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1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and
axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector V with product : ab :,
generally nonassociative, noncommutative.

Unit 1, derivation ∂.

Conformal weight grading V =
⊕

n≥0 V[n].

Graded character χV(q) = q−c/24
∑

n≥0 dim(V[n])qn.
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2. Examples and constructions

Affine vertex algebra V k(g) at level k ∈ C is associated to a
simple, finite-dimensional Lie algebra g.

Module over affine Kac-Moody Lie algebra ĝ.

Simple quotient Vk(g) is irreducible as a ĝ-module.

Lattice vertex algebra VL, L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Standard ways to construct new VAs from old ones: orbifold,
coset, extension, cohomology.
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Simple quotient Vk(g) is irreducible as a ĝ-module.
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Lattice vertex algebra VL, L an even, positive-definite lattice.

Free field algebras are analogous to Weyl and Clifford algebras.

Standard ways to construct new VAs from old ones: orbifold,
coset, extension, cohomology.



2. Examples and constructions

Affine vertex algebra V k(g) at level k ∈ C is associated to a
simple, finite-dimensional Lie algebra g.

Module over affine Kac-Moody Lie algebra ĝ.
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3. A spectacular example

Moonshine module V \ (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order
245 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71 ≈ 8 ·1053.

Graded character

χV \(q) = 1 + 196884q2 + 21493760q3 + · · · = j(τ)− 744.

q = e2πiτ , where τ lies in the upper half-plane H = {x + yi |y > 0}.

j(τ) is the classical j-function. Invariant under SL2(Z) action(
a b
c d

)
(τ) =

aτ + b

cτ + d
.
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4. Quantum operators

V a complex vector space.

A quantum operator is a linear map a : V → V ((z)), where
V ((z)) is the space of formal Laurent series with coefficients in V .

QO(V ) the space of quantum operators.

Can represent a ∈ QO(V ) as a formal power series

a(z) =
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z , z−1]]

such that for any fixed v ∈ V , a(n)v = 0 for n� 0.

End(V ) ⊂ QO(V ) subspace of constant maps.

End(V ) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QO(V )?
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5. Algebraic structure on QO(V )

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick’s procedure: Write a(z) = a−(z) + a+(z), where

a−(z) =
∑
n<0

a(n)z−n−1, a+(z) =
∑
n≥0

a(n)z−n−1.

Fix a vector v ∈ V and b ∈ QO(V ).

b(z)a+(z)v ∈ V ((z)), since a+(z)v is a finite sum.

a−(z)b(z)v ∈ V ((z)) since b(z)v ∈ V ((z)) and a−(z) is a Taylor
series.
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6. The Wick product

By definition, a−(z)b(z) + b(z)a+(z) ∈ QO(V ).

For all a, b ∈ QO(V ), define Wick product : ab : = a−b + ba+.

For all a, b ∈ End(V ), a = a−, so : ab : = ab.

Identity map 1 ∈ End(V ) is a unit in QO(V ). For all a ∈ QO(V ),

: 1a : = a = : a1 : .

Nonassociative in general.

By convention, : abc : = : a(: bc :) :.
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7. Circle products

Family of bilinear operations ◦n on QO(V ), for all n ∈ Z.

For n ≥ 0, define

a(z) ◦−n−1 b(z) =
1

n!

(
: ∂na(z)

)
b(z) :, ∂ =

d

dz
.

In particular ◦−1 coincides with the Wick product.

For n ≥ 0, define

a(w) ◦n b(w) = Resz(z − w)n[a(z), b(w)].

Here Resz means the coefficient of z−1.
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8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace
A ⊂ QO(V ) containing 1 and closed under all ◦n.

∂(A) ⊂ A since ∂a = : (∂a)1 : = a ◦−2 1.

Easy to define homomorphisms, ideals, quotients, modules, etc.

Def: Elements a, b ∈ QO(V ) are local if for some N ≥ 0

(z − w)N [a(z), b(w)] = 0.

Recall a(w) ◦n b(w) = Resz(z − w)n[a(z), b(w)], for n ≥ 0.

So a ◦n b = 0 for n ≥ N.
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9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise
local.

A VA V ⊂ QO(V ) for some V is meaningful independently of V .

Without loss of generality, can take V ∼= V as vector spaces.

Lemma: (Dong) Let a, b, c ∈ QO(V ), and suppose a, b, c are
pairwise local. Then a and b ◦n c are local for all n ∈ Z.

We often begin with a set S of elements of QO(V ) and check
pairwise locality.

If S has one element a, need to check locality of a with itself.

VA generated by S is spanned by all words in the elements of S
and ◦n, for n ∈ Z.
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10. Operator product expansion

Thm: Let V be a VA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

a(w) ◦n b(w)(z − w)−n−1+ : a(z)b(w) :,

where : a(z)b(w) : = a−(z)b(w) + b(w)a+(z)

Expansion of meromorphic function with poles along z = w .

a(w) ◦n b(w) is pole of order n + 1.

: a(z)b(w) : is regular part.

