Introduction to Vertex Algebras and a
 Classification Problem

Andrew Linshaw
University of Denver

August 3, 2017

1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.
A vertex algebra is a complex vector \mathcal{V} with product: $a b:$,
generally nonassociative, noncommutative.
Unit 1, derivation ∂.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n]$.
Graded character $\chi \nu(q)=q^{-c / 24} \sum_{n \geq 0} \operatorname{dim}(\mathcal{V}[n]) q^{n}$.

1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.
A vertex algebra is a complex vector \mathcal{V} with product : $a b:$,
generally nonassociative, noncommutative.
Unit 1, derivation ∂.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n]$.
Graded character $\chi \nu(q)=q^{-c / 24} \sum_{n \geq 0} \operatorname{dim}(\mathcal{V}[n]) q^{n}$.

1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.
A vertex algebra is a complex vector \mathcal{V} with product : $a b:$, generally nonassociative, noncommutative.

Unit 1, derivation ∂.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n]$.
Graded character $\chi \nu(q)=q^{-c / 24} \sum_{n \geq 0} \operatorname{dim}(\nu[n]) q^{n}$.

1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.
A vertex algebra is a complex vector \mathcal{V} with product : $a b$:, generally nonassociative, noncommutative.

Unit 1, derivation ∂.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n]$.
Graded character $\chi \mathcal{V}(q)=q^{-c / 24} \sum_{n \geq 0} \operatorname{dim}(\mathcal{V}[n]) q^{n}$.

1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.
A vertex algebra is a complex vector \mathcal{V} with product : $a b$:, generally nonassociative, noncommutative.

Unit 1, derivation ∂.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n]$.
Graded character $\chi \nu(q)=q^{-c / 24} \sum_{n \geq 0} \operatorname{dim}(\mathcal{\nu}[n]) q^{n}$.

1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.
A vertex algebra is a complex vector \mathcal{V} with product : $a b$:, generally nonassociative, noncommutative.

Unit 1, derivation ∂.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n]$.
Graded character $\chi \mathcal{V}(q)=q^{-c / 24} \sum_{n \geq 0} \operatorname{dim}(\mathcal{V}[n]) q^{n}$.

2. Examples and constructions

Affine vertex algebra $V^{k}(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g}.

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.
Simple quotient $V_{k}(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$-module.
Lattice vertex algebra V_{L}, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.
Standard ways to construct new VAs from old ones: orbifold, coset, extension, cohomology.

2. Examples and constructions

Affine vertex algebra $V^{k}(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g}.

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.
Simple quotient $V_{k}(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$-module.
Lattice vertex algebra V_{L}, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.
Standard ways to construct new VAs from old ones: orbifold, coset, extension, cohomology.

2. Examples and constructions

Affine vertex algebra $V^{k}(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g}.

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.
Simple quotient $V_{k}(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$-module.
Lattice vertex algebra V_{L}, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.
Standard ways to construct new VAs from old ones: orbifold, coset, extension, cohomology.

2. Examples and constructions

Affine vertex algebra $V^{k}(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g}.

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.
Simple quotient $V_{k}(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$-module.
Lattice vertex algebra V_{L}, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.
Standard ways to construct new VAs from old ones: orbifold, coset, extension, cohomology.

2. Examples and constructions

Affine vertex algebra $V^{k}(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g}.

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.
Simple quotient $V_{k}(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$-module.
Lattice vertex algebra V_{L}, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.
Standard ways to construct new VAs from old ones: orbifold, coset, extension, cohomology.

2. Examples and constructions

Affine vertex algebra $V^{k}(\mathfrak{g})$ at level $k \in \mathbb{C}$ is associated to a simple, finite-dimensional Lie algebra \mathfrak{g}.

Module over affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$.
Simple quotient $V_{k}(\mathfrak{g})$ is irreducible as a $\hat{\mathfrak{g}}$-module.
Lattice vertex algebra V_{L}, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.
Standard ways to construct new VAs from old ones: orbifold, coset, extension, cohomology.

3. A spectacular example

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}$

Graded character

$$
\chi_{v a}(q)=1+196884 q^{2}+21493760 q^{3}+\cdots=j(\tau)-744 .
$$

$q=e^{2 \pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H}=\{x+y i \mid y>0\}$
$j(\tau)$ is the classical j-function. Invariant under $S L_{2}(\mathbb{Z})$ action

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\tau)=\frac{a \tau+b}{c \tau+d} .
$$

3. A spectacular example

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).
Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}$.

Graded character

$$
\chi_{V \sharp}(q)=1+196884 q^{2}+21493760 q^{3}+\cdots=j(\tau)-744 .
$$

\square $j(\tau)$ is the classical j-function. Invariant under $S L_{2}(\mathbb{Z})$ action

3. A spectacular example

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).
Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}$.

Graded character

$$
\chi_{V \sharp}(q)=1+196884 q^{2}+21493760 q^{3}+\cdots=j(\tau)-744 .
$$

$j(\tau)$ is the classical j-function. Invariant under $S L_{2}(\mathbb{Z})$ action

3. A spectacular example

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).
Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}$.

Graded character

$$
\chi_{V \sharp}(q)=1+196884 q^{2}+21493760 q^{3}+\cdots=j(\tau)-744 .
$$

$q=e^{2 \pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H}=\{x+y i \mid y>0\}$.
$j(\tau)$ is the classical j-function. Invariant under $S L_{2}(\mathbb{Z})$ action

3. A spectacular example

Moonshine module V^{\natural} (Frenkel, Lepowsky, Meurman, 1988).
Automorphism group is the Monster simple finite group of order $2^{45} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53}$.

Graded character

$$
\chi_{V^{\natural}}(q)=1+196884 q^{2}+21493760 q^{3}+\cdots=j(\tau)-744 .
$$

$q=e^{2 \pi i \tau}$, where τ lies in the upper half-plane $\mathbb{H}=\{x+y i \mid y>0\}$.
$j(\tau)$ is the classical j-function. Invariant under $S L_{2}(\mathbb{Z})$ action

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\tau)=\frac{a \tau+b}{c \tau+d}
$$

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

$$
a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in \operatorname{End}{ }^{\prime}(V)\left[\left[z, z^{-1}\right]\right]
$$

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End $(V) \subset Q O(V)$ subspace of constant maps.
End (V) an associative algebra with a unit 1.
Question: Does this extend to an algebraic structures on $, Q, Q(V)$?

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End $(V) \subset Q O(V)$ subspace of constant maps.
End (V) an associative algebra with a unit 1.

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End ${ }^{\prime}(V) \subset Q O^{\prime}(V)$ subspace of constant maps.
End (V) an associative algebra with a unit 1.

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

$$
a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in E n d(V)\left[\left[z, z^{-1}\right]\right]
$$

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End $(V) \subset Q O(V)$ subspace of constant maps.
$\operatorname{End}(V)$ an associative algebra with a unit 1.

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

$$
a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]
$$

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End $(V) \subset Q O(V)$ subspace of constant maps.
End (V) an associative algebra with a unit 1.

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

$$
a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in E n d(V)\left[\left[z, z^{-1}\right]\right]
$$

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End $(V) \subset Q O(V)$ subspace of constant maps.
$\operatorname{End}(V)$ an associative algebra with a unit 1.

