fix a vector $v \in V$ and $b \in QO(V)$.

 $b(z)a_+(z)v \in V((z))$, since $a_+(z)v$ is a finite sum.

 $a_-(z)b(z)v\in V((z))$ since $b(z)v\in V((z))$ and $a_-(z)$ is a Taylor series.

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick's procedure: Write $a(z) = a_{-}(z) + a_{+}(z)$, where

$$a_{-}(z) = \sum_{n < 0} a(n) z^{-n-1}, \qquad a_{+}(z) = \sum_{n \ge 0} a(n) z^{-n-1}.$$

Fix a vector $v \in V$ and $b \in QO(V)$.

 $b(z)a_+(z)v \in V((z))$, since $a_+(z)v$ is a finite sum.

 $a_-(z)b(z)v\in V((z))$ since $b(z)v\in V((z))$ and $a_-(z)$ is a Taylor series.

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick's procedure: Write $a(z) = a_{-}(z) + a_{+}(z)$, where

$$a_{-}(z) = \sum_{n < 0} a(n) z^{-n-1}, \qquad a_{+}(z) = \sum_{n \ge 0} a(n) z^{-n-1}.$$

Fix a vector $v \in V$ and $b \in QO(V)$.

 $b(z)a_+(z)v \in V((z))$, since $a_+(z)v$ is a finite sum.

 $a_-(z)b(z)v\in V((z))$ since $b(z)v\in V((z))$ and $a_-(z)$ is a Taylor series.

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick's procedure: Write $a(z) = a_{-}(z) + a_{+}(z)$, where

$$a_{-}(z) = \sum_{n < 0} a(n) z^{-n-1}, \qquad a_{+}(z) = \sum_{n \ge 0} a(n) z^{-n-1}.$$

Fix a vector $v \in V$ and $b \in QO(V)$.

 $b(z)a_+(z)v \in V((z))$, since $a_+(z)v$ is a finite sum.

 $a_-(z)b(z)v\in V((z))$ since $b(z)v\in V((z))$ and $a_-(z)$ is a Taylor series.

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick's procedure: Write $a(z) = a_{-}(z) + a_{+}(z)$, where

$$a_{-}(z) = \sum_{n < 0} a(n) z^{-n-1}, \qquad a_{+}(z) = \sum_{n \ge 0} a(n) z^{-n-1}.$$

Fix a vector $v \in V$ and $b \in QO(V)$.

 $b(z)a_+(z)v \in V((z))$, since $a_+(z)v$ is a finite sum.

 $a_{-}(z)b(z)v \in V((z))$ since $b(z)v \in V((z))$ and $a_{-}(z)$ is a Taylor series.

By definition, $a_{-}(z)b(z) + b(z)a_{+}(z) \in QO(V)$.

For all $a, b \in QO(V)$, define Wick product : $ab := a_b + ba_+$.

For all $a, b \in End(V)$, $a = a_{-}$, so : ab : = ab.

Identity map $1 \in End(V)$ is a unit in QO(V). For all $a \in QO(V)$, : 1a := a = : a1 : .

Nonassociative in general.

By definition, $a_{-}(z)b(z) + b(z)a_{+}(z) \in QO(V)$.

For all $a, b \in QO(V)$, define Wick product : $ab := a_{-}b + ba_{+}$.

For all $a, b \in End(V)$, $a = a_{-}$, so : ab : = ab.

Identity map $1 \in End(V)$ is a unit in QO(V). For all $a \in QO(V)$, : 1a := a = : a1 : .

Nonassociative in general.

By definition, $a_{-}(z)b(z) + b(z)a_{+}(z) \in QO(V)$.

For all $a, b \in QO(V)$, define *Wick product* : $ab := a_{-}b + ba_{+}$.

For all $a, b \in End(V)$, $a = a_{-}$, so : ab := ab.

Identity map $1 \in End(V)$ is a unit in QO(V). For all $a \in QO(V)$, : 1a := a = : a1 : .

Nonassociative in general.

By definition, $a_{-}(z)b(z) + b(z)a_{+}(z) \in QO(V)$.

For all $a, b \in QO(V)$, define Wick product : $ab := a_{-}b + ba_{+}$.

For all $a, b \in End(V)$, $a = a_{-}$, so : ab := ab.

Identity map $1 \in End(V)$ is a unit in QO(V). For all $a \in QO(V)$, : 1a := a = : a1 : .

Nonassociative in general.

By definition, $a_{-}(z)b(z) + b(z)a_{+}(z) \in QO(V)$.

For all $a, b \in QO(V)$, define Wick product : $ab := a_{-}b + ba_{+}$.

For all $a, b \in End(V)$, $a = a_{-}$, so : ab := ab.

Identity map $1 \in End(V)$ is a unit in QO(V). For all $a \in QO(V)$, : 1a := a = : a1 : .

Nonassociative in general.

By definition, $a_{-}(z)b(z) + b(z)a_{+}(z) \in QO(V)$.

For all $a, b \in QO(V)$, define Wick product : $ab := a_{-}b + ba_{+}$.

For all $a, b \in End(V)$, $a = a_{-}$, so : ab := ab.

Identity map $1 \in End(V)$ is a unit in QO(V). For all $a \in QO(V)$, : 1a := a = : a1 : .

Nonassociative in general.
Family of bilinear operations \circ_n on QO(V), for all $n \in \mathbb{Z}$.

For $n \ge 0$, define

$$a(z) \circ_{-n-1} b(z) = \frac{1}{n!} (: \partial^n a(z)) b(z) :, \qquad \partial = \frac{d}{dz}.$$

In particular \circ_{-1} coincides with the Wick product

For $n \ge 0$, define

$$a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Family of bilinear operations \circ_n on QO(V), for all $n \in \mathbb{Z}$.

For $n \ge 0$, define

$$a(z) \circ_{-n-1} b(z) = \frac{1}{n!} (:\partial^n a(z)) b(z):, \qquad \partial = \frac{d}{dz}.$$

In particular \circ_{-1} coincides with the Wick product

For $n \ge 0$, define

$$a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Family of bilinear operations \circ_n on QO(V), for all $n \in \mathbb{Z}$.

