Bol loops of order $p q$

Gábor Péter Nagy
joint work with M. Kinyon and P. Vojtěchovský (Denver)
University of Szeged (Hungary)
and
Budapest University of Technology (Hungary)

Fourth Mile High Conference on Nonassociative Mathematics
Denver, July 29 - August 5, 2017

Overview

(1) Bol loops and Bruck loops
(2) The Eighties: Niederreiter, Robinson, Sharma, Solarin, Burn
(3) The main theorems
(Remark: We only consider finite loops.)

Overview

(1) Bol loops and Bruck loops
(2) The Eighties: Niederreiter, Robinson, Sharma, Solarin, Burn
(3) The main theorems
(Remark: We only consider finite loops.)

Dedication

Loops are "non-associative groups"

(1) $(Q, \cdot, /, \backslash, 1)$, where

$$
x \cdot y=z
$$

has unique solutions

$$
x=z / y, \quad y=x \backslash z
$$

(2) Powers x^{n} are not well defined in general.
(3) Right and left multiplication maps
are bijections
(4) The right multiplication group
is a transitive permutation group on Q.

Loops are "non-associative groups"

(1) $(Q, \cdot, /, \backslash, 1)$, where

$$
x \cdot y=z
$$

has unique solutions

$$
x=z / y, \quad y=x \backslash z
$$

(2) Powers x^{n} are not well defined in general.
(3) Right and left multiplication maps
are bijections
(4) The right multiplication group
is a transitive permutation group on Q.

Loops are "non-associative groups"

(1) $(Q, \cdot, /, \backslash, 1)$, where

$$
x \cdot y=z
$$

has unique solutions

$$
x=z / y, \quad y=x \backslash z
$$

(2) Powers x^{n} are not well defined in general.
(3) Right and left multiplication maps

$$
R_{a}: x \rightarrow x a, \quad L_{a}: x \rightarrow a x
$$

are bijections.
(4) The right multiplication group
is a transitive permutation group on Q.

Loops are "non-associative groups"

(1) $(Q, \cdot, /, \backslash, 1)$, where

$$
x \cdot y=z
$$

has unique solutions

$$
x=z / y, \quad y=x \backslash z
$$

(2) Powers x^{n} are not well defined in general.
(3) Right and left multiplication maps

$$
R_{a}: x \rightarrow x a, \quad L_{a}: x \rightarrow a x
$$

are bijections.
(4) The right multiplication group

$$
G=\left\langle R_{x} \mid x \in Q\right\rangle
$$

is a transitive permutation group on Q.

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(3) Automorph inverse property:
(3) Bruck $=$ right Bol + AIP.
(1) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.

© Bruck = right Bol + AIP.
 (0) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.
(3) Bruck $=$ right Bol + AIP.
(-) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.
(3) Bruck $=$ right Bol + AIP.
(1) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.
(3) Bruck $=$ right Bol + AIP.
(9) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the split octonion algebra $\mathbb{O}(F)$
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

is a uniquely 2-divisible Bruck loop.

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.
(3) Bruck $=$ right Bol + AIP.
(9) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the split octonion algebra $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication
is a uniquely 2-divisible Bruck loop.

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.
(3) Bruck $=$ right Bol + AIP.
(9) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the split octonion algebra $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

Right Bol loops

(1) Right Bol identity: $((x y) z) y=x((y z) y)$.
(2) Automorph inverse property: $(x y)^{-1}=x^{-1} y^{-1}$.
(3) Bruck $=$ right Bol + AIP.
(9) Uniquely 2-divisible: $x \mapsto x^{2}$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the split octonion algebra $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

$$
A \circ B=\left(B A^{2} B\right)^{\frac{1}{2}}
$$

is a uniquely 2-divisible Bruck loop.

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

holds for all n. That is,
(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$
($\Rightarrow \mathrm{o}(y)$ divides $|Q|$
© \Rightarrow Bol loops of prime order are cyclic groups.
Theorem (Burn 1978-1981)

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $O(y)$.
(4) $\Rightarrow o(y)$ divides $|Q|$
© \Rightarrow Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$.
(5) \Rightarrow Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$.
(4) $\Rightarrow o(y)$ divides $|Q|$.
(5) \Rightarrow Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$.
(4) $\Rightarrow o(y)$ divides $|Q|$.
(5) \Rightarrow Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$.
(4) $\Rightarrow o(y)$ divides $|Q|$.
(5) \Rightarrow Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

- Bol loops of order $2 p, p^{2}$ are groups.
- There are non-associative Bol loops of order $4 p, 2 p^{2}$ and p^{3}

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$.
(4) $\Rightarrow o(y)$ divides $|Q|$.
(5) \Rightarrow Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

