Bol loops of order pq

Gábor Péter Nagy

joint work with M. Kinyon and P. Vojtěchovský (Denver)

University of Szeged (Hungary) and Budapest University of Technology (Hungary)

Fourth Mile High Conference on Nonassociative Mathematics Denver, July 29 – August 5, 2017

2 The Eighties: Niederreiter, Robinson, Sharma, Solarin, Burn

3 The main theorems

(Remark: We only consider finite loops.)

2 The Eighties: Niederreiter, Robinson, Sharma, Solarin, Burn

3 The main theorems

(Remark: We only consider finite loops.)

Dedication

Karl Strambach 1939–2016

① (
$$Q, \cdot, /, \setminus, 1$$
), where

$$x \cdot y = z$$

has unique solutions

$$x = z/y, \qquad y = x \setminus z.$$

2 Powers x^n are **not well defined** in general.

Right and left multiplication maps

$$R_a: x \to xa, \qquad L_a: x \to ax$$

are bijections.

 $G = \langle R_x \mid x \in Q \rangle$

• ($Q, \cdot, /, \setminus, 1$), where

$$x \cdot y = z$$

has unique solutions

$$x = z/y, \qquad y = x \setminus z.$$

2 Powers x^n are **not well defined** in general.

3 Right and left multiplication maps

 $R_a: x \to xa, \qquad L_a: x \to ax$

are bijections.

 $G = \langle R_x \mid x \in Q \rangle$

• ($Q, \cdot, /, \setminus, 1$), where

$$x \cdot y = z$$

has unique solutions

$$x = z/y, \qquad y = x \setminus z.$$

2 Powers x^n are **not well defined** in general.

Sight and left multiplication maps

$$R_a: x \to xa, \qquad L_a: x \to ax$$

are bijections.

 $G = \langle R_x \mid x \in Q \rangle$

• ($Q, \cdot, /, \setminus, 1$), where

$$x \cdot y = z$$

has unique solutions

$$x = z/y, \qquad y = x \setminus z.$$

2 Powers x^n are **not well defined** in general.

Right and left multiplication maps

$$R_a: x \to xa, \qquad L_a: x \to ax$$

are bijections.

The right multiplication group

$$G = \langle R_x \mid x \in Q \rangle$$

1 Right Bol identity: ((xy)z)y = x((yz)y).

- 2 Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

 $A \circ B = (BA^2B)^{\frac{1}{2}}$

- **1** Right Bol identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

 $A \circ B = (BA^2B)^{\frac{1}{2}}$

- **1** Right Bol identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **3 Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the split octonion algebra $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

 $A \circ B = (BA^2B)^{\frac{1}{2}}$

- **1** Right Bol identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **3 Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

 $A \circ B = (BA^2B)^{\frac{1}{2}}$

- **Right Bol** identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **3 Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

$$A \circ B = (BA^2B)^{\frac{1}{2}}$$

- **Right Bol** identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **3 Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of $n \times n$ positive definite symmetric matrices with respect to the multiplication

$$A \circ B = (BA^2B)^{\frac{1}{2}}$$

- **Right Bol** identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **3 Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of *n* × *n* **positive definite symmetric matrices** with respect to the multiplication

$$A \circ B = (BA^2B)^{\frac{1}{2}}$$

- **1** Right Bol identity: ((xy)z)y = x((yz)y).
- **2** Automorph inverse property: $(xy)^{-1} = x^{-1}y^{-1}$.
- **3 Bruck** = right Bol + AIP.
- **Output** Uniquely 2-divisible: $x \mapsto x^2$ is invertible.

Examples

- Non-zero octonions are both left and right Bol.
- Elements of norm 1 of the **split octonion algebra** $\mathbb{O}(F)$.
- The set of *n* × *n* **positive definite symmetric matrices** with respect to the multiplication

$$A \circ B = (BA^2B)^{\frac{1}{2}}$$

1 Power-associativity: x^n is well-defined for all $n \in \mathbb{Z}$.

Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n} = x \cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}$$

- ③ ⇒ All cycles of R_y have the same length o(y).
- $\Rightarrow o(y)$ divides |Q|.
- \bigcirc \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, 2p² and p³

- **O Power-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Ø Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- ③ ⇒ All cycles of R_y have the same length o(y).
- \bigcirc \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, 2p² and p³

- **O Power-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Ø Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- **③** ⇒ All cycles of R_y have the same length o(y).
- $\Rightarrow o(y)$ divides |Q|.
- \bigcirc \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, 2p² and p³

- **Over-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Observe and Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- **③** ⇒ All cycles of R_y have the **same length** o(y).
- $\Rightarrow o(y)$ divides |Q|.
- \bigcirc \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, 2p² and p³

- **O Power-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Ø Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- **③** ⇒ All cycles of R_y have the same length o(y).
- $\Rightarrow o(y)$ divides |Q|.
- **(**) \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, 2p² and p³

- **1 Power-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Ø Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- **③** ⇒ All cycles of R_y have the same length o(y).
- $\Rightarrow o(y)$ divides |Q|.
- **(**) \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, $2p^2$ and p^3 .

