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1. Vertex algebras

Vertex algebras were studied by physicists in the 1980s and
axiomatized by Borcherds (1986).

Algebraic structure underlying 2-dimensional conformal field theory.

A vertex algebra is a complex vector V with product : ab :,
generally nonassociative, noncommutative.

Unit 1, derivation 0.
Conformal weight grading V = @, >, V[n].

Graded character xy(q) = q~</?*Y o dim(V[n])q".
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2. Examples and constructions

Affine vertex algebra V*(g) at level k € C is associated to a
simple, finite-dimensional Lie algebra g.

Module over affine Kac-Moody Lie algebra §.

Simple quotient Vi(g) is irreducible as a g-module.

Lattice vertex algebra V|, L an even, positive-definite lattice.
Free field algebras are analogous to Weyl and Clifford algebras.

Standard ways to construct new VAs from old ones: orbifold,
coset, extension, cohomology.
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3. A spectacular example
Moonshine module V* (Frenkel, Lepowsky, Meurman, 1988).

Automorphism group is the Monster simple finite group of order
245.320.59.76.112.133.17.19-23-29.31-41-47-59-71 ~ 8-1053.

Graded character

xvi(q) = 14 196884¢° + 21493760q°% + - - - = j(7) — 744.

q = €2™'7, where 7 lies in the upper half-plane H = {x + yi]y > 0}.

J(7) is the classical j-function. Invariant under SLy(7Z) action
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4. Quantum operators

V' a complex vector space.

A quantum operator is a linear map a: V — V((z)), where
V((z)) is the space of formal Laurent series with coefficients in V.

QO(V) the space of quantum operators.

Can represent a € QO(V) as a formal power series

a(z) =Y _a(n)z~ """ € End(V)[[z,z""]]

nez

such that for any fixed v € V, a(n)v =0 for n > 0.
End(V) C QO(V) subspace of constant maps.
End(V) an associative algebra with a unit 1.

Question: Does this extend to an algebraic structure on QO(V)?
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5. Algebraic structure on QO(V)

Pointwise product (ab)(z) = a(z)b(z) is not well defined.

Wick’s procedure: Write a(z) = a_(z) + a4+(z), where
a_(z)= Z a(mz™ ", a(z)= Z a(n)z="1.
n<0 n>0
Fix a vector v € V and b € QO(V).
b(z)ay(z)v € V((z)), since a;(z)v is a finite sum.

a_.(z)b(z)v € V((2)) since b(z)v € V((z)) and a_(z) is a Taylor
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6. The Wick product

By definition, a_(z)b(z) + b(z)a;(z) € QO(V).

For all a, b € QO(V), define Wick product : ab: = a_b + ba,.
For all a,b € End(V), a=a_, so:ab: = ab.

Identity map 1 € End(V) is a unit in QO(V). For all a € QO(V),

la:=a=:al:.

Nonassociative in general.

By convention, : abc : = : a(: bc:) .
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7. Circle products

Family of bilinear operations o, on QO(V), for all n € Z.

For n > 0, define

a(z) o_p_1 b(z) = %( : 0"a(2))b(z2) 0=—.

In particular o_; coincides with the Wick product.
For n > 0, define
a(w) op b(w) = Res,(z — w)"[a(z), b(w)].

Here Res, means the coefficient of z~1.
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8. Quantum operator algebras
Def: A quantum operator algebra (QOA) is a subspace
A C QO(V) containing 1 and closed under all o,.
0(A) C Asince 0a=:(0a)l:=ao_» 1.
Easy to define homomorphisms, ideals, quotients, modules, etc.
Def: Elements a,b € QO(V) are local if for some N > 0

(z = w)"[a(2), b(w)] = 0.

Recall a(w) o, b(w) = Res,(z — w)"[a(z), b(w)], for n > 0.

Soao,b=0forn>N.
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9. Vertex algebras

Def: A vertex algebra is a QOA whose elements are pairwise
local.

A VAV C QO(V) for some V is meaningful independently of V.
Without loss of generality, can take V 2V as vector spaces.