- Bol loops of order $2 p, p^{2}$ are groups.
- There are non-associative Bol loops of order $4 p, 2 p^{2}$ and p^{3}

Elementary properties

(1) Power-associativity: x^{n} is well-defined for all $n \in \mathbb{Z}$.
(2) Bol loops are power-associative and

$$
(((x \underbrace{y) y) \cdots) y}_{n}=x \cdot y^{n}
$$

holds for all n. That is,

$$
R_{y}^{n}=R_{y^{n}} .
$$

(3) \Rightarrow All cycles of R_{y} have the same length $o(y)$.
(0) $\Rightarrow o(y)$ divides $|Q|$.
($) \Rightarrow$ Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)

- Bol loops of order $2 p, p^{2}$ are groups.
- There are non-associative Bol loops of order $4 p, 2 p^{2}$ and p^{3}.

Properties related to Glauberman's Z*-theorem (1968)

Property	for Bol loops	for Bruck loops
$\|Q\|$ odd	$\|G\|$ odd with the same prime factors as $\|Q\|$	Q is solvable
$\|Q\|=p^{n}$	G is a p-group and Q is solvable	Q is nilpotent
$\forall x: o(x)=p^{k}$	$\|Q\|$ is a p-power and Q is solvable Q is nilpotent	
$(p$ odd $)$		

Properties related to Glauberman's Z*-theorem (1968)

Property	for Bol loops	for Bruck loops
$\|Q\|$ odd	$\|G\|$ odd with the same prime factors as $\|Q\|$	Q is solvable
$\|Q\|=p^{n}$	G is a p-group and Q is solvable	Q is nilpotent
$\forall x: o(x)=p^{k}$ $(p$ odd $)$	$\|Q\|$ is a p-power and Q is solvable	Q is nilpotent

Examples

- Non-nilpotent Bol p-loops: GN, Kiechle (2002), Kinyon, Phillips, Foguel (2006)
- Simple (non-solvable) Bol loops of odd order and Bol loops of exponent 2: GN (2007).

Properties related to Glauberman's Z*-theorem (1968)

Property	for Bol loops	for Bruck loops
$\|Q\|$ odd	$\|G\|$ odd with the same prime factors as $\|Q\|$	Q is solvable
$\|Q\|=p^{n}$	G is a p-group and Q is solvable	Q is nilpotent
$\forall x: o(x)=p^{k}$ $(p$ odd $)$	$\|Q\|$ is a p-power and Q is solvable	Q is nilpotent

Examples

- Non-nilpotent Bol p-loops: GN, Kiechle (2002), Kinyon, Phillips, Foguel (2006).
- Simple (non-solvable) Bol loops of odd order and Bol loops of exponent 2: GN (2007)

Properties related to Glauberman's Z*-theorem (1968)

Property	for Bol loops	for Bruck loops
$\|Q\|$ odd	$\|G\|$ odd with the same prime factors as $\|Q\|$	Q is solvable
$\|Q\|=p^{n}$	G is a p-group and Q is solvable	Q is nilpotent
$\forall x: o(x)=p^{k}$ $(p$ odd $)$	$\|Q\|$ is a p-power and Q is solvable	Q is nilpotent

Examples

- Non-nilpotent Bol p-loops: GN, Kiechle (2002), Kinyon, Phillips, Foguel (2006).
- Simple (non-solvable) Bol loops of odd order and Bol loops of exponent 2: GN (2007).

The associated Bruck loop of 2-divisible Bol loops

Let Q be a Bol loop of odd order. Then
(1) Q is uniquely 2-divisible; we denote the inverse of $x \rightarrow x^{2}$ by $x \rightarrow x^{\frac{1}{2}}$.
(3) We define the associated Bruck loop $Q(\circ)$ by
(3) Inverse and powers of elements coincide in Q and $Q(\circ)$.
(0) G is a central extension of $G(\circ)$.
(© $|G(\circ)|,|G|$ and $|Q|$ have the same prime factors.

The associated Bruck loop of 2-divisible Bol loops

Let Q be a Bol loop of odd order. Then
(1) Q is uniquely 2-divisible; we denote the inverse of $x \rightarrow x^{2}$ by $x \rightarrow x^{\frac{1}{2}}$.
(2) We define the associated Bruck loop $Q(\circ)$ by

$$
x \circ y=\left(\left(y x^{2}\right) y\right)^{\frac{1}{2}} .
$$

(3) Inverse and powers of elements coincide in Q and $Q(\circ)$.
(1) G is a central extension of $G(\circ)$.
(© $|G(\circ)|,|G|$ and $|Q|$ have the same prime factors.