- **Over-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Ø Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- **③** ⇒ All cycles of R_y have the same length o(y).
- $\Rightarrow o(y)$ divides |Q|.
- **(**) \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, $2p^2$ and p^3 .

- **Over-associativity:** x^n is well-defined for all $n \in \mathbb{Z}$.
- Ø Bol loops are power-associative and

$$(((x\underbrace{y})\underbrace{y})\underbrace{y})\cdots)\underbrace{y}_{n}=x\cdot y^{n}$$

holds for all *n*. That is,

$$R_y^n = R_{y^n}.$$

- **③** ⇒ All cycles of R_y have the same length o(y).
- $\Rightarrow o(y)$ divides |Q|.
- **(**) \Rightarrow Bol loops of **prime order** are cyclic groups.

- Bol loops of order 2p, p^2 are groups.
- There are non-associative Bol loops of order 4p, $2p^2$ and p^3 .

Property	for Bol loops	for Bruck loops
Q odd	G odd with the same prime factors as $ Q $	Q is solvable
$ Q = p^n$	G is a p-group and Q is solvable	Q is nilpotent
$\forall x : o(x) = p^k$ (p odd)	Q is a <i>p</i> -power and Q is solvable	Q is nilpotent

Examples

T

Property	for Bol loops	for Bruck loops
Q odd	G odd with the same prime factors as $ Q $	Q is solvable
$ Q = p^n$	G is a p -group and Q is solvable	Q is nilpotent
$orall x:o(x)=p^k$ (p odd)	Q is a <i>p</i> -power and Q is solvable	Q is nilpotent

Examples

• Non-nilpotent Bol *p*-loops: GN, Kiechle (2002), Kinyon, Phillips, Foguel (2006).

• **Simple** (non-solvable) Bol loops of odd order and Bol loops of exponent 2: GN (2007).

T

Property	for Bol loops	for Bruck loops
Q odd	G odd with the same prime factors as $ Q $	Q is solvable
$ Q = p^n$	G is a p -group and Q is solvable	Q is nilpotent
$orall x:o(x)=p^k$ (p odd)	Q is a <i>p</i> -power and Q is solvable	Q is nilpotent

Examples

• Non-nilpotent Bol *p*-loops: GN, Kiechle (2002), Kinyon, Phillips, Foguel (2006).

• **Simple** (non-solvable) Bol loops of odd order and Bol loops of exponent 2: GN (2007).

T

Property	for Bol loops	for Bruck loops
Q odd	G odd with the same prime factors as $ Q $	Q is solvable
$ Q = p^n$	G is a p -group and Q is solvable	Q is nilpotent
$orall x:o(x)=p^k$ (p odd)	Q is a <i>p</i> -power and Q is solvable	Q is nilpotent

Examples

• Non-nilpotent Bol *p*-loops: GN, Kiechle (2002), Kinyon, Phillips, Foguel (2006).

• **Simple** (non-solvable) Bol loops of odd order and Bol loops of exponent 2: GN (2007).

Let Q be a Bol loop of odd order. Then

- Q is uniquely 2-divisible; we denote the inverse of $x \to x^2$ by $x \to x^{\frac{1}{2}}$.
- **2** We define the **associated Bruck loop** $Q(\circ)$ by

 $x \circ y = ((yx^2)y)^{\frac{1}{2}}.$

- ③ Inverse and powers of elements coincide in Q and $Q(\circ)$.
- ④ G is a central extension of $G(\circ)$.
- **○** $|G(\circ)|$, |G| and |Q| have the same prime factors.

- Q is uniquely 2-divisible; we denote the inverse of $x \to x^2$ by $x \to x^{\frac{1}{2}}$.
- **2** We define the **associated Bruck loop** $Q(\circ)$ by

$$x\circ y=((yx^2)y)^{\frac{1}{2}}.$$

- ③ Inverse and powers of elements coincide in Q and $Q(\circ)$.
- ④ G is a **central extension** of $G(\circ)$.
- **○** $|G(\circ)|$, |G| and |Q| have the same prime factors.