Lemma: (Dong) Let a, b,c € QO(V), and suppose a, b, ¢ are
pairwise local. Then a and b o, c are local for all n € Z.

We often begin with a set S of elements of QO(V/) and check
pairwise locality.

If S has one element a, need to check locality of a with itself.

VA generated by S is spanned by all words in the elements of S
and o,, for n € Z.
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10. Operator product expansion
Thm: Let V bea VA, a,b€ V. Then

a(z)b(w) =Y a(w) op b(w)(z — w) ™"+ : a(z)b(w) 1,

n>0
where : a(z)b(w) : = a_(z)b(w) + b(w)as(z)
Expansion of meromorphic function with poles along z = w.
a(w) o, b(w) is pole of order n+ 1.
a(z)b(w) : is regular part.
Often write

a(2)b(w) ~ 3 a(w) on b(w)(z — w) "%,

n>0

where ~ means equal modulo regular part.
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11. Operator product expansion, cont’d

Often, a VA is presented by giving generators and OPE relations.

Ex: Affine VA V¥(g). Let &,...,&, be a basis for g.

Then V*(g) is generated by fields X%, i = 1,..., n, satisfying
XS (2)X5(w) ~ k(& &)(z = w) 72 + XS (w)(z — w) 7

Fact: V¥(g) has a basis consisting of monomials
oM XE L gk XE L 9k X L gk X

k> ky > >k, K > kG > >k

V¥(g) linearly isomorphic to polynomial algebra on
{0kX&|i=1,...,n, k>0}.



12. Strong and free generations

We say that a VA V is strongly generated by fields {«;(z)| i € I}
if V is spanned by monomials

{: 0% ---d"a; | k; >0,i; €1}



12. Strong and free generations

We say that a VA V is strongly generated by fields {«;(z)| i € I}
if V is spanned by monomials

{: 0% ---d"a; | k; >0,i; €1}

Suppose {a1,az,...} is an ordered strong generating set for V.



12. Strong and free generations

We say that a VA V is strongly generated by fields {«;(z)| i € I}
if V is spanned by monomials

{: 0% ---d"a; | k; >0,i; €1}

Suppose {a1,az,...} is an ordered strong generating set for V.
We say V is freely generated by {a1,an,... } if
cOMay a0y - Oy
forms a basis of V, where
ho<<ip, K>k > >kh, k> kY>> kD

Equivalently, V is linearly isomorphic to polynomial algebra on
Okajfori=1,2,...,and k > 0.



12. Strong and free generations

We say that a VA V is strongly generated by fields {«;(z)| i € I}
if V is spanned by monomials

{: 0% ---d"a; | k; >0,i; €1}

Suppose {a1,az,...} is an ordered strong generating set for V.
We say V is freely generated by {a1,an,... } if
cOMay a0y - Oy
forms a basis of V, where
ho<<ip, K>k > >kh, k> kY>> kD

Equivalently, V is linearly isomorphic to polynomial algebra on
Okajfori=1,2,...,and k > 0.

Ex: V¥(g) is freely generated by X&.



13. Conformal structure

The Virasoro Lie algebra is a central extension of the
(complexified) Lie algebra of vector fields on the circle.



13. Conformal structure

The Virasoro Lie algebra is a central extension of the
(complexified) Lie algebra of vector fields on the circle.

Generators L, = —t”+1%, n € Z, and central element &,

n—n
[Lny L] = (n—m)Lpym + 5n+m70T”-



13. Conformal structure

The Virasoro Lie algebra is a central extension of the
(complexified) Lie algebra of vector fields on the circle.

Generators L, = —t”+1%, n € Z, and central element &,

n—n
[Lny L] = (n—m)Lpym + 5n+m,on€-

A Virasoro element of a vertex algebra V is a field
L(z) =Y,z Lnz7 "2 €V satisfying
L(z)L(w) ~ %(z — W) 2L(w)(z — w) 2+ L(w)(z — w) .

[Lo, —] is required to act diagonalizably and [L_1, —] acts by 0.
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The Virasoro Lie algebra is a central extension of the
(complexified) Lie algebra of vector fields on the circle.