For $n \ge 0$, define

$$a(z) \circ_{-n-1} b(z) = \frac{1}{n!} (:\partial^n a(z)) b(z):, \qquad \partial = \frac{d}{dz}.$$

In particular \circ_{-1} coincides with the Wick product.

For $n \ge 0$, define

$$a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Family of bilinear operations \circ_n on QO(V), for all $n \in \mathbb{Z}$.

For $n \ge 0$, define

$$a(z) \circ_{-n-1} b(z) = \frac{1}{n!} (: \partial^n a(z)) b(z) :, \qquad \partial = \frac{d}{dz}.$$

In particular \circ_{-1} coincides with the Wick product.

For $n \ge 0$, define

$$a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset QO(V)$ containing 1 and closed under all \circ_n .

 $\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a = : (\partial a)1 := a \circ_{-2} 1.$

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements $a, b \in QO(V)$ are *local* if for some $N \ge 0$

$$(z-w)^N[a(z),b(w)]=0.$$

Recall $a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)]$, for $n \ge 0$.

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset QO(V)$ containing 1 and closed under all \circ_n .

 $\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a = : (\partial a)1 := a \circ_{-2} 1.$

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements $a, b \in QO(V)$ are *local* if for some $N \ge 0$

$$(z-w)^N[a(z),b(w)]=0.$$

Recall $a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)]$, for $n \ge 0$.

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset QO(V)$ containing 1 and closed under all \circ_n .

 $\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a = : (\partial a)1 := a \circ_{-2} 1.$

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements $a, b \in QO(V)$ are *local* if for some $N \ge 0$

 $(z-w)^N[a(z),b(w)]=0.$

Recall $a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)]$, for $n \ge 0$.

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset QO(V)$ containing 1 and closed under all \circ_n .

 $\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a = : (\partial a)1 := a \circ_{-2} 1.$

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements $a, b \in QO(V)$ are *local* if for some $N \ge 0$

$$(z-w)^N[a(z),b(w)]=0.$$

Recall $a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)]$, for $n \ge 0$.

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset QO(V)$ containing 1 and closed under all \circ_n .

 $\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a = : (\partial a)1 := a \circ_{-2} 1.$

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements $a, b \in QO(V)$ are *local* if for some $N \ge 0$

$$(z-w)^N[a(z),b(w)]=0.$$

Recall $a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)]$, for $n \ge 0$.

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset QO(V)$ containing 1 and closed under all \circ_n .

 $\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a = : (\partial a)1 := a \circ_{-2} 1.$

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements $a, b \in QO(V)$ are *local* if for some $N \ge 0$

$$(z-w)^N[a(z),b(w)]=0.$$

Recall $a(w) \circ_n b(w) = \operatorname{Res}_z(z-w)^n[a(z), b(w)]$, for $n \ge 0$.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong V$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong V$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Def: A **vertex algebra** is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset QO(V)$ for some V is meaningful independently of V.

Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.

Lemma: (Dong) Let $a, b, c \in QO(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_n c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of QO(V) and check pairwise locality.

If S has one element a, need to check locality of a with itself.

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n\geq 0} a(w) \circ_n b(w)(z-w)^{-n-1} + : a(z)b(w) :,$$

where : $a(z)b(w) := a_{-}(z)b(w) + b(w)a_{+}(z)$

Expansion of meromorphic function with poles along z = w.

 $a(w) \circ_n b(w)$ is pole of order n+1.

: a(z)b(w) : is regular part.

Often write

$$a(z)b(w)\sim \sum_{n\geq 0}a(w)\circ_n b(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part. $\langle a \rangle \langle a \rangle$

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n\geq 0} a(w) \circ_n b(w)(z-w)^{-n-1} + : a(z)b(w) :,$$

where : $a(z)b(w) := a_{-}(z)b(w) + b(w)a_{+}(z)$

Expansion of meromorphic function with poles along z = w.

 $a(w) \circ_n b(w)$ is pole of order n+1.

: a(z)b(w) : is regular part.

Often write

$$a(z)b(w)\sim \sum_{n\geq 0}a(w)\circ_n b(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part. (a), (a), (a), (a), (a), (a)

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n\geq 0} a(w) \circ_n b(w)(z-w)^{-n-1} + : a(z)b(w) :,$$

where : $a(z)b(w) := a_{-}(z)b(w) + b(w)a_{+}(z)$

Expansion of meromorphic function with poles along z = w.

 $a(w) \circ_n b(w)$ is pole of order n + 1.

: a(z)b(w) : is regular part.

Often write

$$a(z)b(w)\sim \sum_{n\geq 0}a(w)\circ_n b(w)(z-w)^{-n-1},$$

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n\geq 0} a(w) \circ_n b(w)(z-w)^{-n-1} + : a(z)b(w) :,$$

where : $a(z)b(w) := a_{-}(z)b(w) + b(w)a_{+}(z)$

Expansion of meromorphic function with poles along z = w.

$$a(w) \circ_n b(w)$$
 is pole of order $n + 1$.

: a(z)b(w) : is regular part.

Often write

$$a(z)b(w)\sim \sum_{n\geq 0}a(w)\circ_n b(w)(z-w)^{-n-1},$$

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n\geq 0} a(w) \circ_n b(w)(z-w)^{-n-1} + : a(z)b(w) :,$$

where : $a(z)b(w) := a_{-}(z)b(w) + b(w)a_{+}(z)$

Expansion of meromorphic function with poles along z = w.

$$a(w) \circ_n b(w)$$
 is pole of order $n + 1$.

: a(z)b(w) : is regular part.

Often write

$$a(z)b(w)\sim \sum_{n\geq 0}a(w)\circ_n b(w)(z-w)^{-n-1},$$

Often, a VA is presented by giving generators and OPE relations. Ex: Affine VA $V^k(\mathfrak{g})$. Let ξ_1, \ldots, ξ_n be a basis for \mathfrak{g} . Then $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , $i = 1, \ldots, n$, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k\langle \xi_i, \xi_j \rangle (z - w)^{-2} + X^{[\xi_i, \xi_j]}(w)(z - w)^{-1}$.