- Q is uniquely 2-divisible; we denote the inverse of $x \to x^2$ by $x \to x^{\frac{1}{2}}$.
- **2** We define the **associated Bruck loop** $Q(\circ)$ by

$$x \circ y = ((yx^2)y)^{\frac{1}{2}}.$$

- **③** Inverse and powers of elements coincide in Q and $Q(\circ)$.
- ④ *G* is a **central extension** of $G(\circ)$.
- **○** $|G(\circ)|$, |G| and |Q| have the same prime factors.

- Q is uniquely 2-divisible; we denote the inverse of $x \to x^2$ by $x \to x^{\frac{1}{2}}$.
- **2** We define the **associated Bruck loop** $Q(\circ)$ by

$$x \circ y = ((yx^2)y)^{\frac{1}{2}}.$$

- **③** Inverse and powers of elements coincide in Q and $Q(\circ)$.
- G is a **central extension** of $G(\circ)$.
- **○** $|G(\circ)|$, |G| and |Q| have the same prime factors.

- Q is uniquely 2-divisible; we denote the inverse of $x \to x^2$ by $x \to x^{\frac{1}{2}}$.
- **2** We define the **associated Bruck loop** $Q(\circ)$ by

$$x \circ y = ((yx^2)y)^{\frac{1}{2}}.$$

- **③** Inverse and powers of elements coincide in Q and $Q(\circ)$.
- G is a **central extension** of $G(\circ)$.
- **(5)** $|G(\circ)|$, |G| and |Q| have the same prime factors.

Theorem (Niederreiter, Robinson 1981)

Let p > q be odd primes.

- If *q* divides $p^2 1$ then there exists a nonassociative right Bruck loop $B_{p,q}$ of order pq, and a non-Bruck right Bol loop of order pq.
- 2 A right Bol loop of order pq contains a **unique subloop of order** p, and when q = 3 then the unique subloop of order p is normal.
- 3 There are at least (p + 1)/2 right Bol loops of order 3p up to isomorphism, and at least (p + 5)/6 right Bol loops of order 3p up to isotopism.

Theorem (Niederreiter, Robinson 1981)

Let p > q be odd primes.

- If q divides $p^2 1$ then there exists a nonassociative right Bruck loop $B_{p,q}$ of order pq, and a non-Bruck right Bol loop of order pq.
- 2 A right Bol loop of order pq contains a **unique subloop of order** p, and when q = 3 then the unique subloop of order p is normal.
- 3 There are at least (p + 1)/2 right Bol loops of order 3p up to isomorphism, and at least (p + 5)/6 right Bol loops of order 3p up to isotopism.

Theorem (Niederreiter, Robinson 1981)

Let p > q be odd primes.

- If q divides $p^2 1$ then there exists a nonassociative right Bruck loop $B_{p,q}$ of order pq, and a non-Bruck right Bol loop of order pq.
- 2 A right Bol loop of order pq contains a **unique subloop of order** p, and when q = 3 then the unique subloop of order p is normal.
- 3 There are at least (p + 1)/2 right Bol loops of order 3p up to isomorphism, and at least (p + 5)/6 right Bol loops of order 3p up to isotopism.
Theorem (Niederreiter, Robinson 1981)

Let p > q be odd primes.

- If q divides $p^2 1$ then there exists a nonassociative right Bruck loop $B_{p,q}$ of order pq, and a non-Bruck right Bol loop of order pq.
- 2 A right Bol loop of order pq contains a **unique subloop of order** p, and when q = 3 then the unique subloop of order p is normal.
- 3 There are at least (p + 1)/2 right Bol loops of order 3p up to isomorphism, and at least (p + 5)/6 right Bol loops of order 3p up to isotopism.

• Let Q be right Bol loop of order pq, p > q odd primes.

• Put $Q = \mathbb{F}_q \times \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order *p* is normal.

(P2) The multiplication of Q is given by the formula

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$ (*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_{\chi} \in \mathbb{F}_{p} \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.

• [NR81] had $(P1) \Rightarrow (P2) + complete classification for loops with (P3).$

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q \times \mathbb{F}_p$ as underlying set.

Consider the following properties

- (P1) The unique subloop of order *p* is normal.
- (P2) The multiplication of Q is given by the formula

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$ (*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.

• [NR81] had (P1) \Rightarrow (P2) + complete classification for loops with (P3).

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q imes \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

(P2) The multiplication of Q is given by the formula

$$(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$$
(*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- (P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.

• [NR81] had $(P1) \Rightarrow (P2) + complete classification for loops with (P3).$

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q imes \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

(P2) The multiplication of Q is given by the formula

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$ (*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- (P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.