4. Quantum operators

V a complex vector space.
A quantum operator is a linear map $a: V \rightarrow V((z))$, where $V((z))$ is the space of formal Laurent series with coefficients in V.
$Q O(V)$ the space of quantum operators.
Can represent $a \in Q O(V)$ as a formal power series

$$
a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in E n d(V)\left[\left[z, z^{-1}\right]\right]
$$

such that for any fixed $v \in V, a(n) v=0$ for $n \gg 0$.
End $(V) \subset Q O(V)$ subspace of constant maps.
$\operatorname{End}(V)$ an associative algebra with a unit 1.
Question: Does this extend to an algebraic structure on $Q O(V) ?$

5. Algebraic structure on $Q O(V)$

Pointwise product $(a b)(z)=a(z) b(z)$ is not well defined.
Wick's procedure: Write $a(z)=a_{-}(z)+a_{+}(z)$, where

Fix a vector $v \in V$ and $b \in Q O(V)$.
$b(z) a_{+}(z) v \in V((z))$, since $a_{+}(z) v$ is a finite sum.
$a_{-}(z) b(z) v \in V((z))$ since $b(z) v \in V((z))$ and $a_{-}(z)$ is a Taylor
series.

5. Algebraic structure on $Q O(V)$

Pointwise product $(a b)(z)=a(z) b(z)$ is not well defined.
Wick's procedure: Write $a(z)=a_{-}(z)+a_{+}(z)$, where

$$
a_{-}(z)=\sum_{n<0} a(n) z^{-n-1}, \quad a_{+}(z)=\sum_{n \geq 0} a(n) z^{-n-1}
$$

Fix a vector $v \in V$ and $b \in Q O(V)$.
$b(z) a+(z) v \in V((z))$, since $a_{+}(z) v$ is a finite sum.
$a_{-}(z) b(z) v \in V((z))$ since $b(z) v \in V((z))$ and $a_{-}(z)$ is a Taylor
series.

5. Algebraic structure on $Q O(V)$

Pointwise product $(a b)(z)=a(z) b(z)$ is not well defined.
Wick's procedure: Write $a(z)=a_{-}(z)+a_{+}(z)$, where

$$
a_{-}(z)=\sum_{n<0} a(n) z^{-n-1}, \quad a_{+}(z)=\sum_{n \geq 0} a(n) z^{-n-1} .
$$

Fix a vector $v \in V$ and $b \in Q O(V)$.
$b(z) a_{+}(z) v \in V((z))$, since $a_{+}(z) v$ is a finite sum.
$a_{-}(z) b(z) v \in V((z))$ since $b(z) v \in V((z))$ and $a_{-}(z)$ is a Taylor
series.

5. Algebraic structure on $Q O(V)$

Pointwise product $(a b)(z)=a(z) b(z)$ is not well defined.
Wick's procedure: Write $a(z)=a_{-}(z)+a_{+}(z)$, where

$$
a_{-}(z)=\sum_{n<0} a(n) z^{-n-1}, \quad a_{+}(z)=\sum_{n \geq 0} a(n) z^{-n-1}
$$

Fix a vector $v \in V$ and $b \in Q O(V)$.
$b(z) a_{+}(z) v \in V((z))$, since $a_{+}(z) v$ is a finite sum.
$a_{-}(z) b(z) v \in V((z))$ since $b(z) v \in V((z))$ and $a_{-}(z)$ is a Taylor series.

5. Algebraic structure on $Q O(V)$

Pointwise product $(a b)(z)=a(z) b(z)$ is not well defined.
Wick's procedure: Write $a(z)=a_{-}(z)+a_{+}(z)$, where

$$
a_{-}(z)=\sum_{n<0} a(n) z^{-n-1}, \quad a_{+}(z)=\sum_{n \geq 0} a(n) z^{-n-1} .
$$

Fix a vector $v \in V$ and $b \in Q O(V)$.
$b(z) a_{+}(z) v \in V((z))$, since $a_{+}(z) v$ is a finite sum.
$a_{-}(z) b(z) v \in V((z))$ since $b(z) v \in V((z))$ and $a_{-}(z)$ is a Taylor series.

6. The Wick product

By definition, $a_{-}(z) b(z)+b(z) a_{+}(z) \in Q O(V)$.
For all $a, b \in Q O(V)$, define Wick product : $a b:=a-b+b a_{+}$
For all $a, b \in \operatorname{End}(V), a=a-$, so $: a b:=a b$.

Identity map $1 \in \operatorname{End}(V)$ is a unit in $Q O(V)$. For all $a \in Q O(V)$,

$$
1 a:=a=: a 1
$$

Nonassociative in general.
By convention, : $a b c:=: a(: b c:):$.

6. The Wick product

By definition, $a_{-}(z) b(z)+b(z) a_{+}(z) \in Q O(V)$.
For all $a, b \in Q O(V)$, define Wick product : $a b:=a_{-} b+b a_{+}$.
For all $a, b \in \operatorname{End}(V), a=a_{-}$, so $: a b:=a b$.
Identity map $1 \in \operatorname{End}(V)$ is a unit in $Q O(V)$. For all $a \in Q O(V)$,

Nonassociative in general.
By convention, : $a b c:=: a(: b c:):$

6. The Wick product

By definition, $a_{-}(z) b(z)+b(z) a_{+}(z) \in Q O(V)$.
For all $a, b \in Q O(V)$, define Wick product : $a b:=a_{-} b+b a_{+}$.
For all $a, b \in \operatorname{End}(V), a=a_{-}$, so $: a b:=a b$.
Identity map $1 \in \operatorname{End}(V)$ is a unit in $Q O(V)$. For all $a \in Q O(V)$,

Nonassociative in general.
By convention, : $a b c:=: a(: b c:):$

6. The Wick product

By definition, $a_{-}(z) b(z)+b(z) a_{+}(z) \in Q O(V)$.
For all $a, b \in Q O(V)$, define Wick product : $a b:=a_{-} b+b a_{+}$.
For all $a, b \in \operatorname{End}(V), a=a_{-}$, so $: a b:=a b$.
Identity map $1 \in \operatorname{End}(V)$ is a unit in $Q O(V)$. For all $a \in Q O(V)$,

$$
: 1 a:=a=: a 1: .
$$

Nonassociative in general.

6. The Wick product

By definition, $a_{-}(z) b(z)+b(z) a_{+}(z) \in Q O(V)$.
For all $a, b \in Q O(V)$, define Wick product : $a b:=a_{-} b+b a_{+}$.
For all $a, b \in \operatorname{End}(V), a=a_{-}$, so $: a b:=a b$.
Identity map $1 \in \operatorname{End}(V)$ is a unit in $Q O(V)$. For all $a \in Q O(V)$,

$$
: 1 a:=a=: a 1:
$$

Nonassociative in general.

By convention,
$a b c:=: a(: b c:)$

6. The Wick product

By definition, $a_{-}(z) b(z)+b(z) a_{+}(z) \in Q O(V)$.
For all $a, b \in Q O(V)$, define Wick product : $a b:=a_{-} b+b a_{+}$.
For all $a, b \in \operatorname{End}(V), a=a_{-}$, so $: a b:=a b$.
Identity map $1 \in \operatorname{End}(V)$ is a unit in $Q O(V)$. For all $a \in Q O(V)$,

$$
: 1 a:=a=: a 1:
$$

Nonassociative in general.
By convention, : abc:=:a(:bc:) :.