Fact: $V^k(\mathfrak{g})$ has a basis consisting of monomials

$$:\partial^{k_1^1} X^{\xi_1} \cdots \partial^{k_{r_1}^1} X^{\xi_1} \cdots \partial^{k_1^n} X^{\xi_n} \cdots \partial^{k_{r_n}^n} X^{\xi_n}:,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$$

Often, a VA is presented by giving generators and OPE relations. **Ex**: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g} .

Then $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , i = 1, ..., n, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k\langle \xi_i, \xi_j \rangle (z - w)^{-2} + X^{[\xi_i, \xi_j]}(w)(z - w)^{-1}.$

Fact: $V^k(\mathfrak{g})$ has a basis consisting of monomials

$$:\partial^{k_1^1} X^{\xi_1} \cdots \partial^{k_{r_1}^1} X^{\xi_1} \cdots \partial^{k_1^n} X^{\xi_n} \cdots \partial^{k_{r_n}^n} X^{\xi_n}:,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$$

Often, a VA is presented by giving generators and OPE relations. **Ex**: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g} .

Then $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , i = 1, ..., n, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k\langle \xi_i, \xi_j \rangle (z - w)^{-2} + X^{[\xi_i, \xi_j]}(w)(z - w)^{-1}$.

Fact: $V^k(\mathfrak{g})$ has a basis consisting of monomials

$$:\partial^{k_1^1}X^{\xi_1}\cdots\partial^{k_{r_1}^1}X^{\xi_1}\cdots\partial^{k_1^n}X^{\xi_n}\cdots\partial^{k_{r_n}^n}X^{\xi_n}:,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$$

Often, a VA is presented by giving generators and OPE relations. **Ex**: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_1, \ldots, ξ_n be a basis for \mathfrak{g} .

Then $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , i = 1, ..., n, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k\langle \xi_i, \xi_j \rangle (z - w)^{-2} + X^{[\xi_i, \xi_j]}(w)(z - w)^{-1}$.

Fact: $V^k(\mathfrak{g})$ has a basis consisting of monomials

$$:\partial^{k_1^1} X^{\xi_1} \cdots \partial^{k_{r_1}^1} X^{\xi_1} \cdots \partial^{k_1^n} X^{\xi_n} \cdots \partial^{k_{r_n}^n} X^{\xi_n} :,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$$

Often, a VA is presented by giving generators and OPE relations. **Ex**: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_1, \ldots, ξ_n be a basis for \mathfrak{g} .

Then $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , i = 1, ..., n, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k\langle \xi_i, \xi_j \rangle (z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$

Fact: $V^k(\mathfrak{g})$ has a basis consisting of monomials

$$:\partial^{k_1^1}X^{\xi_1}\cdots\partial^{k_{r_1}^1}X^{\xi_1}\cdots\partial^{k_1^n}X^{\xi_n}\cdots\partial^{k_{r_n}^n}X^{\xi_n}:,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$$

We say that a VA \mathcal{V} is **strongly generated** by fields $\{\alpha_i(z) | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \ldots\}$ is an *ordered* strong generating set for \mathcal{V} .

We say \mathcal{V} is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We say that a VA \mathcal{V} is **strongly generated** by fields $\{\alpha_i(z) | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an *ordered* strong generating set for \mathcal{V} .

We say $\mathcal V$ is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

We say that a VA \mathcal{V} is **strongly generated** by fields $\{\alpha_i(z) | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an *ordered* strong generating set for \mathcal{V} .

We say \mathcal{V} is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

We say that a VA \mathcal{V} is **strongly generated** by fields $\{\alpha_i(z) | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an *ordered* strong generating set for \mathcal{V} .

We say \mathcal{V} is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0,-]$ is required to act diagonalizably and $[L_{-1},-]$ acts by ∂ .

Constant *c* is called the *central charge*.

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0,-]$ is required to act diagonalizably and $[L_{-1},-]$ acts by ∂ .

Constant c is called the central charge.

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0, -]$ is required to act diagonalizably and $[L_{-1}, -]$ acts by ∂ .

Constant c is called the *central charge*.

(ロ)、(型)、(E)、(E)、(E)、(O)()

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0, -]$ is required to act diagonalizably and $[L_{-1}, -]$ acts by ∂ .

Constant c is called the *central charge*.

14. Conformal structure, cont'd

Conformal weight grading on ${\mathcal V}$ is the eigenspace decomposition under $L_0.$

If $a \in \mathcal{V}$ has weight d, then

 $L(z)a(w)\sim\cdots+da(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}.$

Note that *L* always has weight 2.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = \frac{1}{k+h^{\vee}} \sum_{i=1}^{n} : X^{\xi_i} X^{\xi'_i} :, \qquad k \neq -h^{\vee}.$$

Central charge $c = \frac{k \dim(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number. For each X^{ξ_i} , $L^{\mathfrak{g}}(z)X^{\xi_i}(w) \sim X^{\xi_i}(w)(z-w)^{-2} + \partial X^{\xi_i}(w)(z-w)^{-1}$.
Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

 $L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$

Note that L always has weight 2.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = \frac{1}{k+h^{\vee}} \sum_{i=1}^{n} : X^{\xi_i} X^{\xi'_i} :, \qquad k \neq -h^{\vee}.$$

Central charge $c = \frac{k \dim(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number. For each X^{ξ_i} , $L^{\mathfrak{g}}(z)X^{\xi_i}(w) \sim X^{\xi_i}(w)(z-w)^{-2} + \partial X^{\xi_i}(w)(z-w)^{-1}$.

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$$

Note that L always has weight 2.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = rac{1}{k+h^{ee}}\sum_{i=1}^n : X^{\xi_i}X^{\xi_i'}:, \qquad k
eq -h^{ee}.$$

Central charge $c = \frac{k \dim(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number. For each X^{ξ_i} , $L^{\mathfrak{g}}(z)X^{\xi_i}(w) \sim X^{\xi_i}(w)(z-w)^{-2} + \partial X^{\xi_i}(w)(z-w)^{-1}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$$

Note that L always has weight 2.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = rac{1}{k+h^{ee}}\sum_{i=1}^n : X^{\xi_i}X^{\xi_i'}:, \qquad k
eq -h^{ee}.$$

Central charge $c = \frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.

