Modules over semisymmetric quasigroups

Alex Nowak (joint work with Jonathan Smith) Iowa State University

Fourth Mile High Conference on Nonassociative Mathematics July 31, 2017

• A right *G*-module *M* is an abelian group equipped with homomorphism

$$ho: G
ightarrow \mathsf{Aut}(M).$$

• Split extension $G_{\rho} \ltimes M$ built up on $G \times M$ by

$$(g,a)(h,b) = (gh, a \cdot h + b).$$

• The projection $\pi: G_{\rho} \ltimes M \to G$ is an abelian group object in \mathbf{Gp}/G .

- 1. Semisymmetry
- 2. Multiplication Groups: Combinatorial and Universal
- 3. Modules over General Quasigroups
- 4. Modules over Semisymmetric Quasigroups

Semisymmetry

A semisymmetric quasigroup ($Q,\cdot,/,\backslash)$ satisfies the following equivalent identities

(yx)y = x; y(xy) = x; $y \setminus x = xy;$ y/x = xy.

- $\bullet\,$ The divisions / and \setminus coincide and are the opposite of multiplication.
- The class of semisymmetric quasigroups forms a variety **P**.

 Mendelsohn (cyclic) triple systems ↔ semisymmetric, idempotent quasigroups

Theorem: Mendelsohn (1971)

An MTS exists for all $n \neq 2 \mod 3$, except for n = 1 and n = 6.

Corollary

Let $n \neq 2 \mod 3$ be a positive integer. If $n \neq 6$, then there is a semisymmetric, idempotent quasigroup of order n.

• Given a quasigroup $(Q, \cdot, /, \backslash)$, we can define a semisymmetric quasigroup on Q^3 by

$$(x_1, x_2, x_3)(y_1, y_2, y_3) = (y_3/x_2, y_1 \setminus x_3, x_1 \cdot y_2).$$

• This yields an adjunction $\mathbf{P} \leftrightarrows \mathbf{Qtp}$ (Smith, 1997).

Multiplication Groups: Combinatorial and Universal

 Let Mlt(Q) ≤ Q! denote the combinatorial multiplication group, or the group of permutations of Q generated by the set of left and right multiplications {L(q), R(q) | q ∈ Q}.

Definition: Relative Multiplication Group

Given a subquasigroup P of Q, the group of permutations of Q generated by

 $\{L(p), R(p) \mid p \in P\},\$

denoted $Mlt_Q(P)$, is the relative multiplication group of P in Q.

Universal Multiplication Groups

- $\bullet~$ Let V be a variety of quasigroups.
- Let Q[X] be the coproduct in **V** of Q with the free **V**-quasigroup on the singleton $\{X\}$.
- As a quasigroup, Q[X] is isomorphic to the free V-extension of the partial Latin square furnished by the multiplication table of Q.

Definition: Universal Multiplication Group

The universal multiplication group $U(Q; \mathbf{V}) := \text{Mlt}_{Q[X]}(Q)$, also denoted \widetilde{G} , of Q in \mathbf{V} is the relative multiplication group of Q in Q[X].

- This establishes a functor $U(\ ; \mathbf{V}) : \mathbf{V} \to \mathbf{Gp}$.
- In \mathbf{Q} , \widetilde{G} is free on the disjoint union $\{\widetilde{L}(q) \mid q \in Q\} + \{\widetilde{R}(q) \mid q \in Q\}$ of two copies of Q (Smith 1986).

Proposition

Let Q be a semisymmetric quasigroup. Then $U(Q; \mathbf{P})$ is the free group on the set $\{\widetilde{R}(q) \mid q \in Q\}$.

Proof Sketch:

- Map $R: QG \to \widetilde{G}; q_1^{\varepsilon_1} \cdots q_n^{\varepsilon_n} \mapsto \widetilde{R}(q_1)^{\varepsilon_1} \cdots \widetilde{R}(q_n)^{\varepsilon_n}.$
- Showing R is injective comes down to showing that X R̃(q₁)^{ε₁} ··· R̃(q_n)^{ε_n} is an irreducible word in Q[X].