7. Circle products

Family of bilinear operations \circ_{n} on $Q O(V)$, for all $n \in \mathbb{Z}$.
For $n \geq 0$, define

In particular \circ_{-1} coincides with the Wick product.
For $n \geq 0$, define

$$
a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)] .
$$

Here Res_{z} means the coefficient of z^{-1}

7. Circle products

Family of bilinear operations \circ_{n} on $Q O(V)$, for all $n \in \mathbb{Z}$.
For $n \geq 0$, define

$$
a(z) \circ_{-n-1} b(z)=\frac{1}{n!}\left(: \partial^{n} a(z)\right) b(z):, \quad \partial=\frac{d}{d z}
$$

In particular \circ_{-1} coincides with the Wick product.

For $n \geq 0$, define

$$
a(w) o_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)] .
$$

Here Res_{z} means the coefficient of z^{-1}

7. Circle products

Family of bilinear operations \circ_{n} on $Q O(V)$, for all $n \in \mathbb{Z}$.
For $n \geq 0$, define

$$
a(z) \circ_{-n-1} b(z)=\frac{1}{n!}\left(: \partial^{n} a(z)\right) b(z):, \quad \partial=\frac{d}{d z} .
$$

In particular \circ_{-1} coincides with the Wick product.
For $n \geq 0$, define

$$
a(w) o_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)] .
$$

Here Res_{z} means the coefficient of z^{-1}

7. Circle products

Family of bilinear operations \circ_{n} on $Q O(V)$, for all $n \in \mathbb{Z}$.
For $n \geq 0$, define

$$
a(z) \circ_{-n-1} b(z)=\frac{1}{n!}\left(: \partial^{n} a(z)\right) b(z):, \quad \partial=\frac{d}{d z} .
$$

In particular \circ_{-1} coincides with the Wick product.
For $n \geq 0$, define

$$
a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)] .
$$

Here Res_{z} means the coefficient of z^{-1}.

8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset Q O(V)$ containing 1 and closed under all \circ_{n}.
$\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a=:(\partial a) 1:=a \circ_{-2} 1$.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements $a, b \in Q O(V)$ are local if for some $N \geq 0$

$$
(z-w)^{N}[a(z), b(w)]=0 .
$$

Recall $a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$, for $n \geq 0$.
So $a o_{n} b=0$ for $n \geq N$

8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset Q O(V)$ containing 1 and closed under all \circ_{n}.
$\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a=:(\partial a) 1:=a \circ_{-2} 1$.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements $a, b \in Q O(V)$ are local if for some $N \geq 0$

$$
(z-w)^{N N}[a(z), b(w)]=0 .
$$

Recall $a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$, for $n \geq 0$.
So $a o_{n} b=0$ for $n \geq N$.

8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset Q O(V)$ containing 1 and closed under all \circ_{n}.
$\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a=:(\partial a) 1:=a \circ_{-2} 1$.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements $a, b \in Q O(V)$ are local if for some $N \geq 0$

$$
(z-w)^{N}[a(z), b(w)]=0 .
$$

Recall $a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$, for $n \geq 0$.
So $a \circ_{n} b=0$ for $n \geq N$.

8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset Q O(V)$ containing 1 and closed under all \circ_{n}.
$\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a=:(\partial a) 1:=a \circ_{-2} 1$.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements $a, b \in Q O(V)$ are local if for some $N \geq 0$

$$
(z-w)^{N}[a(z), b(w)]=0 .
$$

Recall $a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$, for $n \geq 0$.
So $a o_{n} b=0$ for $n \geq N$.

8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset Q O(V)$ containing 1 and closed under all \circ_{n}.
$\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a=:(\partial a) 1:=a \circ_{-2} 1$.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements $a, b \in Q O(V)$ are local if for some $N \geq 0$

$$
(z-w)^{N}[a(z), b(w)]=0 .
$$

Recall $a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$, for $n \geq 0$.
So $a \circ_{n} b=0$ for $n \geq N$.

8. Quantum operator algebras

Def: A quantum operator algebra (QOA) is a subspace $\mathcal{A} \subset Q O(V)$ containing 1 and closed under all \circ_{n}.
$\partial(\mathcal{A}) \subset \mathcal{A}$ since $\partial a=:(\partial a) 1:=a \circ_{-2} 1$.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements $a, b \in Q O(V)$ are local if for some $N \geq 0$

$$
(z-w)^{N}[a(z), b(w)]=0 .
$$

Recall $a(w) \circ_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$, for $n \geq 0$.
So $a \circ_{n} b=0$ for $n \geq N$.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A $V A \mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.
VA generated by S is spanned by all words in the elements of S and o_{n}, for $n \in \mathbb{Z}$.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A $V A \mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.
VA generated by S is spanned by all words in the elements of S and \circ_{n}, for $n \in \mathbb{Z}$.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A $V A \mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set 5 of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.
VA generated by S is spanned by all words in the elements of S and o_{n}, for $n \in \mathbb{Z}$.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A $V A \mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.
VA generated by S is spanned by all words in the elements of S and o_{n}, for $n \in \mathbb{Z}$.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A $V A \mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A $V A \mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.
VA generated by S is spanned by all words in the elements of S and o_{n}, for $n \in \mathbb{Z}$.

9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise local.

A VA $\mathcal{V} \subset Q O(V)$ for some V is meaningful independently of V.
Without loss of generality, can take $V \cong \mathcal{V}$ as vector spaces.
Lemma: (Dong) Let $a, b, c \in Q O(V)$, and suppose a, b, c are pairwise local. Then a and $b \circ_{n} c$ are local for all $n \in \mathbb{Z}$.

We often begin with a set S of elements of $Q O(V)$ and check pairwise locality.

If S has one element a, need to check locality of a with itself.
VA generated by S is spanned by all words in the elements of S and o_{n}, for $n \in \mathbb{Z}$.

10. Operator product expansion

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0} a(w) \circ_{n} b(w)(z-w)^{-n-1}+: a(z) b(w):
$$

where: $a(z) b(w):=a_{-}(z) b(w)+b(w) a_{+}(z)$
Expansion of meromorphic function with poles along $z=w$.
$a(w) \circ_{n} b(w)$ is pole of order $n+1$.
$a^{\prime}(z) b^{\prime}(w)$: is regular part.
Often write

10. Operator product expansion

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0} a(w) \circ_{n} b(w)(z-w)^{-n-1}+: a(z) b(w):
$$

where : $a(z) b(w):=a_{-}(z) b(w)+b(w) a_{+}(z)$
Expansion of meromorphic function with poles along $z=w$.
$a(w) \circ_{n} b(w)$ is pole of order $n+1$.
$a(z) b(w)$: is regular part.
Often write

10. Operator product expansion

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0} a(w) \circ_{n} b(w)(z-w)^{-n-1}+: a(z) b(w):
$$

where : $a(z) b(w):=a_{-}(z) b(w)+b(w) a_{+}(z)$
Expansion of meromorphic function with poles along $z=w$.
$a(w) \circ_{n} b(w)$ is pole of order $n+1$.
$a(z) b(w)$: is regular part.
Often write

10. Operator product expansion

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0} a(w) \circ_{n} b(w)(z-w)^{-n-1}+: a(z) b(w):
$$

where : $a(z) b(w):=a_{-}(z) b(w)+b(w) a_{+}(z)$
Expansion of meromorphic function with poles along $z=w$.
$a(w) \circ_{n} b(w)$ is pole of order $n+1$.
: $a(z) b(w)$: is regular part.
Often write

10. Operator product expansion

Thm: Let \mathcal{V} be a VA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0} a(w) \circ_{n} b(w)(z-w)^{-n-1}+: a(z) b(w):
$$

where : $a(z) b(w):=a_{-}(z) b(w)+b(w) a_{+}(z)$
Expansion of meromorphic function with poles along $z=w$.
$a(w) \circ_{n} b(w)$ is pole of order $n+1$.
: $a(z) b(w)$: is regular part.
Often write

$$
a(z) b(w) \sim \sum_{n \geq 0} a(w) \circ_{n} b(w)(z-w)^{-n-1}
$$

where \sim means equal modulo regular part.