• [NR81] had $(P1) \Rightarrow (P2) + complete classification for loops with (P3).$

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q imes \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

(P2) The multiplication of Q is given by the formula

$$(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$$
(*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- (P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.
 - [NR81] had $(P1) \Rightarrow (P2) + complete classification for loops with (P3).$

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q \times \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

(P2) The multiplication of Q is given by the formula

$$(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$$
(*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- (P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.

• [NR81] had $(P1) \Rightarrow (P2) + complete classification for loops with (P3).$

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q imes \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

(P2) The multiplication of Q is given by the formula

$$(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$$
(*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- (P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.

• [NR81] had $(P1) \Rightarrow (P2) + \text{complete classification for loops with (P3)}$.

- Let Q be right Bol loop of order pq, p > q odd primes.
- Put $Q = \mathbb{F}_q imes \mathbb{F}_p$ as underlying set.

Consider the following properties

(P1) The unique subloop of order p is normal.

(P2) The multiplication of Q is given by the formula

$$(x_1, y_1)(x_2, y_2) = (x_1 + x_2, z + (y_1 + z)\vartheta_{x_1}^{-1}\vartheta_{x_1 + x_2})$$
(*)

where for $x \in \mathbb{F}_q$, $\vartheta_x : \mathbb{F}_p \to \mathbb{F}_p$ are certain **complete mappings** and $z + z \vartheta_{x_2} = y_2$.

- (P3) The multiplication of Q is given by (*) with *linear* complete mappings $\vartheta_x \in \mathbb{F}_p \setminus \{0, -1\}$.
 - Clearly, $(P3) \Rightarrow (P2) \Rightarrow (P1)$.
 - [NR81] had $(P1) \Rightarrow (P2)$ + complete classification for loops with (P3).

- Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2p^2$.
- Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
- Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order 3*p*.
- A problem with their proof was pointed out in Niederreiter, Robinson (1994).
- Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^2 1$.
- Obt of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

- **1** Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2p^2$.
- Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
- Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order 3*p*.
- A problem with their proof was pointed out in Niederreiter, Robinson (1994).
- Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^2 1$.
- Obt of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

- **1** Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2p^2$.
- Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
- Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order 3*p*.
- A problem with their proof was pointed out in Niederreiter, Robinson (1994).
- Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^2 1$.
- Obt of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

- **1** Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2p^2$.
- Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
- Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order 3*p*.
- A problem with their proof was pointed out in Niederreiter, Robinson (1994).
- Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^2 1$.
- Obt of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

- **1** Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2p^2$.
- Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
- Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order 3*p*.
- A problem with their proof was pointed out in Niederreiter, Robinson (1994).
- Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^2 1$.
- Obth of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

- **1** Burn (1985) claimed that there is a unique nonassociative right Bol loop of order $2p^2$.
- Sharma (1984) constructed two examples of order 18, Burn accounted for the second class of examples in a correction, and Sharma, Solarin (1986) gave an independent proof.
- Sharma, Solarin (1988) came up with a conflicting estimate on the number of right Bol loops of order 3*p*.
- A problem with their proof was pointed out in Niederreiter, Robinson (1994).
- Sharma (1987) also attempted to prove that the unique subloop of order p is normal, and that a right Bol loop of order pq must be associative when q does not divide $p^2 1$.
- Source of these results turn out to be true but the proofs are incorrect (there are counterexamples to some intermediate claims made in the proofs).

Let p > q be odd primes.

- A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
- 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
- (3) The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
- ④ The right multiplication group of Q has order p^2q or p^3q .
- Q contains a unique subloop of order *p* and this subloop is normal.
- This subloop of order p equals the left nucleus of Q.

- Let p > q be odd primes.
 - A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
 - 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
 - (3) The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
 - ④ The right multiplication group of Q has order p^2q or p^3q .
 - Q contains a unique subloop of order *p* and this subloop is normal.
 - This subloop of order p equals the left nucleus of Q.

- Let p > q be odd primes.
 - A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
 - 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
 - (a) The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
 - ④ The right multiplication group of Q has order p^2q or p^3q .
 - Q contains a unique subloop of order *p* and this subloop is normal.
 - This subloop of order p equals the left nucleus of Q.

- Let p > q be odd primes.
 - A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
 - 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
 - **③** The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
 - The right multiplication group of Q has order $p^2 q$ or $p^3 q$.
 - Q contains a unique subloop of order *p* and this subloop is normal.
 - This subloop of order p equals the left nucleus of Q.

- Let p > q be odd primes.
 - A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
 - 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
 - **③** The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
 - The right multiplication group of Q has order $p^2 q$ or $p^3 q$.
 - \bigcirc Q contains a unique subloop of order p and this subloop is normal.
 - This subloop of order p equals the left nucleus of Q.