For each X^{ξ_i} , $L^{\mathfrak{g}}(z)X^{\xi_i}(w)\sim X^{\xi_i}(w)(z-w)^{-2}+\partial X^{\xi_i}(w)(z-w)^{-1}.$

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$$

Note that *L* always has weight 2.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = rac{1}{k+h^{ee}}\sum_{i=1}^n : X^{\xi_i}X^{\xi'_i}:, \qquad k
eq -h^{ee}.$$

Central charge $c = \frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.

For each X^{ξ_i} ,

$$L^{\mathfrak{g}}(z)X^{\xi_{i}}(w) \sim X^{\xi_{i}}(w)(z-w)^{-2} + \partial X^{\xi_{i}}(w)(z-w)^{-1}.$$

 \mathcal{W}_3^c is freely generated by L, W satisfying:

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

$$L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1},$$

$$W(z)W(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} + \left(\frac{32}{22+5c} : LL : +\frac{3(c-2)}{2(22+5c)}\partial^2 L\right)(z-w)^{-2} + \left(\frac{32}{22+5c} : (\partial L)L : +\frac{c-2}{3(22+5c)}\partial^3 L\right)(z-w)^{-1}.$$

 \mathcal{W}_3^c is of type $\mathcal{W}(2,3)$, and is nonlinear.

15. Zamolodchikov W_3 -algebra

 \mathcal{W}_3^c is freely generated by L, W satisfying:

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

 $L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1},$

$$W(z)W(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} + \left(\frac{32}{22+5c} : LL : +\frac{3(c-2)}{2(22+5c)}\partial^2 L\right)(z-w)^{-2} + \left(\frac{32}{22+5c} : (\partial L)L : +\frac{c-2}{3(22+5c)}\partial^3 L\right)(z-w)^{-1}.$$

 \mathcal{W}_3^c is of type $\mathcal{W}(2,3)$, and is nonlinear.

・ロト・日本・モート モー うへぐ

 \mathcal{W}_3^c is freely generated by L, W satisfying:

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

$$L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1},$$

$$W(z)W(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} + \left(\frac{32}{22+5c} : LL : +\frac{3(c-2)}{2(22+5c)}\partial^2 L\right)(z-w)^{-2} + \left(\frac{32}{22+5c} : (\partial L)L : +\frac{c-2}{3(22+5c)}\partial^3 L\right)(z-w)^{-1}.$$

 \mathcal{W}_3^c is of type $\mathcal{W}(2,3)$, and is nonlinear.

 \mathcal{W}_3^c is freely generated by L, W satisfying:

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

$$L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1},$$

$$W(z)W(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} \\ + \left(\frac{32}{22+5c} : LL : + \frac{3(c-2)}{2(22+5c)}\partial^2 L\right)(z-w)^{-2} \\ + \left(\frac{32}{22+5c} : (\partial L)L : + \frac{c-2}{3(22+5c)}\partial^3 L\right)(z-w)^{-1}.$$

 \mathcal{W}_3^c is of type $\mathcal{W}(2,3)$, and is nonlinear.

 \mathcal{W}_3^c is freely generated by L, W satisfying:

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

$$L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1},$$

$$W(z)W(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} \\ + \left(\frac{32}{22+5c} : LL : + \frac{3(c-2)}{2(22+5c)}\partial^2 L\right)(z-w)^{-2} \\ + \left(\frac{32}{22+5c} : (\partial L)L : + \frac{c-2}{3(22+5c)}\partial^3 L\right)(z-w)^{-1}.$$

 \mathcal{W}_3^c is of type $\mathcal{W}(2,3)$, and is nonlinear.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^k(\mathfrak{sl}_n, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \ldots, n)$.

 $\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c \text{ with } c = 2 - \frac{24(k+2)^2}{k+3}.$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^k(\mathfrak{sl}_n, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \ldots, n)$.

 $\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c \text{ with } c = 2 - \frac{24(k+2)^2}{k+3}.$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^{k}(\mathfrak{sl}_{n}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \ldots, n)$.

 $\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c \text{ with } c = 2 - \frac{24(k+2)^2}{k+3}.$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^k(\mathfrak{sl}_n, f_{\mathsf{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \dots, n)$.

 $\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c \text{ with } c = 2 - \frac{24(k+2)^2}{k+3}.$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^k(\mathfrak{sl}_n, f_{\mathsf{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \dots, n)$.

 $\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c \text{ with } c = 2 - \frac{24(k+2)^2}{k+3}.$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^k(\mathfrak{sl}_n, f_{\mathsf{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \dots, n)$.

 $\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c \text{ with } c = 2 - \frac{24(k+2)^2}{k+3}.$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^k(\mathfrak{g}, f)$ called an **affine** \mathcal{W} -algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent f_{prin} , $\mathcal{W}^k(\mathfrak{g}, f_{\text{prin}})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, d_1, \ldots, d_r the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.

 $\mathcal{W}^k(\mathfrak{sl}_n, f_{\mathsf{prin}})$ is freely generated of type $\mathcal{W}(2, 3, \ldots, n)$.

$$\mathcal{W}^k(\mathfrak{sl}_3, f_{\mathsf{prin}}) \cong \mathcal{W}_3^c$$
 with $c = 2 - rac{24(k+2)^2}{k+3}$

For $n \ge 4$, $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ is generated (not strongly) by the weights 2 and 3 fields.

There are many other algebras of type $\mathcal{W}(2, 3, \dots, N)$ for some N.

Ex: Natural embedding $\mathfrak{gl}_n \to \mathfrak{sl}_{n+1}$ induces homomorphism

 $V^k(\mathfrak{gl}_n) \to V^k(\mathfrak{sl}_{n+1}).$

Let $C^k(n)$ denote the commutant

 $\operatorname{Com}(V^k(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1})),$

which has Virasoro element $L^{\mathfrak{sl}_{n+1}} - L^{\mathfrak{gl}_n}$.

Thm: (L., 2017) $C^k(n)$ is of type $W(2, 3, ..., n^2 + 3n + 1)$.