The associated Bruck loop of 2-divisible Bol loops

Let Q be a Bol loop of odd order. Then
(1) Q is uniquely 2-divisible; we denote the inverse of $x \rightarrow x^{2}$ by $x \rightarrow x^{\frac{1}{2}}$.
(2) We define the associated Bruck loop $Q(\circ)$ by

$$
x \circ y=\left(\left(y x^{2}\right) y\right)^{\frac{1}{2}} .
$$

(3) Inverse and powers of elements coincide in Q and $Q(\circ)$.
© G is a central extension of $G(0)$.
(© $|G(\circ)|,|G|$ and $|Q|$ have the same prime factors.

The associated Bruck loop of 2-divisible Bol loops

Let Q be a Bol loop of odd order. Then
(1) Q is uniquely 2 -divisible; we denote the inverse of $x \rightarrow x^{2}$ by $x \rightarrow x^{\frac{1}{2}}$.
(2) We define the associated Bruck loop $Q(\circ)$ by

$$
x \circ y=\left(\left(y x^{2}\right) y\right)^{\frac{1}{2}} .
$$

(3) Inverse and powers of elements coincide in Q and $Q(\circ)$.
(1) G is a central extension of $G(\circ)$.
© $|G(\circ)|,|G|$ and $|Q|$ have the same prime factors.

The associated Bruck loop of 2-divisible Bol loops

Let Q be a Bol loop of odd order. Then
(1) Q is uniquely 2-divisible; we denote the inverse of $x \rightarrow x^{2}$ by $x \rightarrow x^{\frac{1}{2}}$.
(2) We define the associated Bruck loop $Q(\circ)$ by

$$
x \circ y=\left(\left(y x^{2}\right) y\right)^{\frac{1}{2}} .
$$

(3) Inverse and powers of elements coincide in Q and $Q(\circ)$.
(1) G is a central extension of $G(\circ)$.
(0) $|G(\circ)|,|G|$ and $|Q|$ have the same prime factors.

Results by Niederreiter, Robinson (1981)

Theorem (Niederreiter, Robinson 1981)

Let $p>q$ be odd primes.
(1) If q divides $p^{2}-1$ then there exists a nonassociative right Bruck loop $B_{p, q}$ of order pq, and a non-Bruck right Bol loop of order pq.
(2) A right Bol loop of order pq contains a unique subloop of order p, and when $q=3$ then the unique subloop of order p is normal
(3) There are at least $(p+1) / 2$ right Bol loops of order $3 p$ up to isomorphism, and at least $(p+5) / 6$ right Bol loops of order $3 p$ up to isotopism.

Results by Niederreiter, Robinson (1981)

Theorem (Niederreiter, Robinson 1981)

Let $p>q$ be odd primes.
(1) If q divides $p^{2}-1$ then there exists a nonassociative right Bruck loop $B_{p, q}$ of order $p q$, and a non-Bruck right Bol loop of order $p q$.
(2) A right Bol loop of order pq contains a unique subloop of order p, and when $q=3$ then the unique subloop of order p is normal
(3) There are at least $(p+1) / 2$ right Bol loops of order $3 p$ up to isomorphism, and at least $(p+5) / 6$ right Bol loops of order $3 p$ up to isotopism

Results by Niederreiter, Robinson (1981)

Theorem (Niederreiter, Robinson 1981)

Let $p>q$ be odd primes.
(1) If q divides $p^{2}-1$ then there exists a nonassociative right Bruck loop $B_{p, q}$ of order $p q$, and a non-Bruck right Bol loop of order pq.
(2) A right Bol loop of order pq contains a unique subloop of order p, and when $q=3$ then the unique subloop of order p is normal.

Results by Niederreiter, Robinson (1981)

Theorem (Niederreiter, Robinson 1981)

Let $p>q$ be odd primes.
(1) If q divides $p^{2}-1$ then there exists a nonassociative right Bruck loop $B_{p, q}$ of order $p q$, and a non-Bruck right Bol loop of order pq.
(2) A right Bol loop of order pq contains a unique subloop of order p, and when $q=3$ then the unique subloop of order p is normal.
(3) There are at least $(p+1) / 2$ right Bol loops of order $3 p$ up to isomorphism, and at least $(p+5) / 6$ right Bol loops of order $3 p$ up to isotopism.