- Let p > q be odd primes.
 - A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
 - 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
 - **③** The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
 - **4** The right multiplication group of Q has order $p^2 q$ or $p^3 q$.
 - \bigcirc Q contains a unique subloop of order p and this subloop is normal.
 - This subloop of order p equals the left nucleus of Q.

- Let p > q be odd primes.
 - A nonassociative right Bol loop Q of order pq exists if and only if q divides $p^2 1$.
 - 2 If q divides $p^2 1$, there exists a unique nonassociative right Bruck loop $B_{p,q}$ of order pq up to isomorphism.
 - **③** The right multiplication group of $B_{p,q}$ is isomorphic to $C_p^2 \rtimes C_q$.
 - **4** The right multiplication group of Q has order $p^2 q$ or $p^3 q$.
 - \bigcirc Q contains a unique subloop of order p and this subloop is normal.
 - This subloop of order p equals the left nucleus of Q.

1 Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.

- ② We know that $Q(\circ)$ is solvable and non-associative.
- (a) We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- By Glauberman, the class of Bruck loops of odd order is *essentially equivalent* with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- This implies the uniqueness for $Q(\circ)$
- (and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **I** Further elementary study of *G* implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- 2 We know that $Q(\circ)$ is solvable and non-associative.
- 3 We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- By Glauberman, the class of Bruck loops of odd order is *essentially equivalent* with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- This implies the uniqueness for $Q(\circ)$
- (and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- In Further elementary study of G implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- **2** We know that $Q(\circ)$ is solvable and non-associative.
- We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- ④ By Glauberman, the class of Bruck loops of odd order is *essentially equivalent* with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- **•** This implies the uniqueness for $Q(\circ)$
- (and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **I** Further elementary study of *G* implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- **2** We know that $Q(\circ)$ is solvable and non-associative.
- We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- **OVER USE AND INTEGED :** By Glauberman, the class of Bruck loops of odd order is **essentially equivalent** with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- This implies the uniqueness for $Q(\circ)$
- **(a)** and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **I** Further elementary study of *G* implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- **2** We know that $Q(\circ)$ is solvable and non-associative.
- We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- **OVER USE AND INTEGED :** By Glauberman, the class of Bruck loops of odd order is **essentially equivalent** with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- **•** This implies the uniqueness for $Q(\circ)$
- (and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **I** Further elementary study of *G* implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- **2** We know that $Q(\circ)$ is solvable and non-associative.
- We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- **OVER USE AND INTEGED :** By Glauberman, the class of Bruck loops of odd order is **essentially equivalent** with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- This implies the uniqueness for $Q(\circ)$
- **o** and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **I** Further elementary study of *G* implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- **2** We know that $Q(\circ)$ is solvable and non-associative.
- We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- **OVER USE AND INTEGED :** By Glauberman, the class of Bruck loops of odd order is **essentially equivalent** with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- **•** This implies the uniqueness for $Q(\circ)$
- **o** and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **I** Further elementary study of *G* implies (6).

- Let Q be a non-cyclic Bol loop of order pq, and let $Q(\circ)$ be its associated Bruck loop.
- **2** We know that $Q(\circ)$ is solvable and non-associative.
- We show that $q \mid p^2 1$ and $G(\circ) \cong C_p^2 \rtimes C_q$.
- **OVER USE AND INTEGED :** By Glauberman, the class of Bruck loops of odd order is **essentially equivalent** with the class of pairs (T, τ) where T is a group of odd order and τ is an involutory automorphism of T.
- **•** This implies the uniqueness for $Q(\circ)$
- **o** and $|G| = p^2 q$ or $|G| = p^3 q$.
- The latter implies that the unique subloop of order p is normal.
- **③** Further elementary study of G implies (6).

A right Bol loop Q can be constructed on $\mathbb{F}_q \times \mathbb{F}_p$ by formula (*)

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, y_2(\mathsf{id} + \vartheta_{x_2})^{-1} + (y_1 + y_2(\mathsf{id} + \vartheta_{x_2})^{-1})\vartheta_{x_1}^{-1}\vartheta_{x_1+x_2})$

where the linear complete mappings $\vartheta_x \in \mathbb{F}_p$ are chosen as follows. • Either $\vartheta_x = 1$ for every $x \in \mathbb{F}_q$,

2 or

$$\vartheta_{x} = (\gamma \omega^{x} + (1 - \gamma) \omega^{-x})^{-1}$$

- **3** $\vartheta_{x} \equiv 1$ results in the cyclic group of order *pq*.
- $\gamma = 1/2$ results in the Bruck loop $B_{p,q}$.
- **(5)** If $q \mid p 1$, then $\gamma = 1$ results in the nonabelian group of order pq.