There are many other algebras of type $\mathcal{W}(2, 3, \dots, N)$ for some N.

 ${\sf Ex}:$ Natural embedding $\mathfrak{gl}_n \to \mathfrak{sl}_{n+1}$ induces homomorphism

$$V^k(\mathfrak{gl}_n) o V^k(\mathfrak{sl}_{n+1}).$$

Let $C^k(n)$ denote the commutant

$$\operatorname{Com}(V^k(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1})),$$

which has Virasoro element $L^{\mathfrak{gl}_{n+1}} - L^{\mathfrak{gl}_n}$.

Thm: (L., 2017) $C^k(n)$ is of type $W(2, 3, ..., n^2 + 3n + 1)$.

There are many other algebras of type $\mathcal{W}(2, 3, \dots, N)$ for some N.

Ex: Natural embedding $\mathfrak{gl}_n \to \mathfrak{sl}_{n+1}$ induces homomorphism

$$V^k(\mathfrak{gl}_n) o V^k(\mathfrak{sl}_{n+1}).$$

Let $C^k(n)$ denote the commutant

 $\operatorname{Com}(V^k(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1})),$

which has Virasoro element $L^{\mathfrak{gl}_{n+1}} - L^{\mathfrak{gl}_n}$.

Thm: (L., 2017) $C^{k}(n)$ is of type $W(2, 3, ..., n^{2} + 3n + 1)$.

There are many other algebras of type $\mathcal{W}(2, 3, \dots, N)$ for some N.

 ${\sf Ex}:$ Natural embedding $\mathfrak{gl}_n \to \mathfrak{sl}_{n+1}$ induces homomorphism

$$V^k(\mathfrak{gl}_n) o V^k(\mathfrak{sl}_{n+1}).$$

Let $C^k(n)$ denote the commutant

$$\operatorname{Com}(V^k(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1})),$$

which has Virasoro element $L^{\mathfrak{gl}_{n+1}} - L^{\mathfrak{gl}_n}$.

Thm: (L., 2017) $C^{k}(n)$ is of type $W(2, 3, ..., n^{2} + 3n + 1)$.

There are many other algebras of type $\mathcal{W}(2, 3, \dots, N)$ for some N.

Ex: Natural embedding $\mathfrak{gl}_n \to \mathfrak{sl}_{n+1}$ induces homomorphism

$$V^k(\mathfrak{gl}_n) o V^k(\mathfrak{sl}_{n+1}).$$

Let $C^k(n)$ denote the commutant

$$\operatorname{Com}(V^k(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1})),$$

which has Virasoro element $L^{\mathfrak{gl}_{n+1}} - L^{\mathfrak{gl}_n}$.

Thm: (L., 2017) $C^{k}(n)$ is of type $W(2, 3, ..., n^{2} + 3n + 1)$.

Thm: (L, 2017) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2, 3, ..., \infty)$ with following properties:

• Generated by Virasoro field L of central charge c and a weight 3 primary field W^3 such that

$$W^{3}(z)W^{3}(w) \sim \frac{c}{3}(z-w)^{-6} + \cdots$$

- $\mathcal{W}(c,\lambda)$ has \mathbb{Z}_2 -action sending $W^3 \mapsto -W^3$.
- Setting

$$W^4 = (W^3) \circ_1 W^3, \qquad W^n = (W^3) \circ_1 W^{n-1}, \qquad n \ge 5,$$

 $\mathcal{W}(c,\lambda)$ is freely generated by the fields $\{L, W^i | i \geq 3\}$.

• Structure constants are all polynomials in c and λ .

Conjectured to exist by Gaberdiel-Gopakumar (2012), (3, 1

Thm: (L, 2017) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2, 3, \dots \infty)$ with following properties:

 \bullet Generated by Virasoro field L of central charge c and a weight 3 primary field W^3 such that

$$W^3(z)W^3(w)\sim \frac{c}{3}(z-w)^{-6}+\cdots$$

•
$$\mathcal{W}(\boldsymbol{c},\lambda)$$
 has \mathbb{Z}_2 -action sending $W^3\mapsto -W^3$.

Setting

$$W^4 = (W^3) \circ_1 W^3, \qquad W^n = (W^3) \circ_1 W^{n-1}, \qquad n \ge 5,$$

 $\mathcal{W}(c,\lambda)$ is freely generated by the fields $\{L, W^i | i \geq 3\}$.

• Structure constants are all polynomials in c and λ .

Conjectured to exist by Gaberdiel-Gopakumar (2012), (3, 1

Thm: (L, 2017) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2, 3, \dots \infty)$ with following properties:

 \bullet Generated by Virasoro field L of central charge c and a weight 3 primary field W^3 such that

$$W^3(z)W^3(w)\sim \frac{c}{3}(z-w)^{-6}+\cdots$$

• $\mathcal{W}(c,\lambda)$ has \mathbb{Z}_2 -action sending $W^3\mapsto -W^3$.

Setting

 $W^4 = (W^3) \circ_1 W^3, \qquad W^n = (W^3) \circ_1 W^{n-1}, \qquad n \ge 5,$

 $\mathcal{W}(c,\lambda)$ is freely generated by the fields $\{L, W^i | i \geq 3\}$.

• Structure constants are all polynomials in c and λ .

Thm: (L, 2017) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2, 3, \dots \infty)$ with following properties:

• Generated by Virasoro field L of central charge c and a weight 3 primary field W^3 such that

$$W^3(z)W^3(w)\sim rac{c}{3}(z-w)^{-6}+\cdots$$

- $\mathcal{W}(c,\lambda)$ has \mathbb{Z}_2 -action sending $W^3\mapsto -W^3$.
- Setting

$$W^4 = (W^3) \circ_1 W^3, \qquad W^n = (W^3) \circ_1 W^{n-1}, \qquad n \ge 5,$$

 $\mathcal{W}(c,\lambda)$ is freely generated by the fields $\{L, W^i | i \geq 3\}$.

• Structure constants are all polynomials in c and λ .