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

- Clearly, $(P 3) \Rightarrow(P 2) \Rightarrow(P 1)$
- [NR81] had $(P 1) \Rightarrow(P 2)+$ complete classification for loops with (P3)

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

- Clearly, $(P 3) \Rightarrow(P 2) \Rightarrow(P 1)$
- [NR81] had $(P 1) \Rightarrow(P 2)+$ complete classification for loops with (P3)

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

The unique subloop of order p is normal
 The multiplication of Q is given by the formula
 where for $x \in \mathbb{F}_{q}, \vartheta_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ are certain complete mappings and The multiplication of Q is given by $\left({ }^{*}\right)$ with linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p} \backslash\{0,-1\}$

- Clearly, $(P 3) \Rightarrow(P 2) \Rightarrow(P 1)$

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

> The multiplication of Q is given by the formula
> where for $x \in \mathbb{F}_{q}, \vartheta_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ are certain complete mappings and The multiplication of Q is given by $\left({ }^{*}\right)$ with linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p} \backslash\{0,-1\}$

- Clearly, $(P 3) \Rightarrow(P 2) \Rightarrow(P 1)$
- [NR81] had $(P 1) \Rightarrow(P 2)+$ complete classification for loops with (P3)

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.
(P2) The multiplication of Q is given by the formula

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, z+\left(y_{1}+z\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right) \tag{}
\end{equation*}
$$

where for $x \in \mathbb{F}_{q}, \vartheta_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ are certain complete mappings and $z+z \vartheta_{x_{2}}=y_{2}$.
(P3) The multiplication of Q is given by $\left({ }^{*}\right)$ with linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p} \backslash\{0,-1\}$

- Clearly, $(P 3) \Rightarrow(P 2) \Rightarrow(P 1)$

- [NR81] had $(P 1) \Rightarrow(P 2)+$ complete classification for loops with (P3)

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.
(P2) The multiplication of Q is given by the formula

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, z+\left(y_{1}+z\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right) \tag{}
\end{equation*}
$$

where for $x \in \mathbb{F}_{q}, \vartheta_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ are certain complete mappings and $z+z \vartheta_{x_{2}}=y_{2}$.
(P3) The multiplication of Q is given by $\left({ }^{*}\right)$ with linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p} \backslash\{0,-1\}$.

- [NR81] had $(\mathrm{P} 1) \Rightarrow(\mathrm{P} 2)+$ complete classification for loops with (P3)

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.
(P2) The multiplication of Q is given by the formula

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, z+\left(y_{1}+z\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right) \tag{}
\end{equation*}
$$

where for $x \in \mathbb{F}_{q}, \vartheta_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ are certain complete mappings and $z+z \vartheta_{x_{2}}=y_{2}$.
(P3) The multiplication of Q is given by $\left({ }^{*}\right)$ with linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p} \backslash\{0,-1\}$.

- Clearly, $(\mathrm{P} 3) \Rightarrow(\mathrm{P} 2) \Rightarrow(\mathrm{P} 1)$.

Multiplication formula by Niederreiter, Robinson (1981)

- Let Q be right Bol loop of order $p q, p>q$ odd primes.
- Put $Q=\mathbb{F}_{q} \times \mathbb{F}_{p}$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.
(P2) The multiplication of Q is given by the formula

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, z+\left(y_{1}+z\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right) \tag{}
\end{equation*}
$$

where for $x \in \mathbb{F}_{q}, \vartheta_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ are certain complete mappings and $z+z \vartheta_{x_{2}}=y_{2}$.
(P3) The multiplication of Q is given by $\left(^{*}\right)$ with linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p} \backslash\{0,-1\}$.

- Clearly, $(P 3) \Rightarrow(P 2) \Rightarrow(P 1)$.
- [NR81] had $(P 1) \Rightarrow(P 2)+$ complete classification for loops with (P3).

The impact of [NR81]

(1) Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2 p^{2}$.
(2) Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
(3) Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order $3 p$.
(4) A problem with their proof was pointed out in Niederreiter, Robinson (1994)
(5) Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order $p q$ must be associative when q does not divide $p^{2}-1$
(0) Both of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs)

The impact of [NR81]

(1) Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2 p^{2}$.
(2) Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
(3) Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order $3 p$
44 A problem with their proof was pointed out in Niederreiter, Robinson (1994)
(5) Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pa must be associative when q does not divide $p^{2}-1$
(6) Both of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs)

The impact of [NR81]

(1) Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2 p^{2}$.
(2) Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
(3) Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order $3 p$.
(1) A problem with their proof was pointed out in Niederreiter, Robinson (1994)
(0) Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^{2}-1$.
(0) Both of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs)

The impact of [NR81]

(1) Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2 p^{2}$.
(2) Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
(3) Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order $3 p$.
(1) A problem with their proof was pointed out in Niederreiter, Robinson (1994).
© Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^{2}-1$.
(0) Both of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs)

The impact of [NR81]

(1) Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2 p^{2}$.
(2) Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
(3) Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order $3 p$.
(1) A problem with their proof was pointed out in Niederreiter, Robinson (1994).
(0 Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order $p q$ must be associative when q does not divide $p^{2}-1$.
(6) Both of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs)

The impact of [NR81]

(1) Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2 p^{2}$.
(2) Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
(3) Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order $3 p$.
(1) A problem with their proof was pointed out in Niederreiter, Robinson (1994).
© Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order $p q$ must be associative when q does not divide $p^{2}-1$.
(0) Both of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

Results on Bruck loops of order pq

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(C) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order pq up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$
(9) The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$
© Q contains a unique subloop of order p and this subloop is normal
© This subloop of order p equals the left nucleus of Q.