A right Bol loop Q can be constructed on $\mathbb{F}_q \times \mathbb{F}_p$ by formula (*)

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, y_2(\mathsf{id} + \vartheta_{x_2})^{-1} + (y_1 + y_2(\mathsf{id} + \vartheta_{x_2})^{-1})\vartheta_{x_1}^{-1}\vartheta_{x_1+x_2})$

where the linear complete mappings $\vartheta_x \in \mathbb{F}_p$ are chosen as follows. ① Either $\vartheta_x = 1$ for every $x \in \mathbb{F}_q$,

2 or

$$\vartheta_{x} = (\gamma \omega^{x} + (1 - \gamma) \omega^{-x})^{-1}$$

- **3** $\vartheta_{\chi} \equiv 1$ results in the cyclic group of order *pq*.
- $\gamma = 1/2$ results in the Bruck loop $B_{p,q}$.
- **(5)** If $q \mid p 1$, then $\gamma = 1$ results in the nonabelian group of order pq.

A right Bol loop Q can be constructed on $\mathbb{F}_q \times \mathbb{F}_p$ by formula (*)

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, y_2(\mathsf{id} + \vartheta_{x_2})^{-1} + (y_1 + y_2(\mathsf{id} + \vartheta_{x_2})^{-1})\vartheta_{x_1}^{-1}\vartheta_{x_1+x_2})$

where the linear complete mappings $\vartheta_x \in \mathbb{F}_p$ are chosen as follows. • Either $\vartheta_x = 1$ for every $x \in \mathbb{F}_q$,

Or

$$\vartheta_x = (\gamma \omega^x + (1 - \gamma) \omega^{-x})^{-1}$$

- **3** $\vartheta_{\chi} \equiv 1$ results in the cyclic group of order pq.
- $\gamma = 1/2$ results in the Bruck loop $B_{p,q}$.
- 6 If $q \mid p-1$, then $\gamma = 1$ results in the nonabelian group of order pq.

A right Bol loop Q can be constructed on $\mathbb{F}_q \times \mathbb{F}_p$ by formula (*)

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, y_2(\mathsf{id} + \vartheta_{x_2})^{-1} + (y_1 + y_2(\mathsf{id} + \vartheta_{x_2})^{-1})\vartheta_{x_1}^{-1}\vartheta_{x_1+x_2})$

where the linear complete mappings $\vartheta_x \in \mathbb{F}_p$ are chosen as follows. • Either $\vartheta_x = 1$ for every $x \in \mathbb{F}_q$,

Or

$$\vartheta_x = (\gamma \omega^x + (1 - \gamma) \omega^{-x})^{-1}$$

- **3** $\vartheta_{x} \equiv 1$ results in the cyclic group of order pq.
- $\gamma = 1/2$ results in the Bruck loop $B_{p,q}$.
- **(5)** If $q \mid p 1$, then $\gamma = 1$ results in the nonabelian group of order pq.

A right Bol loop Q can be constructed on $\mathbb{F}_q \times \mathbb{F}_p$ by formula (*)

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, y_2(\mathsf{id} + \vartheta_{x_2})^{-1} + (y_1 + y_2(\mathsf{id} + \vartheta_{x_2})^{-1})\vartheta_{x_1}^{-1}\vartheta_{x_1+x_2})$

where the linear complete mappings $\vartheta_x \in \mathbb{F}_p$ are chosen as follows. • Either $\vartheta_x = 1$ for every $x \in \mathbb{F}_q$,

Or

$$\vartheta_{x} = (\gamma \omega^{x} + (1 - \gamma) \omega^{-x})^{-1}$$

- **3** $\vartheta_x \equiv 1$ results in the cyclic group of order pq.
- $\gamma = 1/2$ results in the Bruck loop $B_{p,q}$.
- **(5)** If $q \mid p 1$, then $\gamma = 1$ results in the nonabelian group of order pq.

A right Bol loop Q can be constructed on $\mathbb{F}_q \times \mathbb{F}_p$ by formula (*)