Generators L, = —t”+1%, n € Z, and central element &,

n—n
[Lny L] = (n—m)Lpym + 5n+m,on€-

A Virasoro element of a vertex algebra V is a field
L(z) =Y,z Lnz7 "2 €V satisfying

L(z)L(w) ~ %(z — W) 2L(w)(z — w) 2+ L(w)(z — w) .
[Lo, —] is required to act diagonalizably and [L_1, —] acts by 0.

Constant c is called the central charge.
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14. Conformal structure, cont’d

Conformal weight grading on V is the eigenspace decomposition
under Lg.

If a €V has weight d, then
L(z)a(w) ~ --- 4 da(w)(z — w) ™2 + da(w)(z — w) L.
Note that L always has weight 2.

Ex: V¥(g) has Virasoro element

- ,
g D XEXE k#—h".
i=1

k + hY 4

Central charge ¢ = ksm@) where hY is dual Coxeter number.

For each X&i,
L3(2) XS (w) ~ XS (w)(z — w) "2 + XS (w)(z — w) L.
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W4 is freely generated by L, W satisfying:

L(z)L(w) ~ %(z — W) 2L(w)(z — w) 2+ OL(w)(z — w) L,
L(z2)W(w) ~ 3W(w)(z — w) "2 + dW(w)(z — w) 7},
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W(z)W(w) ~ E(z —w) 4 2L(w)(z — w)* + AL(w)(z — w) 3

3
cLL: —
+<22+5c 3224 50)° L> (z=w)
32 c—2
- (L)L : L) (z—w)™L.
+(22+5c ODL: 43255507 )(Z w)

W4 is of type W(2,3), and is nonlinear.
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For a simple Lie algebra g and a nilpotent element f € g, there is a
VA Wk(g, f) called an affine VV-algebra.

Construction involves quantum Drinfeld-Solokov reduction.

If f is the principal nilpotent fyin, Wk(g, forin) is freely generated of
type W(d1,...,d,), di,...,d, the degrees of the generators Z(g).

WH(slp, forin) is freely generated of type W(2,3,...,n).

WH(sl, forin) = WS with ¢ = 2 — 24,217

For n > 4, W¥(sl,, forin) is generated (not strongly) by the weights
2 and 3 fields.

OPE algebra of WX (sl,,, forin) Vvery complicated, only known for
n <5,
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17. Other algebras of type W(2,3,..., N)

There are many other algebras of type W(2,3,..., N) for some N.
Ex: Natural embedding gl, — sl,41 induces homomorphism

VE(@al,) = VE(sl,41).

Let CX(n) denote the commutant
Com(V¥(gln), V¥(slns1)),
which has Virasoro element L'+ — [8ln,
Thm: (L., 2017) C*(n) is of type W(2,3,...,n*> +3n+1).

Strongly, but not freely generated by these fields, and generated by
the weights 2, 3 fields.
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18. Universal 2-parameter )V -algebra

Thm: (L, 2017) There exists a unique vertex algebra W(c, \) of
type W(2,3,...00) with following properties:

e Generated by Virasoro field L of central charge ¢ and a weight 3
primary field W3 such that

W3(2)W3(w) ~ %(z —w) b

e W(c, \) has Zp-action sending W3 — — W3,
e Setting
W4 = (W?3) o W53, W= (W3o, Wt n>s5,
W(c, \) is freely generated by the fields {L, W'| i > 3}.
e Structure constants are all polynomials in ¢ and .

Conjectured to exist by Gaberdiel-Gopakumar (2012).