Often write

a(z)b(w) ∼
∑
n≥0

a(w) ◦n b(w)(z − w)−n−1,

where ∼ means equal modulo regular part.
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11. Operator product expansion, cont’d

Often, a VA is presented by giving generators and OPE relations.

Ex: Affine VA V k(g). Let ξ1, . . . , ξn be a basis for g.

Then V k(g) is generated by fields X ξi , i = 1, . . . , n, satisfying

X ξi (z)X ξj (w) ∼ k〈ξi , ξj〉(z − w)−2 + X [ξi ,ξj ](w)(z − w)−1.

Fact: V k(g) has a basis consisting of monomials

: ∂k
1
1X ξ1 · · · ∂k

1
r1X ξ1 · · · ∂kn

1X ξn · · · ∂kn
rnX ξn :,

k11 ≥ k12 ≥ · · · ≥ k1r1 , kn1 ≥ kn2 ≥ · · · ≥ knrn .

V k(g) linearly isomorphic to polynomial algebra on
{∂kX ξi | i = 1, . . . , n, k ≥ 0}.
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12. Strong and free generations

We say that a VA V is strongly generated by fields {αi (z)| i ∈ I}
if V is spanned by monomials

{: ∂k1αi1 · · · ∂ irαir : | kj ≥ 0, ij ∈ I}.

Suppose {α1, α2, . . . } is an ordered strong generating set for V.

We say V is freely generated by {α1, α2, . . . } if

: ∂k
1
1αi1 · · · ∂

k1
r1αi1 · · · ∂k

n
1αin · · · ∂k

n
rnαin :,

forms a basis of V, where

i1 < · · · < in, k11 ≥ k12 ≥ · · · ≥ k1r1 , kn1 ≥ kn2 ≥ · · · ≥ knrn .

Equivalently, V is linearly isomorphic to polynomial algebra on
∂kαi for i = 1, 2, . . . , and k ≥ 0.

Ex: V k(g) is freely generated by X ξi .
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13. Conformal structure

The Virasoro Lie algebra is a central extension of the
(complexified) Lie algebra of vector fields on the circle.

Generators Ln = −tn+1 d
dt , n ∈ Z, and central element κ,

[Ln, Lm] = (n −m)Ln+m + δn+m,0
n3 − n

12
κ.

A Virasoro element of a vertex algebra V is a field
L(z) =

∑
n∈Z Lnz

−n−2 ∈ V satisfying

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1.

[L0,−] is required to act diagonalizably and [L−1,−] acts by ∂.

Constant c is called the central charge.
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14. Conformal structure, cont’d

Conformal weight grading on V is the eigenspace decomposition
under L0.

If a ∈ V has weight d , then

L(z)a(w) ∼ · · ·+ da(w)(z − w)−2 + ∂a(w)(z − w)−1.

Note that L always has weight 2.

Ex: V k(g) has Virasoro element

Lg =
1

k + h∨

n∑
i=1

: X ξiX ξ′i :, k 6= −h∨.

Central charge c = kdim(g)
k+h∨ where h∨ is dual Coxeter number.

For each X ξi ,

Lg(z)X ξi (w) ∼ X ξi (w)(z − w)−2 + ∂X ξi (w)(z − w)−1.
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15. Zamolodchikov W3-algebra

Wc
3 is freely generated by L,W satisfying:

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

L(z)W (w) ∼ 3W (w)(z − w)−2 + ∂W (w)(z − w)−1,

W (z)W (w) ∼ c

3
(z − w)−6 + 2L(w)(z − w)−4 + ∂L(w)(z − w)−3

+

(
32

22 + 5c
: LL : +

3(c − 2)

2(22 + 5c)
∂2L

)
(z − w)−2

+

(
32

22 + 5c
: (∂L)L : +

c − 2

3(22 + 5c)
∂3L

)
(z − w)−1.

Wc
3 is of type W(2, 3), and is nonlinear.
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16. Affine W-algebras

For a simple Lie algebra g and a nilpotent element f ∈ g, there is a
VA Wk(g, f ) called an affine W-algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent fprin, Wk(g, fprin) is freely generated of
type W(d1, . . . , dr ), d1, . . . , dr the degrees of the generators Z(g).

Wk(sln, fprin) is freely generated of type W(2, 3, . . . , n).

Wk(sl3, fprin) ∼=Wc
3 with c = 2− 24(k+2)2

k+3 .

For n ≥ 4, Wk(sln, fprin) is generated (not strongly) by the weights
2 and 3 fields.

OPE algebra of Wk(sln, fprin) very complicated, only known for
n ≤ 5.
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17. Other algebras of type W(2, 3, . . . ,N)

There are many other algebras of type W(2, 3, . . . ,N) for some N.

Ex: Natural embedding gln → sln+1 induces homomorphism

V k(gln)→ V k(sln+1).

Let Ck(n) denote the commutant

Com(V k(gln),V k(sln+1)),

which has Virasoro element Lsln+1 − Lgln .

Thm: (L., 2017) Ck(n) is of type W(2, 3, . . . , n2 + 3n + 1).