 $(x_1, y_1)(x_2, y_2) = (x_1 + x_2, y_2(\mathsf{id} + \vartheta_{x_2})^{-1} + (y_1 + y_2(\mathsf{id} + \vartheta_{x_2})^{-1})\vartheta_{x_1}^{-1}\vartheta_{x_1+x_2})$

where the linear complete mappings $\vartheta_x \in \mathbb{F}_p$ are chosen as follows. • Either $\vartheta_x = 1$ for every $x \in \mathbb{F}_q$,

$$\vartheta_x = (\gamma \omega^x + (1 - \gamma) \omega^{-x})^{-1}$$

- **3** $\vartheta_x \equiv 1$ results in the cyclic group of order pq.
- $\gamma = 1/2$ results in the Bruck loop $B_{p,q}$.
- **1** If $q \mid p 1$, then $\gamma = 1$ results in the nonabelian group of order pq.
- By [NR81], the normality of the unique subloop of order p implies (*) with complete mappings ϑ_x .
- 2 The linearity of ϑ_x follows from the following:

emma

Let p > q be odd primes, and let Q be a groupoid defined on $\mathbb{F}_q \times \mathbb{F}_p$ by (*), where every θ_x is a complete mapping of \mathbb{F}_p . Write a = (1,0) and b = (0,1). Then $b^j \cdot a^k b^{\ell} = b^j a^k \cdot b^{\ell}$ holds for every j, ℓ if and only if θ_k is linear.

Observation by Niederreiter and Robinson (1981

The sequence $u_x = \vartheta_x^{-1}$ of period q satisfies the **linear recurrence** relation

$u_0 = 1, \qquad u_{x+2} = \lambda u_{x+1} - u_x \qquad \text{for some } \lambda \in \mathbb{F}_p.$

- By [NR81], the normality of the unique subloop of order p implies (*) with complete mappings ϑ_x .
- **2** The linearity of ϑ_{x} follows from the following:

emma

Let p > q be odd primes, and let Q be a groupoid defined on $\mathbb{F}_q \times \mathbb{F}_p$ by (*), where every θ_x is a complete mapping of \mathbb{F}_p . Write a = (1,0) and b = (0,1). Then $b^j \cdot a^k b^\ell = b^j a^k \cdot b^\ell$ holds for every j, ℓ if and only if θ_k is linear.

③ The formula for ϑ_{χ} follows from the following:

Observation by Niederreiter and Robinson (1981

The sequence $u_x = \vartheta_x^{-1}$ of period q satisfies the linear recurrence relation

$u_0 = 1, \qquad u_{x+2} = \lambda u_{x+1} - u_x \qquad \text{for some } \lambda \in \mathbb{F}_p.$

- By [NR81], the normality of the unique subloop of order p implies (*) with complete mappings ϑ_x .
- **2** The linearity of ϑ_{x} follows from the following:

Lemma

Let p > q be odd primes, and let Q be a groupoid defined on $\mathbb{F}_q \times \mathbb{F}_p$ by (*), where every θ_x is a complete mapping of \mathbb{F}_p . Write a = (1,0) and b = (0,1). Then $b^j \cdot a^k b^\ell = b^j a^k \cdot b^\ell$ holds for every j, ℓ if and only if θ_k is linear.

③ The formula for ϑ_{χ} follows from the following:

Observation by Niederreiter and Robinson (1981

The sequence $u_x = \vartheta_x^{-1}$ of period q satisfies the linear recurrence relation

 $u_0 = 1, \qquad u_{x+2} = \lambda u_{x+1} - u_x \qquad \text{for some } \lambda \in \mathbb{F}_p.$

- By [NR81], the normality of the unique subloop of order p implies (*) with complete mappings ϑ_x .
- **2** The linearity of ϑ_{x} follows from the following:

Lemma

Let p > q be odd primes, and let Q be a groupoid defined on $\mathbb{F}_q \times \mathbb{F}_p$ by (*), where every θ_x is a complete mapping of \mathbb{F}_p . Write a = (1,0) and b = (0,1). Then $b^j \cdot a^k b^\ell = b^j a^k \cdot b^\ell$ holds for every j, ℓ if and only if θ_k is linear.

③ The formula for ϑ_{χ} follows from the following:

Observation by Niederreiter and Robinson (1981)

The sequence $u_x = \vartheta_x^{-1}$ of period q satisfies the **linear recurrence** relation

$$u_0 = 1, \qquad u_{x+2} = \lambda u_{x+1} - u_x \qquad \text{for some } \lambda \in \mathbb{F}_p.$$

- By [NR81], the normality of the unique subloop of order p implies (*) with complete mappings ϑ_x .
- **2** The linearity of ϑ_{x} follows from the following:

Lemma

Let p > q be odd primes, and let Q be a groupoid defined on $\mathbb{F}_q \times \mathbb{F}_p$ by (*), where every θ_x is a complete mapping of \mathbb{F}_p . Write a = (1,0) and b = (0,1). Then $b^j \cdot a^k b^{\ell} = b^j a^k \cdot b^{\ell}$ holds for every j, ℓ if and only if θ_k is linear.