Conjectured to exist by Gaberdiel-Gopakumar (2012), (3, 1

Thm: (L, 2017) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2, 3, \dots \infty)$ with following properties:

• Generated by Virasoro field L of central charge c and a weight 3 primary field W^3 such that

$$W^3(z)W^3(w)\sim \frac{c}{3}(z-w)^{-6}+\cdots$$

- $\mathcal{W}(c,\lambda)$ has \mathbb{Z}_2 -action sending $W^3\mapsto -W^3$.
- Setting

$$\mathcal{W}^4=(\mathcal{W}^3)\circ_1\mathcal{W}^3,\qquad \mathcal{W}^n=(\mathcal{W}^3)\circ_1\mathcal{W}^{n-1},\qquad n\geq 5,$$

 $\mathcal{W}(c,\lambda)$ is freely generated by the fields $\{L, W^i | i \geq 3\}$.

• Structure constants are all polynomials in c and λ .

Thm: (L, 2017) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2, 3, \dots \infty)$ with following properties:

 \bullet Generated by Virasoro field L of central charge c and a weight 3 primary field W^3 such that

$$W^3(z)W^3(w)\sim rac{c}{3}(z-w)^{-6}+\cdots$$

- $\mathcal{W}(c,\lambda)$ has \mathbb{Z}_2 -action sending $W^3\mapsto -W^3$.
- Setting

$$\mathcal{W}^4=(\mathcal{W}^3)\circ_1\mathcal{W}^3,\qquad \mathcal{W}^n=(\mathcal{W}^3)\circ_1\mathcal{W}^{n-1},\qquad n\geq 5,$$

 $\mathcal{W}(c,\lambda)$ is freely generated by the fields $\{L, W^i | i \geq 3\}$.

• Structure constants are all polynomials in c and λ .

Conjectured to exist by Gaberdiel-Gopakumar (2012).

19. Partial OPE algebra of $W(c, \lambda)$

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

 $L(z)W^{3}(w) \sim 3W^{3}(w)(z-w)^{-2} + \partial W^{3}(w)(z-w)^{-1},$

$$W^{3}(z)W^{3}(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} + W^{4}(w)(z-w)^{-2} + \left(\frac{1}{2}\partial W^{4} - \frac{1}{12}\partial^{3}L\right)(w)(z-w)^{-1}.$$

$$L(z)W^{4}(w) \sim 3c(z-w)^{-6} + 10L(w)(z-w)^{-4} + 3\partial L(w)(z-w)^{-3} + 4W^{4}(w)(z-w)^{-2} + \partial W^{4}(w)(z-w)^{-1}.$$

<□ > < @ > < E > < E > E のQ @

19. Partial OPE algebra of $W(c, \lambda)$

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

 $L(z)W^{3}(w) \sim 3W^{3}(w)(z-w)^{-2} + \partial W^{3}(w)(z-w)^{-1},$

$$W^{3}(z)W^{3}(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3}$$

 $+W^{4}(w)(z-w)^{-2} + \left(\frac{1}{2}\partial W^{4} - \frac{1}{12}\partial^{3}L\right)(w)(z-w)^{-1}.$

 $L(z)W^{4}(w) \sim 3c(z-w)^{-6} + 10L(w)(z-w)^{-4} + 3\partial L(w)(z-w)^{-3} + 4W^{4}(w)(z-w)^{-2} + \partial W^{4}(w)(z-w)^{-1}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

19. Partial OPE algebra of $W(c, \lambda)$

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$

$$L(z)W^{3}(w) \sim 3W^{3}(w)(z-w)^{-2} + \partial W^{3}(w)(z-w)^{-1},$$

$$W^{3}(z)W^{3}(w) \sim \frac{c}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3}$$

 $+W^{4}(w)(z-w)^{-2} + \left(\frac{1}{2}\partial W^{4} - \frac{1}{12}\partial^{3}L\right)(w)(z-w)^{-1}.$

$$\begin{split} L(z)W^4(w) &\sim 3c(z-w)^{-6} + 10L(w)(z-w)^{-4} + 3\partial L(w)(z-w)^{-3} \\ &+ 4W^4(w)(z-w)^{-2} + \partial W^4(w)(z-w)^{-1}. \end{split}$$

<□ > < @ > < E > < E > E のQ @

20. More OPE relations in $\mathcal{W}(c, \lambda)$

$$\begin{split} L(z)W^5(w) &\sim \left(185 - \frac{25}{2}\lambda(2+c)\right)W^3(z)(z-w)^{-4} \\ &+ \left(55 - \frac{5}{2}\lambda(2+c)\right)\partial W^3(z)(z-w)^{-3} \\ &+ 5W^5(w)(z-w)^{-2} + \partial W^5(w)(z-w)^{-1}. \end{split}$$

$$W^{3}(z)W^{4}(w) \sim \left(31 - \frac{5}{2}\lambda(2+c)\right)W^{3}(w)(z-w)^{-4}$$
$$-\frac{5}{6}\left(-16 + \lambda(2+c)\right)\partial W^{3}(w)(z-w)^{-3}$$
$$+W^{5}(w)(z-w)^{-2} + \left(\lambda : L\partial W^{3} : -\frac{3}{2}\lambda : (\partial L)W^{3} :$$
$$+\frac{2}{5}\partial W^{5} + \left(-\frac{2}{3} - \frac{1}{24}\lambda(1-c)\right)\partial^{3}W^{3}\right)(w)(z-w)^{-1} = 0.$$

20. More OPE relations in $\mathcal{W}(c, \lambda)$

$$L(z)W^{5}(w) \sim \left(185 - rac{25}{2}\lambda(2+c)
ight)W^{3}(z)(z-w)^{-4} + \left(55 - rac{5}{2}\lambda(2+c)
ight)\partial W^{3}(z)(z-w)^{-3} + 5W^{5}(w)(z-w)^{-2} + \partial W^{5}(w)(z-w)^{-1}.$$

$$\begin{split} W^{3}(z)W^{4}(w) &\sim \left(31 - \frac{5}{2}\lambda(2+c)\right)W^{3}(w)(z-w)^{-4} \\ &- \frac{5}{6}\left(-16 + \lambda(2+c)\right)\partial W^{3}(w)(z-w)^{-3} \\ &+ W^{5}(w)(z-w)^{-2} + \left(\lambda : L\partial W^{3} : -\frac{3}{2}\lambda : (\partial L)W^{3} : \\ &+ \frac{2}{5}\partial W^{5} + \left(-\frac{2}{3} - \frac{1}{24}\lambda(1-c)\right)\partial^{3}W^{3}\right)(w)(z-w)^{-1} \\ &= -\frac{1}{2}\left(-\frac{1}{2}\lambda(1-c)\right)\partial^{3}W^{3}(w)(z-w)^{-1} \\ &= -\frac{1}{2}\left(-\frac{1}{2}\lambda(1-$$