Results on Bruck loops of order pq

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(1) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$.
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order $p q$ up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$
(C) The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$.

- Q contains a unique subloop of order p and this subloop is normal
© This subloop of order p equals the left nucleus of Q.

Results on Bruck loops of order $p q$

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(1) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$.
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order $p q$ up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$ (9) The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$.
© Q contains a unique subloop of order p and this subloop is normal
© This subloop of order p equals the left nucleus of Q.

Results on Bruck loops of order $p q$

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(1) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$.
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order $p q$ up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$.
(© The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$.
(5) Q contains a unique subloop of order p and this subloop is normal

- This subloop of order p equals the left nuclous of Q

Results on Bruck loops of order pq

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(1) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$.
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order $p q$ up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$.
(0) The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$.
(5) Q contains a unique subloop of order p and this subloop is normal
© This subloop of order p equals the left nucleus of Q

Results on Bruck loops of order pq

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(1) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$.
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order $p q$ up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$.
(0) The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$.
(0) Q contains a unique subloop of order p and this subloop is normal.
© This subloop of order p equals the left nucleus of Q.

Results on Bruck loops of order pq

Theorem 1 (Kinyon, N, Vojtěchovský 2017)

Let $p>q$ be odd primes.
(1) A nonassociative right Bol loop Q of order $p q$ exists if and only if q divides $p^{2}-1$.
(2) If q divides $p^{2}-1$, there exists a unique nonassociative right Bruck loop $B_{p, q}$ of order $p q$ up to isomorphism.
(3) The right multiplication group of $B_{p, q}$ is isomorphic to $C_{p}^{2} \rtimes C_{q}$.
(0) The right multiplication group of Q has order $p^{2} q$ or $p^{3} q$.
(0) Q contains a unique subloop of order p and this subloop is normal.
(This subloop of order p equals the left nucleus of Q.

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T
(0 This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$
(- The latter implies that the unique subloop of order p is normal
(Purther elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(o) \cong C_{p}^{2} \rtimes C_{c}$
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T
(0 This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$

O The latter implies that the unique subloop of order p is normal
© Further elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$.
(0. By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T
© This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$
(0) The latter implies that the unique subloop of order p is normal
© Further elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$.
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
© This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$.
(0) The latter implies that the unique subloop of order p is normal
© Further elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$.
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
(0) This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$.
(The latter implies that the unique subloop of order p is normal
(© Further elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$.
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
(3) This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$.
(O) The latter implies that the unique subloop of order p is normal
(0) Further elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$.
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
(0) This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$.
(0) The latter implies that the unique subloop of order p is normal.
© Further elementary study of G implies (6)

Concerning the proof of Theorem 1

(1) Let Q be a non-cyclic Bol loop of order $p q$, and let $Q(\circ)$ be its associated Bruck loop.
(2) We know that $Q(\circ)$ is solvable and non-associative.
(3) We show that $q \mid p^{2}-1$ and $G(\circ) \cong C_{p}^{2} \rtimes C_{q}$.
(1) By Glauberman, the class of Bruck loops of odd order is essentially equivalent with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
(3) This implies the uniqueness for $Q(\circ)$
(0) and $|G|=p^{2} q$ or $|G|=p^{3} q$.
(0) The latter implies that the unique subloop of order p is normal.
(3) Further elementary study of G implies (6).

Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)

A right Bol loop Q can be constructed on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by formula (*)
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{2}\left(\mathrm{id}+\vartheta_{x_{2}}\right)^{-1}+\left(y_{1}+y_{2}\left(\mathrm{id}+\vartheta_{x_{2}}\right)^{-1}\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right)$
where the linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p}$ are chosen as follows.
© Either
1 for every $x \in \mathbb{F}_{q}$,
(2) or
for every $x \in \mathbb{F}_{q}$, where ω is a fixed primitive q th root of unity in $\mathbb{F}_{p^{2}}$, $\gamma \in \Gamma$ and Γ is a fixed subset of $\mathbb{F}_{p^{2}}$ of cardinality $(p-q+2) / 2$.
(3) $\vartheta_{x} \equiv 1$ results in the cyclic group of order $p q$.
(4) $\gamma=1 / 2$ results in the Bruck loop $B_{p, q}$
(5) If $q \mid p-1$, then $\gamma=1$ results in the nonabelian group of order $p q$.

Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)

A right Bol loop Q can be constructed on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by formula (*)
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{2}\left(\mathrm{id}+\vartheta_{x_{2}}\right)^{-1}+\left(y_{1}+y_{2}\left(\mathrm{id}+\vartheta_{x_{2}}\right)^{-1}\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right)$
where the linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p}$ are chosen as follows.
(1) Either $\vartheta_{x}=1$ for every $x \in \mathbb{F}_{q}$,
for every $x \in \mathbb{F}_{q}$, where ω is a fixed primitive q th root of unity in $\mathbb{F}_{p^{2}}$, $\gamma \in \Gamma$ and Γ is a fixed subset of $\mathbb{F}_{p^{2}}$ of cardinality $(p-q+2) / 2$.
(3) $\vartheta_{x} \equiv 1$ results in the cyclic group of order $p q$
(4) $\gamma=1 / 2$ results in the Bruck loop $B_{p, q}$
(5) If $q \mid p-1$, then $\gamma=1$ results in the nonabelian group of order $p q$.

Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)

A right Bol loop Q can be constructed on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by formula (${ }^{*}$)
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}+\left(y_{1}+y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right)$
where the linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p}$ are chosen as follows.
(1) Either $\vartheta_{x}=1$ for every $x \in \mathbb{F}_{q}$,
(2) or

$$
\vartheta_{x}=\left(\gamma \omega^{x}+(1-\gamma) \omega^{-x}\right)^{-1}
$$

for every $x \in \mathbb{F}_{q}$, where ω is a fixed primitive q th root of unity in $\mathbb{F}_{p^{2}}$, $\gamma \in \Gamma$ and Γ is a fixed subset of $\mathbb{F}_{p^{2}}$ of cardinality $(p-q+2) / 2$.
(3) $\vartheta_{x} \equiv 1$ results in the cyclic group of order $p q$.

Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)

A right Bol loop Q can be constructed on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by formula (*)
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}+\left(y_{1}+y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right)$
where the linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p}$ are chosen as follows.
(1) Either $\vartheta_{x}=1$ for every $x \in \mathbb{F}_{q}$,
(2) or

$$
\vartheta_{x}=\left(\gamma \omega^{x}+(1-\gamma) \omega^{-x}\right)^{-1}
$$

for every $x \in \mathbb{F}_{q}$, where ω is a fixed primitive q th root of unity in $\mathbb{F}_{p^{2}}$, $\gamma \in \Gamma$ and Γ is a fixed subset of $\mathbb{F}_{p^{2}}$ of cardinality $(p-q+2) / 2$.
(3) $\vartheta_{x} \equiv 1$ results in the cyclic group of order $p q$.

Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)

A right Bol loop Q can be constructed on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by formula (*)
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}+\left(y_{1}+y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right)$
where the linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p}$ are chosen as follows.
(1) Either $\vartheta_{x}=1$ for every $x \in \mathbb{F}_{q}$,
(2) or

$$
\vartheta_{x}=\left(\gamma \omega^{x}+(1-\gamma) \omega^{-x}\right)^{-1}
$$

for every $x \in \mathbb{F}_{q}$, where ω is a fixed primitive q th root of unity in $\mathbb{F}_{p^{2}}$, $\gamma \in \Gamma$ and Γ is a fixed subset of $\mathbb{F}_{p^{2}}$ of cardinality $(p-q+2) / 2$.
(3) $\vartheta_{x} \equiv 1$ results in the cyclic group of order $p q$.
(0) $\gamma=1 / 2$ results in the Bruck loop $B_{p, q}$.
© If $q \mid p-1$, then $\gamma=1$ results in the nonabelian group of order $p q$.

Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)

A right Bol loop Q can be constructed on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by formula (*)
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}+\left(y_{1}+y_{2}\left(i d+\vartheta_{x_{2}}\right)^{-1}\right) \vartheta_{x_{1}}^{-1} \vartheta_{x_{1}+x_{2}}\right)$ where the linear complete mappings $\vartheta_{x} \in \mathbb{F}_{p}$ are chosen as follows.
(1) Either $\vartheta_{x}=1$ for every $x \in \mathbb{F}_{q}$,
(2) or

$$
\vartheta_{x}=\left(\gamma \omega^{x}+(1-\gamma) \omega^{-x}\right)^{-1}
$$

for every $x \in \mathbb{F}_{q}$, where ω is a fixed primitive q th root of unity in $\mathbb{F}_{p^{2}}$, $\gamma \in \Gamma$ and Γ is a fixed subset of $\mathbb{F}_{p^{2}}$ of cardinality $(p-q+2) / 2$.
(3) $\vartheta_{x} \equiv 1$ results in the cyclic group of order $p q$.
(9) $\gamma=1 / 2$ results in the Bruck loop $B_{p, q}$.
(0) If $q \mid p-1$, then $\gamma=1$ results in the nonabelian group of order $p q$.