11. Operator product expansion, cont'd

Often, a VA is presented by giving generators and OPE relations.
Ex: Affine VA $V^{k}(g)$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g}.
Then $V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying
$\left.X^{\xi_{i}}(z) X^{\xi_{i}}(w) \sim k^{\prime} \xi_{i}, \xi_{j}\right\rangle(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1}$

Fact: $V^{k}(\mathfrak{g})$ has a basis consisting of monomials

$V^{k}(\mathfrak{g})$ linearly isomorphic to polynomial algebra on
\square

11. Operator product expansion, cont'd

Often, a VA is presented by giving generators and OPE relations.
Ex: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g}.
Then $V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying $X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left\langle\xi_{i}, \xi_{j}\right\rangle(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1}$

Fact: $V^{k}(\mathfrak{g})$ has a basis consisting of monomials

11. Operator product expansion, cont'd

Often, a VA is presented by giving generators and OPE relations.
Ex: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g}.
Then $V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying

$$
X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left\langle\xi_{i}, \xi_{j}\right\rangle(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1} .
$$

Fact: $V^{k}(\mathfrak{g})$ has a basis consisting of monomials

11. Operator product expansion, cont'd

Often, a VA is presented by giving generators and OPE relations.
Ex: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g}.
Then $V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying

$$
X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left\langle\xi_{i}, \xi_{j}\right\rangle(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1} .
$$

Fact: $V^{k}(\mathfrak{g})$ has a basis consisting of monomials

$$
\begin{gathered}
: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{r_{1}}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}}^{n}} X^{\xi_{n}}: \\
k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
\end{gathered}
$$

11. Operator product expansion, cont'd

Often, a VA is presented by giving generators and OPE relations.
Ex: Affine VA $V^{k}(\mathfrak{g})$. Let ξ_{1}, \ldots, ξ_{n} be a basis for \mathfrak{g}.
Then $V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying

$$
X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left\langle\xi_{i}, \xi_{j}\right\rangle(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1} .
$$

Fact: $V^{k}(\mathfrak{g})$ has a basis consisting of monomials

$$
\begin{gathered}
: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{r_{1}}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}}^{n}} X^{\xi_{n}}: \\
k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
\end{gathered}
$$

$V^{k}(\mathfrak{g})$ linearly isomorphic to polynomial algebra on $\left\{\partial^{k} X^{\xi_{i}} \mid i=1, \ldots, n, k \geq 0\right\}$.

12. Strong and free generations

We say that a VA \mathcal{V} is strongly generated by fields $\left\{\alpha_{i}(z) \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{a_{1}, a_{2}, \ldots\right\}$ if
forms a basis of \mathcal{V}, where

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on
$\partial^{k} \alpha_{i}$ for $i=1,2, \ldots$, and $k \geq 0$.
Ex: $V^{k}(\mathfrak{g})$ is freely generated by $X^{\xi_{i}}$.

12. Strong and free generations

We say that a VA \mathcal{V} is strongly generated by fields $\left\{\alpha_{i}(z) \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if
forms a basis of \mathcal{V}, where

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on
\square
Ex: $V^{k}(g)$ is freely generated by $\boldsymbol{X}^{\xi_{i}}$

12. Strong and free generations

We say that a VA \mathcal{V} is strongly generated by fields $\left\{\alpha_{i}(z) \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if

$$
: \partial^{k_{1}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{r_{1}}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{1}^{n}} \alpha_{i_{n}} \cdots \partial^{k_{r_{n}}^{n}} \alpha_{i_{n}}:
$$

forms a basis of \mathcal{V}, where

$$
i_{1}<\cdots<i_{n}, \quad k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
$$

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^{k} \alpha_{i}$ for $i=1,2, \ldots$, and $k \geq 0$.

12. Strong and free generations

We say that a VA \mathcal{V} is strongly generated by fields $\left\{\alpha_{i}(z) \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if

$$
: \partial^{k_{1}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{r_{1}}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{1}^{n}} \alpha_{i_{n}} \cdots \partial^{k_{r_{n}}^{n}} \alpha_{i_{n}}
$$

forms a basis of \mathcal{V}, where

$$
i_{1}<\cdots<i_{n}, \quad k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
$$

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^{k} \alpha_{i}$ for $i=1,2, \ldots$, and $k \geq 0$.

Ex: $V^{k}(\mathfrak{g})$ is freely generated by $X^{\xi_{i}}$.

13. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa .
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying $L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1}$ $\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂. Constant c is called the central charge.

13. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa .
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying

$\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂.

13. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa .
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying

$$
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} .
$$

$\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂.

13. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa .
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying

$$
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} .
$$

$\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂.
Constant c is called the central charge.

14. Conformal structure, cont'd

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_{0}.

If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2.
Ex: $V / k(g)$ has Virasoro element

Central charge $c=\frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.
For each $X^{\xi_{i}}$,

14. Conformal structure, cont'd

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_{0}.

If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}
$$

Note that L always has weight 2 .
Ex: $V^{k}(g)$ has Virasoro element

Central charge $c=\frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.
For each χ^{ξ},

14. Conformal structure, cont'd

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_{0}.

If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2 .
Ex: $V^{k}(\mathfrak{g})$ has Virasoro element

$$
L^{\mathfrak{g}}=\frac{1}{k+h^{\vee}} \sum_{i=1}^{n}: X^{\xi_{i}} X^{\xi_{i}^{\prime}}:, \quad k \neq-h^{\vee} .
$$

Central charge $c=\frac{k \operatorname{dim}(\mathrm{~g})}{k+h^{v}}$ where h^{\vee} is dual Coxeter number.
For each $X^{\xi_{i}}$,

14. Conformal structure, cont'd

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_{0}.

If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}
$$

Note that L always has weight 2.
Ex: $V^{k}(\mathfrak{g})$ has Virasoro element

$$
L^{\mathfrak{g}}=\frac{1}{k+h^{\vee}} \sum_{i=1}^{n}: X^{\xi_{i}} X^{\xi_{i}^{\prime}}:, \quad k \neq-h^{\vee}
$$

Central charge $c=\frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.
For each $X^{\xi_{i}}$,

14. Conformal structure, cont'd

Conformal weight grading on \mathcal{V} is the eigenspace decomposition under L_{0}.

