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Overview

1 Bol loops and Bruck loops

2 The Eighties: Niederreiter, Robinson, Sharma, Solarin, Burn

3 The main theorems

(Remark: We only consider finite loops.)
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Loops are “non-associative groups”

1 (Q, ·, /, \, 1), where
x · y = z

has unique solutions

x = z/y , y = x\z .

2 Powers xn are not well defined in general.
3 Right and left multiplication maps

Ra : x → xa, La : x → ax

are bijections.
4 The right multiplication group

G = 〈Rx | x ∈ Q〉

is a transitive permutation group on Q.
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Right Bol loops

1 Right Bol identity: ((xy)z)y = x((yz)y).
2 Automorph inverse property: (xy)−1 = x−1y−1.
3 Bruck = right Bol + AIP.
4 Uniquely 2-divisible: x 7→ x2 is invertible.

Examples
Non-zero octonions are both left and right Bol.
Elements of norm 1 of the split octonion algebra O(F ).
The set of n × n positive definite symmetric matrices with respect
to the multiplication

A ◦ B = (BA2B)
1
2

is a uniquely 2-divisible Bruck loop.
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Elementary properties

1 Power-associativity: xn is well-defined for all n ∈ Z.
2 Bol loops are power-associative and

(((x y)y) · · · )y︸ ︷︷ ︸
n

= x · yn

holds for all n. That is,
Rn

y = Ryn .

3 ⇒ All cycles of Ry have the same length o(y).
4 ⇒ o(y) divides |Q|.
5 ⇒ Bol loops of prime order are cyclic groups.

Theorem (Burn 1978-1981)
Bol loops of order 2p, p2 are groups.
There are non-associative Bol loops of order 4p, 2p2 and p3.
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Properties related to Glauberman’s Z ∗-theorem (1968)

Property for Bol loops for Bruck loops

|Q| odd |G | odd with the same prime
factors as |Q|

Q is solvable

|Q| = pn G is a p-group and Q is solvable Q is nilpotent

∀x : o(x) = pk

(p odd)
|Q| is a p-power and Q is solvable Q is nilpotent

Examples
Non-nilpotent Bol p-loops: GN, Kiechle (2002), Kinyon, Phillips,
Foguel (2006).
Simple (non-solvable) Bol loops of odd order and Bol loops of
exponent 2: GN (2007).
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The associated Bruck loop of 2-divisible Bol loops

Let Q be a Bol loop of odd order. Then
1 Q is uniquely 2-divisible; we denote the inverse of x → x2 by

x → x 1
2 .

2 We define the associated Bruck loop Q(◦) by

x ◦ y = ((yx2)y)
1
2 .

3 Inverse and powers of elements coincide in Q and Q(◦).
4 G is a central extension of G(◦).
5 |G(◦)|, |G | and |Q| have the same prime factors.
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Results by Niederreiter, Robinson (1981)

Theorem (Niederreiter, Robinson 1981)
Let p > q be odd primes.

1 If q divides p2 − 1 then there exists a nonassociative right Bruck
loop Bp,q of order pq, and a non-Bruck right Bol loop of order pq.

2 A right Bol loop of order pq contains a unique subloop of order p,
and when q = 3 then the unique subloop of order p is normal.

3 There are at least (p + 1)/2 right Bol loops of order 3p up to
isomorphism, and at least (p + 5)/6 right Bol loops of order 3p up to
isotopism.
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Multiplication formula by Niederreiter, Robinson (1981)

Let Q be right Bol loop of order pq, p > q odd primes.
Put Q = Fq × Fp as underlying set.

Consider the following properties
(P1) The unique subloop of order p is normal.
(P2) The multiplication of Q is given by the formula

(x1, y1)(x2, y2) = (x1 + x2, z + (y1 + z)ϑ−1
x1 ϑx1+x2) (*)

where for x ∈ Fq, ϑx : Fp → Fp are certain complete mappings and
z + zϑx2 = y2.

(P3) The multiplication of Q is given by (*) with linear complete
mappings ϑx ∈ Fp \ {0,−1}.

Clearly, (P3)⇒(P2)⇒(P1).
[NR81] had (P1)⇒(P2) + complete classification for loops with (P3).
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The impact of [NR81]

1 Burn (1985) claimed that there is a unique nonassociative right Bol
loop of order 2p2.

2 Sharma (1984) constructed two examples of order 18, Burn
accounted for the second class of examples in a correction, and
Sharma, Solarin (1986) gave an independent proof.