Concerning the proof of Theorem 2

(1) By [NR81], the normality of the unique subloop of order p implies $\left(^{*}\right)$ with complete mappings ϑ_{x}.
(2) The linearity of ϑ_{x} follows from the following:
(3) The formula for ϑ_{x} follows from the following:

Concerning the proof of Theorem 2

(1) By [NR81], the normality of the unique subloop of order p implies $\left(^{*}\right)$ with complete mappings ϑ_{x}.
(2) The linearity of ϑ_{x} follows from the following:

Lemma

> Let $p>q$ be odd primes, and let Q be a groupoid defined on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by $\left(^{*}\right)$, where every θ_{x} is a complete mapping of \mathbb{F}_{p}. Write $a=(1,0)$ and $b=(0,1)$ is linear
(3) The formula for ϑ_{x} follows from the following:

Concerning the proof of Theorem 2

(1) By [NR81], the normality of the unique subloop of order p implies (*) with complete mappings ϑ_{x}.
(2) The linearity of ϑ_{x} follows from the following:

Lemma

Let $p>q$ be odd primes, and let Q be a groupoid defined on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by $\left(^{*}\right)$, where every θ_{x} is a complete mapping of \mathbb{F}_{p}. Write $a=(1,0)$ and $b=(0,1)$. Then $b^{j} \cdot a^{k} b^{\ell}=b^{j} a^{k} \cdot b^{\ell}$ holds for every j, ℓ if and only if θ_{k} is linear.
(3) The formula for ϑ_{x} follows from the following:

Concerning the proof of Theorem 2

(1) By [NR81], the normality of the unique subloop of order p implies $\left({ }^{*}\right)$ with complete mappings ϑ_{x}.
(2) The linearity of ϑ_{x} follows from the following:

Lemma

Let $p>q$ be odd primes, and let Q be a groupoid defined on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by $\left(^{*}\right)$, where every θ_{x} is a complete mapping of \mathbb{F}_{p}. Write $a=(1,0)$ and $b=(0,1)$. Then $b^{j} \cdot a^{k} b^{\ell}=b^{j} a^{k} \cdot b^{\ell}$ holds for every j, ℓ if and only if θ_{k} is linear.
(3) The formula for ϑ_{x} follows from the following:
\square
Observation by Niederreiter and Robinson (1981)
The sequence $u_{x}=\vartheta_{x}^{-1}$ of period q satisfies the linear recurrence relation

Concerning the proof of Theorem 2

(1) By [NR81], the normality of the unique subloop of order p implies $\left(^{*}\right)$ with complete mappings ϑ_{x}.
(2) The linearity of ϑ_{x} follows from the following:

Lemma

Let $p>q$ be odd primes, and let Q be a groupoid defined on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by $\left(^{*}\right)$, where every θ_{x} is a complete mapping of \mathbb{F}_{p}. Write $a=(1,0)$ and $b=(0,1)$. Then $b^{j} \cdot a^{k} b^{\ell}=b^{j} a^{k} \cdot b^{\ell}$ holds for every j, ℓ if and only if θ_{k} is linear.
(3) The formula for ϑ_{x} follows from the following:

Observation by Niederreiter and Robinson (1981)

The sequence $u_{x}=\vartheta_{x}^{-1}$ of period q satisfies the linear recurrence relation

$$
u_{0}=1, \quad u_{x+2}=\lambda u_{x+1}-u_{x} \quad \text { for some } \lambda \in \mathbb{F}_{p} .
$$

The number of Bol loops of order pq

(1) We also have complete control on the isomorphism problem of Bol loops given by (*)
(2) Hence, we know the number of isomorphism classes of Bol loops of order pq.
(3) For the number of isotopy classes we had a conjecture when $q=3$ a This was proved in full generality

The number of Bol loops of order pq

(1) We also have complete control on the isomorphism problem of Bol loops given by (*)
(2) Hence, we know the number of isomorphism classes of Bol loops of order $p q$.

Corollary
 There are precisely $(p-q+4) / 2$ right Bol loops of order $p q$ up to isomorphism.

(3) For the number of isotopy classes we had a conjecture when $q=3$ (4) This was proved in full generality

The number of Bol loops of order pq

(1) We also have complete control on the isomorphism problem of Bol loops given by (*)
(2) Hence, we know the number of isomorphism classes of Bol loops of order $p q$.

Corollary

There are precisely $(p-q+4) / 2$ right Bol loops of order $p q$ up to isomorphism.