If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}
$$

Note that L always has weight 2.
Ex: $V^{k}(\mathfrak{g})$ has Virasoro element

$$
L^{\mathfrak{g}}=\frac{1}{k+h^{\vee}} \sum_{i=1}^{n}: X^{\xi_{i}} X^{\xi_{i}^{\prime}}:, \quad k \neq-h^{\vee}
$$

Central charge $c=\frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.
For each $X^{\xi_{i}}$,

$$
L^{\mathfrak{g}}(z) X^{\xi_{i}}(w) \sim X^{\xi_{i}}(w)(z-w)^{-2}+\partial X^{\xi_{i}}(w)(z-w)^{-1}
$$

15. Zamolodchikov \mathcal{W}_{3}-algebra

\mathcal{W}_{3}^{c} is freely generated by L, W satisfying:

$$
L(z) W(w) \sim 3 W(w)(z-w)^{-2}+\partial W(w)(z-w)^{-1}
$$

$$
W(z) W(w) \sim \frac{c}{3}(z-w)^{-6}+2 L(w)(z-w)^{-4}+\partial L(w)(z-w)^{-3}
$$

15. Zamolodchikov \mathcal{W}_{3}-algebra

\mathcal{W}_{3}^{c} is freely generated by L, W satisfying:

$$
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1}
$$

15. Zamolodchikov \mathcal{W}_{3}-algebra

\mathcal{W}_{3}^{c} is freely generated by L, W satisfying:

$$
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1}
$$

$$
L(z) W(w) \sim 3 W(w)(z-w)^{-2}+\partial W(w)(z-w)^{-1}
$$

15. Zamolodchikov \mathcal{W}_{3}-algebra

\mathcal{W}_{3}^{c} is freely generated by L, W satisfying:

$$
\begin{aligned}
& L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} \\
& L(z) W(w) \sim 3 W(w)(z-w)^{-2}+\partial W(w)(z-w)^{-1} \\
& \begin{aligned}
W(z) W(w) & \sim \frac{c}{3}(z-w)^{-6}+2 L(w)(z-w)^{-4}+\partial L(w)(z-w)^{-3} \\
& +\left(\frac{32}{22+5 c}: L L:+\frac{3(c-2)}{2(22+5 c)} \partial^{2} L\right)(z-w)^{-2} \\
& +\left(\frac{32}{22+5 c}:(\partial L) L:+\frac{c-2}{3(22+5 c)} \partial^{3} L\right)(z-w)^{-1}
\end{aligned}
\end{aligned}
$$

15. Zamolodchikov \mathcal{W}_{3}-algebra

\mathcal{W}_{3}^{c} is freely generated by L, W satisfying:

$$
\begin{aligned}
& L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} \\
& L(z) W(w) \sim 3 W(w)(z-w)^{-2}+\partial W(w)(z-w)^{-1} \\
& \begin{aligned}
W(z) W(w) & \sim \frac{c}{3}(z-w)^{-6}+2 L(w)(z-w)^{-4}+\partial L(w)(z-w)^{-3} \\
& +\left(\frac{32}{22+5 c}: L L:+\frac{3(c-2)}{2(22+5 c)} \partial^{2} L\right)(z-w)^{-2} \\
& +\left(\frac{32}{22+5 c}:(\partial L) L:+\frac{c-2}{3(22+5 c)} \partial^{3} L\right)(z-w)^{-1}
\end{aligned}
\end{aligned}
$$

\mathcal{W}_{3}^{c} is of type $\mathcal{W}(2,3)$, and is nonlinear.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.
If f is the principal nilpotent $f_{\text {prin }}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right), d_{1}, \ldots, d_{r}$ the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$
For $n \geq 4, \mathcal{W}^{k}\left(s l_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights
2 and 3 fields.
OPE algebra of $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ very complicated, only known for $n \leq 5$.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.

$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(5 l_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$
For $n \geq 4, \mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights
2 and 3 fields.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.
If f is the principal nilpotent $f_{\text {prin }}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right), d_{1}, \ldots, d_{r}$ the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$
For $n \geq 4, \mathcal{W}^{k}\left(s l_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights
2 and 3 fields.
OPE
algebra of $\mathcal{W}^{k}\left(s l_{n}, f_{\text {prin }}\right)$ very complicated, only known for $n \leq 5$.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.
If f is the principal nilpotent $f_{\text {prin }}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right), d_{1}, \ldots, d_{r}$ the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(5_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$
For $n \geq 4, \mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights
2 and 3 fields.

OPE algebra of $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ very complicated, only known for $n \leq 5$.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.
If f is the principal nilpotent $f_{\text {prin }}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right), d_{1}, \ldots, d_{r}$ the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$.
For $n \geq 4, \mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights 2 and 3 fields.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.
If f is the principal nilpotent $f_{\text {prin }}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right), d_{1}, \ldots, d_{r}$ the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$.
For $n \geq 4, \mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights 2 and 3 fields.

OPE a
$n \leq 5$.

16. Affine \mathcal{W}-algebras

For a simple Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$, there is a VA $\mathcal{W}^{k}(\mathfrak{g}, f)$ called an affine \mathcal{W}-algebra.

Construction involves quantum Drinfeld-Solokov reduction.
If f is the principal nilpotent $f_{\text {prin }}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right), d_{1}, \ldots, d_{r}$ the degrees of the generators $\mathcal{Z}(\mathfrak{g})$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is freely generated of type $\mathcal{W}(2,3, \ldots, n)$.
$\mathcal{W}^{k}\left(\mathfrak{s l}_{3}, f_{\text {prin }}\right) \cong \mathcal{W}_{3}^{c}$ with $c=2-\frac{24(k+2)^{2}}{k+3}$.
For $n \geq 4, \mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ is generated (not strongly) by the weights 2 and 3 fields.

OPE algebra of $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ very complicated, only known for $n \leq 5$.

17. Other algebras of type $\mathcal{W}(2,3, \ldots, N)$

There are many other algebras of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
Ex: Natural embedding $\mathfrak{g l}_{n} \rightarrow \mathfrak{s l}_{n+1}$ induces homomorphism

$$
V^{k}\left(\mathfrak{g l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n+1}\right) .
$$

Let $\mathcal{C}^{k}(n)$ denote the commutant

$$
\operatorname{Com}\left(V^{k}\left(\mathrm{~g}_{n}\right), V^{k}\left(5 l_{n+1}\right)\right),
$$

which has Virasoro element $L^{\mathfrak{s l}_{n+1}}-L^{\mathfrak{g l}_{n}}$.
Thm: $(L, 2017) C^{k}(n)$ is of type $\mathcal{W}\left(2,3, \ldots, n^{2}+3 n+1\right)$.
Strongly, but not freely generated by these fields, and generated by the weights 2,3 fields.

17. Other algebras of type $\mathcal{W}(2,3, \ldots, N)$

There are many other algebras of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
Ex: Natural embedding $\mathfrak{g l}_{n} \rightarrow \mathfrak{s l}_{n+1}$ induces homomorphism

$$
V^{k}\left(\mathfrak{g l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n+1}\right) .
$$

Let $\mathcal{C}^{k}(n)$ denote the commutant $\operatorname{Com}\left(V^{k}\left(g_{n}\right), V^{k}\left(s l_{n+1}\right)\right)$,
which has Virasoro element $L^{\mathfrak{s l}_{n+1}}-L^{\mathfrak{g l}_{n}}$.
Thm: $(L, 2017) C^{k}(n)$ is of type $\mathcal{W}\left(2,3, \ldots, n^{2}+3 n+1\right)$.
Strongly, but not freely generated by these fields, and generated by the weights 2,3 fields.

17. Other algebras of type $\mathcal{W}(2,3, \ldots, N)$

There are many other algebras of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
Ex: Natural embedding $\mathfrak{g l}_{n} \rightarrow \mathfrak{s l}_{n+1}$ induces homomorphism

$$
V^{k}\left(\mathfrak{g l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n+1}\right)
$$

Let $\mathcal{C}^{k}(n)$ denote the commutant

$$
\operatorname{Com}\left(V^{k}\left(\mathfrak{g l}_{n}\right), V^{k}\left(\mathfrak{s l}_{n+1}\right)\right)
$$

which has Virasoro element $L^{\mathfrak{s l}_{n+1}}-L^{\mathfrak{g l}_{n}}$.
Thm: $(\mathrm{L} ., 2017) \mathcal{C}^{k}(n)$ is of type $\mathcal{W}\left(2,3, \ldots, n^{2}+3 n+1\right)$.
Strongly, but not freely generated by these fields, and generated by the weights 2,3 fields.