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for $m, n \ge 0$, and fields a, b, c,

$$a \circ_r (b \circ_s c) = b \circ_s (a \circ_r c) + \sum_{i=0}^r \binom{r}{i} (a \circ_i b) \circ_{r+s-i} c.$$

OPEs on previous slides are a consequence of imposing these relations for W^i, W^j, W^k for $i + j + k \le 9$. (Here $L = W^2$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z)W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for $m, n \ge 0$, and fields a, b, c,

$$a \circ_r (b \circ_s c) = b \circ_s (a \circ_r c) + \sum_{i=0}^r \binom{r}{i} (a \circ_i b) \circ_{r+s-i} c.$$

OPEs on previous slides are a consequence of imposing these relations for W^i, W^j, W^k for $i + j + k \le 9$. (Here $L = W^2$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z)W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for $m, n \ge 0$, and fields a, b, c,

$$a \circ_r (b \circ_s c) = b \circ_s (a \circ_r c) + \sum_{i=0}^r \binom{r}{i} (a \circ_i b) \circ_{r+s-i} c.$$

OPEs on previous slides are a consequence of imposing these relations for W^i, W^j, W^k for $i + j + k \le 9$. (Here $L = W^2$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z)W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for $m, n \ge 0$, and fields a, b, c,

$$a \circ_r (b \circ_s c) = b \circ_s (a \circ_r c) + \sum_{i=0}^r \binom{r}{i} (a \circ_i b) \circ_{r+s-i} c.$$

OPEs on previous slides are a consequence of imposing these relations for W^i, W^j, W^k for $i + j + k \le 9$. (Here $L = W^2$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z)W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.
21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for $m, n \ge 0$, and fields a, b, c,

$$a \circ_r (b \circ_s c) = b \circ_s (a \circ_r c) + \sum_{i=0}^r \binom{r}{i} (a \circ_i b) \circ_{r+s-i} c.$$

OPEs on previous slides are a consequence of imposing these relations for W^i, W^j, W^k for $i + j + k \le 9$. (Here $L = W^2$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z)W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

 $\mathcal{W}(c,\lambda)$ is the universal enveloping VA (Kac-de Sole, 2005).

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for $m, n \ge 0$, and fields a, b, c,

$$a \circ_r (b \circ_s c) = b \circ_s (a \circ_r c) + \sum_{i=0}^r \binom{r}{i} (a \circ_i b) \circ_{r+s-i} c.$$

OPEs on previous slides are a consequence of imposing these relations for W^i, W^j, W^k for $i + j + k \le 9$. (Here $L = W^2$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z)W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

 $\mathcal{W}(c,\lambda)$ is the universal enveloping VA (Kac-de Sole, 2005).

Regard $\mathcal{W}(c,\lambda)$ as a VA over ring $\mathbb{C}[c,\lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}^{I}(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{I}(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c,\lambda)$ as a VA over ring $\mathbb{C}[c,\lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}^{I}(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{I}(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c,\lambda)$ as a VA over ring $\mathbb{C}[c,\lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}'(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}'(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}'(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}'(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(\boldsymbol{c},\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}'(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}'(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(\boldsymbol{c},\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W'(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}'(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}'(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}'(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}'(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c, \lambda)$ is not simple.

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).

Each weight space is a free $\mathbb{C}[c, \lambda]$ -module.

Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $\mathcal{W}'(c,\lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}'(c,\lambda)$.

 $\mathcal{W}^{I}(c,\lambda)$ is a VA over $R = \mathbb{C}[c,\lambda]/I$. Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c, \lambda)$ is not simple.

Let $W_l(c, \lambda)$ be simple quotient of $W'(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

Thm: (L, 2017) Suppose \mathcal{W} is a simple VA of central charge c such that:

• W generated by Virasoro field L and a weight 3 primary field W^3 .

• Setting $W^2 = L$ and $W^i = (W^3) \circ_1 W^{i-1}$ for $i \ge 4$, the fields W^i, W^j for $i + j \le 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\{L, W^i | i \ge 3\}$ and is a quotient $\mathcal{W}_l(c, \lambda)$ for some $l \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2, 3, \dots, N)$ satisfying above hypotheses.

Cor: For each $N \ge 3$, there are finitely many distinct 1-parameter VAs of type $W^{c}(2, 3, ..., N)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm: (L, 2017) Suppose \mathcal{W} is a simple VA of central charge c such that:

• \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^3 .

• Setting $W^2 = L$ and $W^i = (W^3) \circ_1 W^{i-1}$ for $i \ge 4$, the fields W^i, W^j for $i + j \le 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\{L, W^i | i \ge 3\}$ and is a quotient $\mathcal{W}_l(c, \lambda)$ for some $l \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3,\ldots,N)$ satisfying above hypotheses.

Cor: For each $N \ge 3$, there are finitely many distinct 1-parameter VAs of type $W^{c}(2, 3, ..., N)$.

Thm: (L, 2017) Suppose W is a simple VA of central charge c such that:

• \mathcal{W} generated by Virasoro field L and a weight 3 primary field \mathcal{W}^3 .

• Setting $W^2 = L$ and $W^i = (W^3) \circ_1 W^{i-1}$ for $i \ge 4$, the fields W^i, W^j for $i + j \le 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\{L, W^i | i \ge 3\}$ and is a quotient $\mathcal{W}_l(c, \lambda)$ for some $l \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3,\ldots,N)$ satisfying above hypotheses.

Cor: For each $N \ge 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{c}(2, 3, ..., N)$.