3 Sharma, Solarin (1988) came up with a conflicting estimate on the
number of right Bol loops of order 3p.

4 A problem with their proof was pointed out in Niederreiter, Robinson
(1994).

5 Sharma (1987) also attempted to prove that the unique subloop of
order p is normal, and that a right Bol loop of order pq must be
associative when q does not divide p2 − 1.

6 Both of these results turn out to be true but the proofs are incorrect
(there are counterexamples to some intermediate claims made in the
proofs).
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Results on Bruck loops of order pq

Theorem 1 (Kinyon, N, Vojtěchovský 2017)
Let p > q be odd primes.

1 A nonassociative right Bol loop Q of order pq exists if and only if q
divides p2 − 1.

2 If q divides p2 − 1, there exists a unique nonassociative right Bruck
loop Bp,q of order pq up to isomorphism.

3 The right multiplication group of Bp,q is isomorphic to C2
p o Cq.

4 The right multiplication group of Q has order p2q or p3q.
5 Q contains a unique subloop of order p and this subloop is normal.
6 This subloop of order p equals the left nucleus of Q.
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Concerning the proof of Theorem 1

1 Let Q be a non-cyclic Bol loop of order pq, and let Q(◦) be its
associated Bruck loop.

2 We know that Q(◦) is solvable and non-associative.
3 We show that q | p2 − 1 and G(◦) ∼= C2

p o Cq.
4 By Glauberman, the class of Bruck loops of odd order is essentially

equivalent with the class of pairs (T , τ) where T is a group of odd
order and τ is an involutory automorphism of T .

5 This implies the uniqueness for Q(◦)
6 and |G | = p2q or |G | = p3q.
7 The latter implies that the unique subloop of order p is normal.
8 Further elementary study of G implies (6).
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Results on non-Bruck Bol loops of order pq

Theorem 2 (Kinyon, N, Vojtěchovský 2017)
A right Bol loop Q can be constructed on Fq × Fp by formula (*)

(x1, y1)(x2, y2) = (x1 + x2, y2(id +ϑx2)−1 + (y1 + y2(id +ϑx2)−1)ϑ−1
x1 ϑx1+x2)

where the linear complete mappings ϑx ∈ Fp are chosen as follows.
1 Either ϑx = 1 for every x ∈ Fq,
2 or

ϑx = (γωx + (1− γ)ω−x )−1

for every x ∈ Fq, where ω is a fixed primitive qth root of unity in Fp2 ,
γ ∈ Γ and Γ is a fixed subset of Fp2 of cardinality (p − q + 2)/2.

3 ϑx ≡ 1 results in the cyclic group of order pq.
4 γ = 1/2 results in the Bruck loop Bp,q.
5 If q | p − 1, then γ = 1 results in the nonabelian group of order pq.
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Concerning the proof of Theorem 2

1 By [NR81], the normality of the unique subloop of order p implies (*)
with complete mappings ϑx .

2 The linearity of ϑx follows from the following:

Lemma
Let p > q be odd primes, and let Q be a groupoid defined on Fq × Fp by
(*), where every θx is a complete mapping of Fp. Write a = (1, 0) and
b = (0, 1). Then bj · akb` = bjak · b` holds for every j , ` if and only if θk
is linear.

3 The formula for ϑx follows from the following:

Observation by Niederreiter and Robinson (1981)
The sequence ux = ϑ−1

x of period q satisfies the linear recurrence
relation

u0 = 1, ux+2 = λux+1 − ux for some λ ∈ Fp.
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Observation by Niederreiter and Robinson (1981)
The sequence ux = ϑ−1

x of period q satisfies the linear recurrence
relation

u0 = 1, ux+2 = λux+1 − ux for some λ ∈ Fp.
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The number of Bol loops of order pq

1 We also have complete control on the isomorphism problem of Bol
loops given by (*)

2 Hence, we know the number of isomorphism classes of Bol loops of
order pq.

Corollary
There are precisely (p − q + 4)/2 right Bol loops of order pq up to
isomorphism.

3 For the number of isotopy classes we had a conjecture when q = 3.
4 This was proved in full generality

Theorem (Stuhl, Vojtěchovský)
With primes 2 < q < p, the number of right Bol loops of order pq up to
isotopism is equal to

⌊p − 1 + 4q
2q

⌋
.
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Further project: Bol loops of order paq

1 I would like to start a

Project
Investigate right Bol loops of order paq, with primes p, q and q > 2.

2 If p, q are primes such that q > 2 and q | pp − 1 then there is a
simple right Bol loop of order pp+1q.

3 There are infinitely many simple Bol loops of exponent 2 of order
3 · 2a.

4 Not much known on Bol loops of order p2q.
5 Work in progress on Bol loops of order 24. . .
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