③ The formula for ϑ_{χ} follows from the following:

Observation by Niederreiter and Robinson (1981)

The sequence $u_x = \vartheta_x^{-1}$ of period q satisfies the **linear recurrence** relation

$$u_0 = 1, \qquad u_{x+2} = \lambda u_{x+1} - u_x \qquad \text{for some } \lambda \in \mathbb{F}_p.$$

- We also have complete control on the isomorphism problem of Bol loops given by (*)
- Pence, we know the number of isomorphism classes of Bol loops of order pq.

Corollary

There are precisely (p - q + 4)/2 right Bol loops of order pq up to isomorphism.

- ③ For the number of isotopy classes we had a conjecture when q = 3.
- This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

- We also have complete control on the isomorphism problem of Bol loops given by (*)
- Hence, we know the number of isomorphism classes of Bol loops of order pq.

Corollary

There are precisely (p - q + 4)/2 right Bol loops of order pq up to isomorphism.

- **③** For the **number of isotopy classes** we had a conjecture when q = 3.
- This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

- We also have complete control on the isomorphism problem of Bol loops given by (*)
- Pence, we know the number of isomorphism classes of Bol loops of order pq.

Corollary

There are precisely (p - q + 4)/2 right Bol loops of order pq up to isomorphism.

For the number of isotopy classes we had a conjecture when q = 3.
This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

- We also have complete control on the isomorphism problem of Bol loops given by (*)
- Pence, we know the number of isomorphism classes of Bol loops of order pq.

Corollary

There are precisely (p - q + 4)/2 right Bol loops of order pq up to isomorphism.

For the number of isotopy classes we had a conjecture when q = 3.
This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

- We also have complete control on the isomorphism problem of Bol loops given by (*)
- Hence, we know the number of isomorphism classes of Bol loops of order pq.

Corollary

There are precisely (p - q + 4)/2 right Bol loops of order pq up to isomorphism.

- **③** For the **number of isotopy classes** we had a conjecture when q = 3.
- This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

- We also have complete control on the isomorphism problem of Bol loops given by (*)
- Hence, we know the number of isomorphism classes of Bol loops of order pq.

Corollary

There are precisely (p - q + 4)/2 right Bol loops of order pq up to isomorphism.

- So For the number of isotopy classes we had a conjecture when q = 3.
- This was proved in full generality

Theorem (Stuhl, Vojtěchovský)

Project

- 2 If p, q are primes such that q > 2 and $q | p^p 1$ then there is a **simple** right Bol loop of order $p^{p+1}q$.
- 3 There are infinitely many simple Bol loops of **exponent** 2 of order $3 \cdot 2^a$.
- (4) Not much known on Bol loops of order p^2q .
- **o** Work in progress on Bol loops of order **24**...

Further project: Bol loops of order $p^a q$

I would like to start a

Project

- 2 If p, q are primes such that q > 2 and $q | p^p 1$ then there is a **simple** right Bol loop of order $p^{p+1}q$.
- 3 There are infinitely many simple Bol loops of **exponent** 2 of order $3 \cdot 2^a$.
- (4) Not much known on Bol loops of order p^2q .
- **Work in progress on Bol loops of order 24...**

Further project: Bol loops of order $p^a q$

I would like to start a

Project

- 2 If p, q are primes such that q > 2 and $q \mid p^p 1$ then there is a **simple** right Bol loop of order $p^{p+1}q$.
- 3 There are infinitely many simple Bol loops of **exponent** 2 of order $3 \cdot 2^a$.
- (4) Not much known on Bol loops of order p^2q .
- **Work in progress on Bol loops of order 24...**

Project

- 2 If p, q are primes such that q > 2 and $q \mid p^{p} 1$ then there is a **simple** right Bol loop of order $p^{p+1}q$.
- There are infinitely many simple Bol loops of exponent 2 of order 3 · 2^a.
- Not much known on Bol loops of order p^2q .
- **Work in progress on Bol loops of order 24...**

Project

- 2 If p, q are primes such that q > 2 and $q \mid p^{p} 1$ then there is a **simple** right Bol loop of order $p^{p+1}q$.
- Solution There are infinitely many simple Bol loops of **exponent** 2 of order $3 \cdot 2^a$.
- Not much known on Bol loops of order p^2q .
- **Work in progress on Bol loops of order 24...**

Project

- 2 If p, q are primes such that q > 2 and $q \mid p^p 1$ then there is a **simple** right Bol loop of order $p^{p+1}q$.
- Solution There are infinitely many simple Bol loops of **exponent** 2 of order $3 \cdot 2^a$.
- Not much known on Bol loops of order p^2q .
- Solution Work in progress on Bol loops of order 24...

Acknowledgement

THANK YOU FOR YOUR ATTENTION!