19. Partial OPE algebra of W(c, \)

L(z)L(w) ~ %(z —w) "t 4 2L(w)(z — w) 2 4 OL(w)(z — w) L,

L(z)W3(w) ~ 3W3(w)(z — w) 2 + aW3(w)(z — w) 72,



19. Partial OPE algebra of W(c, \)

L(z)L(w) ~ %(z —w) "t 4 2L(w)(z — w) 2 4 OL(w)(z — w) L,

L(z)W3(w) ~ 3W3(w)(z — w) 2 + aW3(w)(z — w) 72,

W3(z2)W3(w) ~ %(z —w) 2L (w)(z = w) T+ OL(w)(z — w) 3

WA W) (z — w) " + (;aw“ _ 11263L>(W)(z —w) T,



19. Partial OPE algebra of W(c, \)

L(z)L(w) ~ %(z —w) "t 4 2L(w)(z — w) 2 4 OL(w)(z — w) L,

L(z)W3(w) ~ 3W3(w)(z — w) 2 + aW3(w)(z — w) 72,

W3(z2)W3(w) ~ %(z —w) 2L (w)(z = w) T+ OL(w)(z — w) 3

WA W) (z — w) " + (;aw“ _ 11263L>(W)(z —w) T,

L(z)WH(w) ~ 3c(z—w) +10L(w)(z —w) " +30L(w)(z—w) 3
+HAWH(w)(z — w) 2 + OWH(w)(z — w) L.
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L(z)W?(w) ~ (185 — 2?5)\(2 + c)> W3(z)(z — w)™*

+(55 _ gx(z + c))8W3(z)(z —w)?

+5WP(w)(z — w) 2 + oW (w)(z — w) L.

W3(z2)W*(w) ~ <31 - g)\(2 + C)) W3 (w)(z — w)™*

_g ( — 16+ A2+ c)>aw3(w)(z —w)”

+WA(w)(z — w) ™2 + ()\ LOWS —g)\ S (OL)W?

+§3W5 + (- % — %)\(1 — C))63W3>(W)(Z —w)L.
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21. ldea of proof

Similar to ideas of Gaberdiel-Gopakumar.

Jacobi relations: for m,n > 0, and fields a, b, c,

or(bos )—bos aorc +Z<>aoib)or+sic~

OPEs on previous slides are a consequence of imposing these
relations for W/, Wi, Wk for i + j + k < 9. (Here L = W?).

Imposing them for all i, j, k uniquely determines OPE
W2(z)WP(w) for all a, b, by inductive procedure.

We obtain a nonlinear Lie conformal algebra over ring C|c, A].

W(c, A) is the universal enveloping VA (Kac-de Sole, 2005).
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22. Quotients of W(c, \)

Regard W(c, A) as a VA over ring C[c, A] (Creutzig-L., 2014).
Each weight space is a free C[c, A]-module.

Let I C C[c, A] be a prime ideal.

Let W/(c, \) be the quotient by VA ideal /- W/(c, \).

W!(c,)\) is a VA over R = CJ[c, \]/I. Weight spaces are free
R-modules, same rank as before.

W!(c, \) is simple for a generic ideal /.
But for certain discrete families of ideals /, W/(c, \) is not simple.

Let W(c, \) be simple quotient of W/(c, \) by the maximal
proper ideal graded by conformal weight.
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23. Classification of VAs of type W(2,3,...,N)

Thm: (L, 2017) Suppose W is a simple VA of central charge ¢
such that:

e W generated by Virasoro field L and a weight 3 primary field W3,

e Setting W2 = L and W' = (W3) oy W= for i > 4, the fields
W', W/ for i 4+ j < 7 satisfy previous OPEs.

Then W is strongly generated by {L, W/| i > 3} and is a quotient
Wi(c, A) for some | C Clc, ]

Applies to all algebras of type W(2,3, ..., N) satisfying above
hypotheses.

Cor: For each N > 3, there are finitely many distinct 1-parameter
VAs of type W€(2,3,...,N).
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24. Concluding remarks

Conj: Wk(sl,, forin) corresponds to ideal /, C C[c, \] generated by

32(n—1)(n+1)
5(n—2)(3n2 = n—2+4c(n+2))

Verified for n < 7.

A=

We have found many interesting families of principal ideals
I C Clc, A] such that Wy(c, A) is of type W€E(2,3,..., N).

Ex: There is a VA of type W¢(2,3,4,5,6,7) corresponding to
ideal | with generator

12288+-2048c+9600\—2480cA—200c? \+18757\2+3275c A2 +250c2\2.

Conj: For all | such that Wj(c, A) is of type W€(2,3,..., N) for
some N, variety V(1) C C2 is a rational curve,