17. Other algebras of type $\mathcal{W}(2,3, \ldots, N)$

There are many other algebras of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
Ex: Natural embedding $\mathfrak{g l}_{n} \rightarrow \mathfrak{s l}_{n+1}$ induces homomorphism

$$
V^{k}\left(\mathfrak{g l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n+1}\right)
$$

Let $\mathcal{C}^{k}(n)$ denote the commutant

$$
\operatorname{Com}\left(V^{k}\left(\mathfrak{g l}_{n}\right), V^{k}\left(\mathfrak{s l}_{n+1}\right)\right)
$$

which has Virasoro element $L^{\mathfrak{s l}_{n+1}}-L^{\mathfrak{g l}_{n}}$.
Thm: $(\mathrm{L} ., 2017) \mathcal{C}^{k}(n)$ is of type $\mathcal{W}\left(2,3, \ldots, n^{2}+3 n+1\right)$.

17. Other algebras of type $\mathcal{W}(2,3, \ldots, N)$

There are many other algebras of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
Ex: Natural embedding $\mathfrak{g l}_{n} \rightarrow \mathfrak{s l}_{n+1}$ induces homomorphism

$$
V^{k}\left(\mathfrak{g l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n+1}\right)
$$

Let $\mathcal{C}^{k}(n)$ denote the commutant

$$
\operatorname{Com}\left(V^{k}\left(\mathfrak{g l}_{n}\right), V^{k}\left(\mathfrak{s l}_{n+1}\right)\right)
$$

which has Virasoro element $L^{\mathfrak{s l}_{n+1}}-L^{\mathfrak{g l}_{n}}$.
Thm: $(\mathrm{L} ., 2017) \mathcal{C}^{k}(n)$ is of type $\mathcal{W}\left(2,3, \ldots, n^{2}+3 n+1\right)$.
Strongly, but not freely generated by these fields, and generated by the weights 2,3 fields.

18. Universal 2-parameter \mathcal{W}_{∞}-algebra

Thm: ($\mathrm{L}, 2017$) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2,3, \ldots \infty)$ with following properties:

- Generated by Virasoro field L of central charge c and a weight 3 primary field W^{3} such that

- $\mathcal{W}(c, \lambda)$ has \mathbb{Z}_{2}-action sending $W^{3} \mapsto-W^{3}$
- Setting

$\mathcal{W}(c, \lambda)$ is freely generated by the fields $\left\{L, W^{i} \mid i \geq 3\right\}$
- Structure constants are all polynomials in c and λ.
\square

18. Universal 2-parameter \mathcal{W}_{∞}-algebra

Thm: ($\mathrm{L}, 2017$) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2,3, \ldots \infty)$ with following properties:

- Generated by Virasoro field L of central charge c and a weight 3 primary field W^{3} such that

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+\cdots
$$

- $\mathcal{W}(c, \lambda)$ has \mathbb{Z}_{2}-action sending $W^{3} \mapsto-W^{3}$.

- Setting

$\mathcal{W}(c, \lambda)$ is freely generated by the fields $\left\{L, W^{i} \mid i \geq 3\right\}$

- Structure constants are all polynomials in c and λ.

18. Universal 2-parameter \mathcal{W}_{∞}-algebra

Thm: ($\mathrm{L}, 2017$) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2,3, \ldots \infty)$ with following properties:

- Generated by Virasoro field L of central charge c and a weight 3 primary field W^{3} such that

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+\cdots
$$

- $\mathcal{W}(c, \lambda)$ has \mathbb{Z}_{2}-action sending $W^{3} \mapsto-W^{3}$.
- Setting
$\mathcal{W}(c, \lambda)$ is freely generated by the fields $\left\{L, W^{i} \mid i \geq 3\right\}$
- Structure constants are all polynomials in c and λ.

18. Universal 2-parameter \mathcal{W}_{∞}-algebra

Thm: ($\mathrm{L}, 2017$) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2,3, \ldots \infty)$ with following properties:

- Generated by Virasoro field L of central charge c and a weight 3 primary field W^{3} such that

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+\cdots .
$$

- $\mathcal{W}(c, \lambda)$ has \mathbb{Z}_{2}-action sending $W^{3} \mapsto-W^{3}$.
- Setting

$$
W^{4}=\left(W^{3}\right) \circ_{1} W^{3}, \quad W^{n}=\left(W^{3}\right) \circ_{1} W^{n-1}, \quad n \geq 5
$$

$\mathcal{W}(c, \lambda)$ is freely generated by the fields $\left\{L, W^{i} \mid i \geq 3\right\}$.

- Structure constants are all polynomials in c and λ.

18. Universal 2-parameter \mathcal{W}_{∞}-algebra

Thm: ($\mathrm{L}, 2017$) There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2,3, \ldots \infty)$ with following properties:

- Generated by Virasoro field L of central charge c and a weight 3 primary field W^{3} such that

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+\cdots .
$$

- $\mathcal{W}(c, \lambda)$ has \mathbb{Z}_{2}-action sending $W^{3} \mapsto-W^{3}$.
- Setting

$$
W^{4}=\left(W^{3}\right) \circ_{1} W^{3}, \quad W^{n}=\left(W^{3}\right) \circ_{1} W^{n-1}, \quad n \geq 5
$$

$\mathcal{W}(c, \lambda)$ is freely generated by the fields $\left\{L, W^{i} \mid i \geq 3\right\}$.

- Structure constants are all polynomials in c and λ.

18. Universal 2-parameter \mathcal{W}_{∞}-algebra

Thm: $(\mathrm{L}, 2017)$ There exists a unique vertex algebra $\mathcal{W}(c, \lambda)$ of type $\mathcal{W}(2,3, \ldots \infty)$ with following properties:

- Generated by Virasoro field L of central charge c and a weight 3 primary field W^{3} such that

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+\cdots
$$

- $\mathcal{W}(c, \lambda)$ has \mathbb{Z}_{2}-action sending $W^{3} \mapsto-W^{3}$.
- Setting

$$
W^{4}=\left(W^{3}\right) \circ_{1} W^{3}, \quad W^{n}=\left(W^{3}\right) \circ_{1} W^{n-1}, \quad n \geq 5
$$

$\mathcal{W}(c, \lambda)$ is freely generated by the fields $\left\{L, W^{i} \mid i \geq 3\right\}$.

- Structure constants are all polynomials in c and λ.

Conjectured to exist by Gaberdiel-Gopakumar (2012).