Universal Stabilizers

• Notice that \widetilde{G} acts transitively on the set Q; for example,

$$x^{\widetilde{R}(q)} = xR(q) = x \cdot q$$

Definition: Universal Stabilizer

Let $\widetilde{G} = U(Q; \mathbf{V})$ be the universal multiplication group of a quasigroup containing the element $e \in Q$. Then the stabilizer of e under the action of \widetilde{G} on Q, denoted \widetilde{G}_e , is called the <u>universal stabilizer</u> of Q in \mathbf{V} .

• In $\mathbf{Q}, \ \widetilde{G}_e$ is free on

 $\{ \widetilde{R}(e \setminus q) \widetilde{L}(q/e)^{-1}, \widetilde{R}(e \setminus q) \widetilde{R}(r) (e \setminus qr)^{-1}, \widetilde{L}(q/e) \widetilde{L}(r) \widetilde{L}(rq/e)^{-1} \mid q, r \in Q \}$ (Smith 1986).

Let's take a graphical/topological approach to \widetilde{G}_e in **P**:

• Theorem: In **P**, \widetilde{G}_e is free on

 $\{R(e^2), R(xe)R(ex), R(xe)R(y)R(xy \cdot e)^{-1} \mid (x, y) \in Q - \{e\} \times Q, y \neq xe\}.$

Modules over General Quasigroups

Definition: Quasigroup Module (Smith, 1986)

Let Q be a nonempty quasigroup (containing some point e) in the variety \mathbf{Q} with universal multiplication group $\widetilde{G} = U(Q; \mathbf{Q})$. We define Q-modules to be modules, in the group theoretic sense, over the universal stabilizer \widetilde{G}_e .

• *Q*-modules are just $\mathbb{Z}\widetilde{G}_e$ -modules.

- Let Q be a quasigroup in \mathbf{Q} , and let M be a \widetilde{G}_{e} -module.
- In the spirit of split extensions, let E = M × Q, and π : E → Q be the projection onto Q.
 - Now \widetilde{G}_e acts on $\pi^{-1}\{e\}$, a local copy of M in E over $e \in Q$.
- Moreover,

$$\begin{cases} a \cdot b = a\widetilde{R}(b^{\pi}) + b\widetilde{L}(a^{\pi}), \\ a/b = (a - b\widetilde{L}(a^{\pi}/b^{\pi}))\widetilde{R}(b^{\pi})^{-1}, \\ a\backslash b = (b - a\widetilde{R}(a^{\pi}\backslash b^{\pi}))\widetilde{L}(a^{\pi})^{-1}, \end{cases}$$

furnishes E with a quasigroup structure.

Modules over Semisymmetric Quasigroups

- How can we describe modules over quasigroups in P?
- We want to take Z G_e, and modulo out by an ideal which accounts for the identity (yx)y = x.

Example: Semisymmetric Modules over $\{e\}$

• Note
$$\mathbb{Z}\widetilde{G}_e \cong \mathbb{Z}[X, X^{-1}].$$

• Define $x \cdot y = x\widetilde{R}(y^{\pi}) + y\widetilde{R}(x^{\pi})^{-1} = x\widetilde{R}(e) + y\widetilde{R}(e)^{-1}$ for all $x, y \in \mathbb{Z}\widetilde{G}_e$.

• Then
$$x = (yx)y \implies$$

$$x = y\widetilde{R}(e)\widetilde{R}(e) + x\widetilde{R}(e)^{-1}\widetilde{R}(e) + y\widetilde{R}(e)^{-1}.$$

• Set
$$x = 0$$
, and we find $0 = y\widetilde{R}(e)^2 + y\widetilde{R}(e)^{-1} \iff$

$$0 = y\widetilde{R}(e)^3 + y$$

for all $y \in \mathbb{Z}\widetilde{G}_e$.

• Semisymmetric quasigroup modules over $\{e\}$ are modules over $\mathbb{Z}\widetilde{G}_e/(\widetilde{R}(e)^3 + 1) \cong \mathbb{Z}[X, X^{-1}]/(X^3 + 1)$

Theorem

Let Q be a quasigroup in the variety \mathbf{P} of semisymmetric quasigroups. The category of Q-modules in \mathbf{P}/Q is equivalent to the category of modules over $\mathbb{Z}\widetilde{G}_e/J$, where J is the two-sided ideal generated by

 $\{\widetilde{R}(ye)(\widetilde{R}(x)\widetilde{R}(y)+\widetilde{R}(yx)^{-1})\widetilde{R}(xe)^{-1} \mid x,y \in Q\}.$

finis