Strongly, but not freely generated by these fields, and generated by
the weights 2, 3 fields.
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18. Universal 2-parameter W∞-algebra

Thm: (L, 2017) There exists a unique vertex algebra W(c , λ) of
type W(2, 3, . . .∞) with following properties:

• Generated by Virasoro field L of central charge c and a weight 3
primary field W 3 such that

W 3(z)W 3(w) ∼ c

3
(z − w)−6 + · · · .

• W(c, λ) has Z2-action sending W 3 7→ −W 3.

• Setting

W 4 = (W 3) ◦1 W 3, W n = (W 3) ◦1 W n−1, n ≥ 5,

W(c, λ) is freely generated by the fields {L,W i | i ≥ 3}.

• Structure constants are all polynomials in c and λ.

Conjectured to exist by Gaberdiel-Gopakumar (2012).
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19. Partial OPE algebra of W(c , λ)

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

L(z)W 3(w) ∼ 3W 3(w)(z − w)−2 + ∂W 3(w)(z − w)−1,

W 3(z)W 3(w) ∼ c

3
(z−w)−6 + 2L(w)(z−w)−4 +∂L(w)(z−w)−3

+W 4(w)(z − w)−2 +

(
1

2
∂W 4 − 1

12
∂3L

)
(w)(z − w)−1.

L(z)W 4(w) ∼ 3c(z−w)−6 +10L(w)(z−w)−4 +3∂L(w)(z−w)−3

+4W 4(w)(z − w)−2 + ∂W 4(w)(z − w)−1.
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20. More OPE relations in W(c , λ)

L(z)W 5(w) ∼
(

185− 25

2
λ(2 + c)

)
W 3(z)(z − w)−4

+

(
55− 5

2
λ(2 + c)

)
∂W 3(z)(z − w)−3

+5W 5(w)(z − w)−2 + ∂W 5(w)(z − w)−1.

W 3(z)W 4(w) ∼
(

31− 5

2
λ(2 + c)

)
W 3(w)(z − w)−4

−5

6

(
− 16 + λ(2 + c)

)
∂W 3(w)(z − w)−3

+W 5(w)(z − w)−2 +

(
λ : L∂W 3 : −3

2
λ : (∂L)W 3 :

+
2

5
∂W 5 +

(
− 2

3
− 1

24
λ(1− c)

)
∂3W 3

)
(w)(z − w)−1.
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21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for m, n ≥ 0, and fields a, b, c ,

a ◦r (b ◦s c) = b ◦s (a ◦r c) +
r∑

i=0

(
r

i

)
(a ◦i b) ◦r+s−i c.

OPEs on previous slides are a consequence of imposing these
relations for W i ,W j ,W k for i + j + k ≤ 9. (Here L = W 2).

Imposing them for all i , j , k uniquely determines OPE
W a(z)W b(w) for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring C[c , λ].

W(c, λ) is the universal enveloping VA (Kac-de Sole, 2005).
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22. Quotients of W(c , λ)

Regard W(c, λ) as a VA over ring C[c , λ] (Creutzig-L., 2014).

Each weight space is a free C[c , λ]-module.

Let I ⊂ C[c , λ] be a prime ideal.

Let W I (c , λ) be the quotient by VA ideal I · W I (c , λ).

W I (c , λ) is a VA over R = C[c , λ]/I . Weight spaces are free
R-modules, same rank as before.

W I (c , λ) is simple for a generic ideal I .

But for certain discrete families of ideals I , W I (c , λ) is not simple.

Let WI (c , λ) be simple quotient of W I (c , λ) by the maximal
proper ideal graded by conformal weight.
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23. Classification of VAs of type W(2, 3, . . . ,N)

Thm: (L, 2017) Suppose W is a simple VA of central charge c
such that:

• W generated by Virasoro field L and a weight 3 primary field W 3.

• Setting W 2 = L and W i = (W 3) ◦1 W i−1 for i ≥ 4, the fields
W i ,W j for i + j ≤ 7 satisfy previous OPEs.

Then W is strongly generated by {L,W i | i ≥ 3} and is a quotient
WI (c , λ) for some I ⊂ C[c , λ].

Applies to all algebras of type W(2, 3, . . . ,N) satisfying above
hypotheses.

Cor: For each N ≥ 3, there are finitely many distinct 1-parameter
VAs of type Wc(2, 3, . . . ,N).
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24. Concluding remarks

Conj: Wk(sln, fprin) corresponds to ideal In ⊂ C[c , λ] generated by

λ =
32(n − 1)(n + 1)

5(n − 2)(3n2 − n − 2 + c(n + 2))
.

Verified for n ≤ 7.

We have found many interesting families of principal ideals
I ⊂ C[c , λ] such that WI (c , λ) is of type Wc(2, 3, . . . ,N).

Ex: There is a VA of type Wc(2, 3, 4, 5, 6, 7) corresponding to
ideal I with generator

12288+2048c+9600λ−2480cλ−200c2λ+1875λ2+3275cλ2+250c2λ2.

Conj: For all I such that WI (c , λ) is of type Wc(2, 3, . . . ,N) for
some N, variety V (I ) ⊂ C2 is a rational curve.
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