19. Partial OPE algebra of $\mathcal{W}(c, \lambda)$

$$
\begin{gathered}
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} \\
L(z) W^{3}(w) \sim 3 W^{3}(w)(z-w)^{-2}+\partial W^{3}(w)(z-w)^{-1}
\end{gathered}
$$

19. Partial OPE algebra of $\mathcal{W}(c, \lambda)$

$$
\begin{gathered}
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} \\
L(z) W^{3}(w) \sim 3 W^{3}(w)(z-w)^{-2}+\partial W^{3}(w)(z-w)^{-1}
\end{gathered}
$$

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+2 L(w)(z-w)^{-4}+\partial L(w)(z-w)^{-3}
$$

$$
+W^{4}(w)(z-w)^{-2}+\left(\frac{1}{2} \partial W^{4}-\frac{1}{12} \partial^{3} L\right)(w)(z-w)^{-1}
$$

19. Partial OPE algebra of $\mathcal{W}(c, \lambda)$

$$
\begin{gathered}
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} \\
L(z) W^{3}(w) \sim 3 W^{3}(w)(z-w)^{-2}+\partial W^{3}(w)(z-w)^{-1}
\end{gathered}
$$

$$
W^{3}(z) W^{3}(w) \sim \frac{c}{3}(z-w)^{-6}+2 L(w)(z-w)^{-4}+\partial L(w)(z-w)^{-3}
$$

$$
+W^{4}(w)(z-w)^{-2}+\left(\frac{1}{2} \partial W^{4}-\frac{1}{12} \partial^{3} L\right)(w)(z-w)^{-1}
$$

$$
\begin{aligned}
L(z) W^{4}(w) & \sim 3 c(z-w)^{-6}+10 L(w)(z-w)^{-4}+3 \partial L(w)(z-w)^{-3} \\
& +4 W^{4}(w)(z-w)^{-2}+\partial W^{4}(w)(z-w)^{-1}
\end{aligned}
$$

20. More OPE relations in $\mathcal{W}(c, \lambda)$

$$
\begin{gathered}
L(z) W^{5}(w) \sim\left(185-\frac{25}{2} \lambda(2+c)\right) W^{3}(z)(z-w)^{-4} \\
+\left(55-\frac{5}{2} \lambda(2+c)\right) \partial W^{3}(z)(z-w)^{-3} \\
+5 W^{5}(w)(z-w)^{-2}+\partial W^{5}(w)(z-w)^{-1} .
\end{gathered}
$$

20. More OPE relations in $\mathcal{W}(c, \lambda)$

$$
\begin{gathered}
L(z) W^{5}(w) \sim\left(185-\frac{25}{2} \lambda(2+c)\right) W^{3}(z)(z-w)^{-4} \\
+\left(55-\frac{5}{2} \lambda(2+c)\right) \partial W^{3}(z)(z-w)^{-3} \\
+5 W^{5}(w)(z-w)^{-2}+\partial W^{5}(w)(z-w)^{-1} . \\
W^{3}(z) W^{4}(w) \sim\left(31-\frac{5}{2} \lambda(2+c)\right) W^{3}(w)(z-w)^{-4} \\
-\frac{5}{6}(-16+\lambda(2+c)) \partial W^{3}(w)(z-w)^{-3} \\
+W^{5}(w)(z-w)^{-2}+\left(\lambda: L \partial W^{3}:-\frac{3}{2} \lambda:(\partial L) W^{3}:\right. \\
\left.+\frac{2}{5} \partial W^{5}+\left(-\frac{2}{3}-\frac{1}{24} \lambda(1-c)\right) \partial^{3} W^{3}\right)(w)(z-w)^{-1},
\end{gathered}
$$

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.
Jacobi relations: for $m, n \geq 0$, and fields a, b, c,

$$
a \circ_{r}\left(b \circ_{s} c\right)=b \circ_{s}\left(a \circ_{r} c\right)+\sum_{i=0}^{r}\binom{r}{i}\left(a \circ_{i} b\right) \circ_{r+s-i} c .
$$

OPEs on previous slides are a consequence of imposing these relations for W^{i}, W^{j}, W^{k} for $i+j+k \leq 9$. (Here $L=W^{2}$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z) W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.
$\mathcal{W}(c, \lambda)$ is the universal enveloping VA (Kac-de Sole, 2005)

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar. Jacobi relations: for $m, n \geq 0$, and fields a, b, c,

$$
a \circ_{r}\left(b \circ_{s} c\right)=b \circ_{s}\left(a \circ_{r} c\right)+\sum_{i=0}^{r}\binom{r}{i}\left(a \circ_{i} b\right) \circ_{r+s-i} c .
$$

OPEs on previous slides are a consequence of imposing these relations for W^{i}, W^{j}, W^{k} for $i+j+k \leq 9$. (Here $L=W^{2}$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z) W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.
Jacobi relations: for $m, n \geq 0$, and fields a, b, c,

$$
a \circ_{r}\left(b \circ_{s} c\right)=b \circ_{s}\left(a \circ_{r} c\right)+\sum_{i=0}^{r}\binom{r}{i}\left(a \circ_{i} b\right) \circ_{r+s-i} c .
$$

OPEs on previous slides are a consequence of imposing these relations for W^{i}, W^{j}, W^{k} for $i+j+k \leq 9$. (Here $L=W^{2}$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z) W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.
Jacobi relations: for $m, n \geq 0$, and fields a, b, c,

$$
a \circ_{r}\left(b \circ_{s} c\right)=b \circ_{s}\left(a \circ_{r} c\right)+\sum_{i=0}^{r}\binom{r}{i}\left(a \circ_{i} b\right) \circ_{r+s-i} c .
$$

OPEs on previous slides are a consequence of imposing these relations for W^{i}, W^{j}, W^{k} for $i+j+k \leq 9$. (Here $L=W^{2}$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z) W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.
Jacobi relations: for $m, n \geq 0$, and fields a, b, c,

$$
a \circ_{r}\left(b \circ_{s} c\right)=b \circ_{s}\left(a \circ_{r} c\right)+\sum_{i=0}^{r}\binom{r}{i}\left(a \circ_{i} b\right) \circ_{r+s-i} c .
$$

OPEs on previous slides are a consequence of imposing these relations for W^{i}, W^{j}, W^{k} for $i+j+k \leq 9$. (Here $L=W^{2}$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z) W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

21. Idea of proof

Similar to ideas of Gaberdiel-Gopakumar.
Jacobi relations: for $m, n \geq 0$, and fields a, b, c,

$$
a \circ_{r}\left(b \circ_{s} c\right)=b \circ_{s}\left(a \circ_{r} c\right)+\sum_{i=0}^{r}\binom{r}{i}\left(a \circ_{i} b\right) \circ_{r+s-i} c .
$$

OPEs on previous slides are a consequence of imposing these relations for W^{i}, W^{j}, W^{k} for $i+j+k \leq 9$. (Here $L=W^{2}$).

Imposing them for all i, j, k uniquely determines OPE $W^{a}(z) W^{b}(w)$ for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.
$\mathcal{W}(c, \lambda)$ is the universal enveloping VA (Kac-de Sole, 2005).

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal / $\cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal /
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{1}(c, \lambda)$ be simple quotient of $\mathcal{W}^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$W^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / t$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I
But for certain discrete families of ideals $!, W^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple quotient of $\mathcal{W}^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $w_{j}(c, \lambda)$ be simple quotient of $w^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free
R-modules, same rank as before.
$w^{\prime}(c, \lambda)$ is simple for a generic ideal /
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $W_{i}(c, \lambda)$ be simple quotient of $W^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $W_{i}(c, \lambda)$ be simple quotient of $W^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple quotient of $\mathcal{W}^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple quotient of $\mathcal{W}^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

22. Quotients of $\mathcal{W}(c, \lambda)$

Regard $\mathcal{W}(c, \lambda)$ as a VA over ring $\mathbb{C}[c, \lambda]$ (Creutzig-L., 2014).
Each weight space is a free $\mathbb{C}[c, \lambda]$-module.
Let $I \subset \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be the quotient by VA ideal $I \cdot \mathcal{W}^{\prime}(c, \lambda)$.
$\mathcal{W}^{\prime}(c, \lambda)$ is a VA over $R=\mathbb{C}[c, \lambda] / I$. Weight spaces are free R-modules, same rank as before.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple quotient of $\mathcal{W}^{\prime}(c, \lambda)$ by the maximal proper ideal graded by conformal weight.