Thm: (L, 2017) Suppose W is a simple VA of central charge c such that:

• W generated by Virasoro field L and a weight 3 primary field W^3 .

• Setting $W^2 = L$ and $W^i = (W^3) \circ_1 W^{i-1}$ for $i \ge 4$, the fields W^i, W^j for $i + j \le 7$ satisfy previous OPEs.

Then W is strongly generated by $\{L, W^i | i \ge 3\}$ and is a quotient $W_I(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3,\ldots,N)$ satisfying above hypotheses.

Cor: For each $N \ge 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{c}(2, 3, ..., N)$.

Thm: (L, 2017) Suppose W is a simple VA of central charge c such that:

• W generated by Virasoro field L and a weight 3 primary field W^3 .

• Setting $W^2 = L$ and $W^i = (W^3) \circ_1 W^{i-1}$ for $i \ge 4$, the fields W^i, W^j for $i + j \le 7$ satisfy previous OPEs.

Then W is strongly generated by $\{L, W^i | i \ge 3\}$ and is a quotient $W_I(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2, 3, \dots, N)$ satisfying above hypotheses.

Cor: For each $N \ge 3$, there are finitely many distinct 1-parameter VAs of type $W^{c}(2, 3, ..., N)$.

Thm: (L, 2017) Suppose W is a simple VA of central charge c such that:

• W generated by Virasoro field L and a weight 3 primary field W^3 .

• Setting $W^2 = L$ and $W^i = (W^3) \circ_1 W^{i-1}$ for $i \ge 4$, the fields W^i, W^j for $i + j \le 7$ satisfy previous OPEs.

Then W is strongly generated by $\{L, W^i | i \ge 3\}$ and is a quotient $W_I(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3,\ldots,N)$ satisfying above hypotheses.

Cor: For each $N \ge 3$, there are finitely many distinct 1-parameter VAs of type $W^c(2, 3, ..., N)$.

Conj: $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ corresponds to ideal $I_n \subset \mathbb{C}[c, \lambda]$ generated by

$$\lambda = \frac{32(n-1)(n+1)}{5(n-2)(3n^2 - n - 2 + c(n+2))}.$$

Verified for $n \leq 7$.

We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_I(c, \lambda)$ is of type $\mathcal{W}^c(2, 3, \dots, N)$.

Ex: There is a VA of type $\mathcal{W}^{c}(2,3,4,5,6,7)$ corresponding to ideal *I* with generator

 $12288 + 2048c + 9600\lambda - 2480c\lambda - 200c^{2}\lambda + 1875\lambda^{2} + 3275c\lambda^{2} + 250c^{2}\lambda^{2}.$

Conj: For all *I* such that $W_I(c, \lambda)$ is of type $W^c(2, 3, ..., N)$ for some *N*, variety $V(I) \subset \mathbb{C}^2$ is a rational curve, $V(I) \in \mathbb{C}^2$ is a rational curve, $V(I) \in \mathbb{C}^2$ is a rational curve of $V(I) \in \mathbb{C}^2$ of $V(I) \in \mathbb{C}^2$ is a rational curve of $V(I) \in \mathbb{C}^2$ is a rat

Conj: $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ corresponds to ideal $I_n \subset \mathbb{C}[c, \lambda]$ generated by

$$\lambda = \frac{32(n-1)(n+1)}{5(n-2)(3n^2 - n - 2 + c(n+2))}.$$

Verified for $n \leq 7$.

We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_I(c, \lambda)$ is of type $\mathcal{W}^c(2, 3, \dots, N)$.

Ex: There is a VA of type $\mathcal{W}^{c}(2,3,4,5,6,7)$ corresponding to ideal *I* with generator

 $12288 + 2048c + 9600\lambda - 2480c\lambda - 200c^2\lambda + 1875\lambda^2 + 3275c\lambda^2 + 250c^2\lambda^2.$

Conj: For all *I* such that $\mathcal{W}_I(c, \lambda)$ is of type $\mathcal{W}^c(2, 3, ..., N)$ for some *N*, variety $V(I) \subset \mathbb{C}^2$ is a rational curve $\mathbb{C}^{\mathbb{C}^2}$, \mathbb{C}^2 ,

Conj: $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ corresponds to ideal $I_n \subset \mathbb{C}[c, \lambda]$ generated by

$$\lambda = \frac{32(n-1)(n+1)}{5(n-2)(3n^2 - n - 2 + c(n+2))}.$$

Verified for $n \leq 7$.

We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_I(c, \lambda)$ is of type $\mathcal{W}^c(2, 3, \dots, N)$.

Ex: There is a VA of type $\mathcal{W}^c(2,3,4,5,6,7)$ corresponding to ideal *I* with generator

 $12288 + 2048c + 9600\lambda - 2480c\lambda - 200c^2\lambda + 1875\lambda^2 + 3275c\lambda^2 + 250c^2\lambda^2.$

Conj: For all *I* such that $W_I(c, \lambda)$ is of type $W^c(2, 3, ..., N)$ for some *N*, variety $V(I) \subset \mathbb{C}^2$ is a rational curve $V(I) \subset \mathbb{C}^2$ is a rational curve V(I)

Conj: $\mathcal{W}^k(\mathfrak{sl}_n, f_{prin})$ corresponds to ideal $I_n \subset \mathbb{C}[c, \lambda]$ generated by

$$\lambda = \frac{32(n-1)(n+1)}{5(n-2)(3n^2 - n - 2 + c(n+2))}.$$

Verified for $n \leq 7$.

We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_I(c, \lambda)$ is of type $\mathcal{W}^c(2, 3, \dots, N)$.

Ex: There is a VA of type $\mathcal{W}^c(2,3,4,5,6,7)$ corresponding to ideal *I* with generator

 $12288 + 2048c + 9600\lambda - 2480c\lambda - 200c^2\lambda + 1875\lambda^2 + 3275c\lambda^2 + 250c^2\lambda^2.$

Conj: For all *I* such that $W_I(c, \lambda)$ is of type $W^c(2, 3, ..., N)$ for some *N*, variety $V(I) \subset \mathbb{C}^2$ is a *rational curve* where $V(I) \subset \mathbb{C}^2$ is a *rational curve* where *V* and *V* an