The number of Bol loops of order pq

(1) We also have complete control on the isomorphism problem of Bol loops given by (*)
(2) Hence, we know the number of isomorphism classes of Bol loops of order $p q$.

Corollary

There are precisely $(p-q+4) / 2$ right Bol loops of order $p q$ up to isomorphism.
(3) For the number of isotopy classes we had a conjecture when $q=3$.
© This was proved in full generality

The number of Bol loops of order pq

(1) We also have complete control on the isomorphism problem of Bol loops given by (*)
(2) Hence, we know the number of isomorphism classes of Bol loops of order $p q$.

Corollary

There are precisely $(p-q+4) / 2$ right Bol loops of order $p q$ up to isomorphism.
(3) For the number of isotopy classes we had a conjecture when $q=3$.
(0) This was proved in full generality
\square
With primes $2<q<p$, the number of right Bol loops of order $p q$ up to isotopism is equal to

The number of Bol loops of order pq

(1) We also have complete control on the isomorphism problem of Bol loops given by (*)
(2) Hence, we know the number of isomorphism classes of Bol loops of order $p q$.

Corollary

There are precisely $(p-q+4) / 2$ right Bol loops of order $p q$ up to isomorphism.
(3) For the number of isotopy classes we had a conjecture when $q=3$.
(0) This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

With primes $2<q<p$, the number of right Bol loops of order $p q$ up to isotopism is equal to $\left\lfloor\frac{p-1+4 q}{2 q}\right\rfloor$.

Further project: Bol loops of order $p^{a} q$

(1) I would like to start a

Project

Investigate right Bol loops of order $p^{a} q$, with primes p, q and $q>2$.

- If p, q are primes such that $q>2$ and $q \mid p^{p}-1$ then there is a simple right Bol loop of order $p^{p+1} q$.
(3) There are infinitely many simple Bol loops of exponent 2 of order $3 \cdot 2^{a}$
(1) Not much known on Bol loops of order $p^{2} q$
(0) Work in progress on Bol loops of order 24 .

Further project: Bol loops of order $p^{a} q$

(1) I would like to start a

Project

Investigate right Bol loops of order $p^{a} q$, with primes p, q and $q>2$.
(2) If p, q are primes such that $q>2$ and $q \mid p^{p}-1$ then there is a simple right Bol loop of order $p^{p+1} q$.
(3) There are infinitely many simple Bol loops of exponent 2 of order
(4) Not much known on Bol loops of order $p^{2} q$
(5) Work in progress on Bol loons of order 24.

Further project: Bol loops of order $p^{a} q$

(1) I would like to start a

Project

Investigate right Bol loops of order $p^{a} q$, with primes p, q and $q>2$.
(2) If p, q are primes such that $q>2$ and $q \mid p^{p}-1$ then there is a simple right Bol loop of order $p^{p+1} q$.
(3) There are infinitely many simple Bol loops of exponent 2 of order
(4) Not much known on Bol loops of order $p^{2} q$
(5) Work in progress on Bol loons of order 24

Further project: Bol loops of order $p^{a} q$

(1) I would like to start a

Project

Investigate right Bol loops of order $p^{a} q$, with primes p, q and $q>2$.
(2) If p, q are primes such that $q>2$ and $q \mid p^{p}-1$ then there is a simple right Bol loop of order $p^{p+1} q$.
(3) There are infinitely many simple Bol loops of exponent 2 of order $3 \cdot 2^{a}$.
(4) Not much known on Bol loops of order $p^{2} q$
(5) Work in progress on Bol loops of order 24

Further project: Bol loops of order $p^{a} q$

(1) I would like to start a

Project

Investigate right Bol loops of order $p^{a} q$, with primes p, q and $q>2$.
(2) If p, q are primes such that $q>2$ and $q \mid p^{p}-1$ then there is a simple right Bol loop of order $p^{p+1} q$.
(3) There are infinitely many simple Bol loops of exponent 2 of order $3 \cdot 2^{a}$.
(4) Not much known on Bol loops of order $p^{2} q$.
(5) Work in progress on Bol loops of order 24.

Further project: Bol loops of order $p^{a} q$

(1) I would like to start a

Project

Investigate right Bol loops of order $p^{a} q$, with primes p, q and $q>2$.
(2) If p, q are primes such that $q>2$ and $q \mid p^{p}-1$ then there is a simple right Bol loop of order $p^{p+1} q$.
(3) There are infinitely many simple Bol loops of exponent 2 of order $3 \cdot 2^{a}$.
(4) Not much known on Bol loops of order $p^{2} q$.
(5) Work in progress on Bol loops of order 24...

Acknowledgement

> THANK YOU FOR YOUR ATTENTION!