23. Classification of VAs of type $\mathcal{W}(2,3, \ldots, N)$

Thm: $(\mathrm{L}, 2017)$ Suppose \mathcal{W} is a simple VA of central charge c such that:

- \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^{3}.

Then \mathcal{W} is strongly generated by $\left\{L, W^{i} \mid i \geq 3\right\}$ and is a quotient $\mathcal{W}_{I}(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3, \ldots, N)$ satisfying above hypotheses.

Cor: For each $N \geq 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{\mathcal{C}}(2,3, \ldots, N)$.

23. Classification of VAs of type $\mathcal{W}(2,3, \ldots, N)$

Thm: $(\mathrm{L}, 2017)$ Suppose \mathcal{W} is a simple VA of central charge c such that:

- \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^{3}.

Then \mathcal{W} is strongly generated by $\left\{L, W^{i} \mid i \geq 3\right\}$ and is a quotient $\mathcal{W}_{I}(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3, \ldots, N)$ satisfying above hypotheses.

Cor: For each $N \geq 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

23. Classification of VAs of type $\mathcal{W}(2,3, \ldots, N)$

Thm: $(\mathrm{L}, 2017)$ Suppose \mathcal{W} is a simple VA of central charge c such that:

- \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^{3}.
- Setting $W^{2}=L$ and $W^{i}=\left(W^{3}\right) \circ_{1} W^{i-1}$ for $i \geq 4$, the fields W^{i}, W^{j} for $i+j \leq 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\left\{L, W^{i} \mid i \geq 3\right\}$ and is a quotient $\mathcal{W}_{I}(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3, \ldots, N)$ satisfying above hypotheses.

Cor: For each $N \geq 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

23. Classification of VAs of type $\mathcal{W}(2,3, \ldots, N)$

Thm: $(\mathrm{L}, 2017)$ Suppose \mathcal{W} is a simple VA of central charge c such that:

- \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^{3}.
- Setting $W^{2}=L$ and $W^{i}=\left(W^{3}\right) \circ_{1} W^{i-1}$ for $i \geq 4$, the fields W^{i}, W^{j} for $i+j \leq 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\left\{L, W^{i} \mid i \geq 3\right\}$ and is a quotient $\mathcal{W}_{I}(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3, \ldots, N)$ satisfying above hypotheses.

Cor: For each $N \geq 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{c}(2,3$, $N)$.

23. Classification of VAs of type $\mathcal{W}(2,3, \ldots, N)$

Thm: $(\mathrm{L}, 2017)$ Suppose \mathcal{W} is a simple VA of central charge c such that:

- \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^{3}.
- Setting $W^{2}=L$ and $W^{i}=\left(W^{3}\right) \circ_{1} W^{i-1}$ for $i \geq 4$, the fields W^{i}, W^{j} for $i+j \leq 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\left\{L, W^{i} \mid i \geq 3\right\}$ and is a quotient $\mathcal{W}_{I}(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3, \ldots, N)$ satisfying above hypotheses.

Cor: For each $N \geq 3$, there are finitely many distinct 1 -parameter VAs of type $\mathcal{W}^{c}(2,3$,

23. Classification of VAs of type $\mathcal{W}(2,3, \ldots, N)$

Thm: $(\mathrm{L}, 2017)$ Suppose \mathcal{W} is a simple VA of central charge c such that:

- \mathcal{W} generated by Virasoro field L and a weight 3 primary field W^{3}.
- Setting $W^{2}=L$ and $W^{i}=\left(W^{3}\right) \circ_{1} W^{i-1}$ for $i \geq 4$, the fields W^{i}, W^{j} for $i+j \leq 7$ satisfy previous OPEs.

Then \mathcal{W} is strongly generated by $\left\{L, W^{i} \mid i \geq 3\right\}$ and is a quotient $\mathcal{W}_{I}(c, \lambda)$ for some $I \subset \mathbb{C}[c, \lambda]$.

Applies to all algebras of type $\mathcal{W}(2,3, \ldots, N)$ satisfying above hypotheses.

Cor: For each $N \geq 3$, there are finitely many distinct 1-parameter VAs of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

24. Concluding remarks

Conj: $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ corresponds to ideal $I_{n} \subset \mathbb{C}[c, \lambda]$ generated by

$$
\lambda=\frac{32(n-1)(n+1)}{5(n-2)\left(3 n^{2}-n-2+c(n+2)\right)} .
$$

Verified for $n \leq 7$.
We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_{I}(c, \lambda)$ is of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

Ex: There is a VA of type $W^{c}(2,3,4,5,6,7)$ corresponding to ideal / with generator
$12288+2048 c+9600 \lambda-2480 c \lambda-200 c^{2} \lambda+1875 \lambda^{2}+3275 c \lambda^{2}+250 c^{2} \lambda^{2}$.

24. Concluding remarks

Conj: $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ corresponds to ideal $I_{n} \subset \mathbb{C}[c, \lambda]$ generated by

$$
\lambda=\frac{32(n-1)(n+1)}{5(n-2)\left(3 n^{2}-n-2+c(n+2)\right)} .
$$

Verified for $n \leq 7$.
We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_{l}(c, \lambda)$ is of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

Ex: There is a VA of type $\mathcal{W}^{c}(2,3,4,5,6,7)$ corresponding to ideal / with generator
$12288+2048 c+9600 \lambda-2480 c \lambda-200 c^{2} \lambda+1875 \lambda^{2}+3275 c \lambda^{2}+250 c^{2} \lambda^{2}$

24. Concluding remarks

Conj: $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ corresponds to ideal $I_{n} \subset \mathbb{C}[c, \lambda]$ generated by

$$
\lambda=\frac{32(n-1)(n+1)}{5(n-2)\left(3 n^{2}-n-2+c(n+2)\right)} .
$$

Verified for $n \leq 7$.
We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_{l}(c, \lambda)$ is of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

Ex: There is a VA of type $\mathcal{W}^{c}(2,3,4,5,6,7)$ corresponding to ideal / with generator
$12288+2048 c+9600 \lambda-2480 c \lambda-200 c^{2} \lambda+1875 \lambda^{2}+3275 c \lambda^{2}+250 c^{2} \lambda^{2}$.

24. Concluding remarks

Conj: $\mathcal{W}^{k}\left(\mathfrak{s l}_{n}, f_{\text {prin }}\right)$ corresponds to ideal $I_{n} \subset \mathbb{C}[c, \lambda]$ generated by

$$
\lambda=\frac{32(n-1)(n+1)}{5(n-2)\left(3 n^{2}-n-2+c(n+2)\right)} .
$$

Verified for $n \leq 7$.
We have found many interesting families of principal ideals $I \subset \mathbb{C}[c, \lambda]$ such that $\mathcal{W}_{l}(c, \lambda)$ is of type $\mathcal{W}^{c}(2,3, \ldots, N)$.

Ex: There is a VA of type $\mathcal{W}^{c}(2,3,4,5,6,7)$ corresponding to ideal I with generator
$12288+2048 c+9600 \lambda-2480 c \lambda-200 c^{2} \lambda+1875 \lambda^{2}+3275 c \lambda^{2}+250 c^{2} \lambda^{2}$.

Conj: For all I such that $\mathcal{W}_{l}(c, \lambda)$ is of type $\mathcal{W}^{c}(2,3, \ldots, N)$ for some N, variety $V(I) \subset \mathbb{C}^{2}$ is a rational curve,

