DISTRIBUTIVE ALGEBRAS AND THE AXIOMATIZATION OF CONVEXITY

A. KOMOROWSKI, A. B. ROMANOWSKA Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland J. D. H. SMITH
Department of Mathematics, Iowa State University, Ames, Iowa, 50011, USA

OUTLINE

• Convex sets and barycentric algebras: basic definitions, examples and properties

• Threshold convexity and the problem of axiomatization of convexity

• Threshold barycentric algebras and their varieties

• Beyond threshold barycentric algebras

BARYCENTRIC ALGEBRAS

 \mathbb{R} - the field of reals; $I^{\circ} :=]0, 1[= (0, 1) \subset \mathbb{R}.$

Barycentric algebra - an algebra $(A, \underline{I}^{\circ})$, with a binary operation \underline{p} for each operator $p \in I^{\circ}$, axiomatized by the following:

idempotence (I): xxp = x,

skew-commutativity (SC): $xy\underline{p} = xy\underline{1-p} =: xy\underline{p}'$,

skew-associativity (SA): $[xy\underline{p}] z \underline{q} = x [yz\underline{q}/(p \circ q)] \underline{p} \circ q$

for all $p, q \in I^{\circ}$, where $p \circ q = (p'q')' = p + q - pq$. Skew associativity is also written as:

 $[xy\underline{p}]z\underline{q} = x[yz(\underline{p \circ q} \to q)]\underline{p \circ q}$

where

$$p
ightarrow q = egin{cases} 1 & \mbox{if } p = 0; \\ q/p & \mbox{otherwise} \end{cases}$$

Proposition The class \mathcal{B} of barycentric algebras is a variety.

 $\ensuremath{\mathcal{B}}$ also satisfies:

entropicity (E): $[xy\underline{p}] [zt\underline{p}] \underline{q} = [xz\underline{q}] [yt\underline{q}] \underline{p}$

and

distributivity (D):

 $\begin{bmatrix} xy\underline{p} \end{bmatrix} z \, \underline{q} = \begin{bmatrix} xz\underline{q} \end{bmatrix} \begin{bmatrix} yz\underline{q} \end{bmatrix} \underline{p}, \\ x \begin{bmatrix} yz\underline{p} \end{bmatrix} \underline{q} = \begin{bmatrix} xy\underline{q} \end{bmatrix} \begin{bmatrix} xz\underline{q} \end{bmatrix} \underline{p},$

for all $p, q \in I^{\circ}$.

EXAMPLES

• Convex subsets of real spaces under the operations

 $xy\underline{p} = xp' + yp = x(1-p) + yp$ for each $p \in I^{\circ}$.

Convex sets form the subquasivariety ${\cal C}$ of the variety ${\cal B}$ defined by the cancellation laws

$$(xy\underline{p} = xz\underline{p}) \to (y = z)$$

for all operations p of \underline{I}° .

• "Stammered" semilattices (S, \cdot) with the operation $x \cdot y = xyp$ for all $p \in I^{\circ}$. They form the subvariety \mathcal{SL} of \mathcal{B} defined by xyp = xyr for all $p, r \in I^{\circ}$.

• Certain **sums of convex sets** over semilattices.

THEOREM Each barycentric algebra is a subalgebra of a Płonka sum of convex sets over its semilattice replica.

EXTENDED BARYCENTRIC ALGEBRAS

Barycentric algebras may be considered as extended barycentric algebras (A, \underline{I}) , where $I = [0, 1] \subset \mathbb{R}$,

and with the operations $\underline{0}$ and $\underline{1}$ defined by

 $xy\underline{0} = x \text{ and } xy\underline{1} = y.$

Proposition The class $\overline{\mathcal{B}}$ of extended barycentric algebras is a variety,

specified by the identities (I), (SC), (SA) and the two above.

Examples: convex sets and semilattices considered as usual barycentric algebras, with two additional operations $\underline{0}$ and $\underline{1}$.

THRESHOLD CONVEXITY

Given a real number $0 \le t \le 1/2$, known as the **threshold**.

For elements x, y of a convex set C, define

$$xy\underline{r} = \begin{cases} x & \text{if } r < t; \\ xy\underline{r} = x(1-r) + yr & \text{if } t \le r \le t'; \\ y & \text{if } r > t' \end{cases}$$

for 0 < r < 1. Then the binary operations \underline{r} are described as **threshold-convex combinations** (small, moderate and large).

Let $\underline{\underline{I}}^{\circ} = {\underline{\underline{r}} \mid r \in I^{\circ} }.$

Proposition Convex sets $(C, \underline{I}^{\circ})$ are idempotent, skew-commutative and entropic algebras.

KEIMEL'S QUESTION

Keimel's question: Can the skew associativity be replaced by the entropic law?

THEOREM In the specification of barycentric algebras, the axiom of skew-associativity cannot be replaced by the axiom of entropicity.

Counterexample is given for t = 1/2 by the algebra $(I, \underline{I}^{\circ})$, which is not skew-associative.

For p = q = 1/2, $p \circ q = 3/4$ and $p \circ q \rightarrow q = 2/3$. Then for x = y = 0, (xy1/2)z1/2 = 1/2 and $x[yz((p \circ q) \rightarrow q)] p \circ q = 1$.

8

THRESHOLD BARYCENTRIC ALGEBRAS

Given a threshold $0 \le t \le 1/2$. \mathcal{B}^t - the variety of **threshold**-*t* **barycentric algebras**, generated by the convex sets (C, \underline{I}°) .

Examples:

- $\mathcal{B}^0 = \mathcal{B}$
- $\mathcal{B}^{1/2}$

with $\underline{\underline{r}} = \underline{0}$ for r < 1/2 and $\underline{\underline{r}} = \underline{1}$ for r > 1/2

Proposition $\mathcal{B}^{1/2}$ is equivalent to the variety \overline{CBM} of commutative binary modes (commutative idempotent entropic groupoids) extended by the trivial operations <u>0</u> and <u>1</u>.

•
$$\mathcal{B}^t$$
 for $t \neq 0, 1/2$
with $\underline{\underline{r}} = \underline{\underline{r}}$ for $t \leq r \leq t'$,
 $\underline{\underline{r}} = \underline{0}$ for $r < t$ and
 $\underline{\underline{r}} = \underline{1}$ for $r > t'$.

THEOREM The variety \mathcal{B}^t is skew-associative if and only if t = 0.

SIMPLICES

 Δ_k - the real k-dimensional simplex - the free barycentric algebra in \mathcal{B} over the set $X = \{x_0, \dots, x_k\}$ of its vertices.

Proposition Let 0 < t < 1/2 be a threshold. Then the closed unit interval $(I, \underline{I}^{\circ})$ is generated by $\{0, 1\}$.

THEOREM Let 0 < t < 1/2 be a threshold. Then each simplex $(\Delta_k, \underline{I}^\circ)$ is generated by its vertices.

Corollary Each simplex Δ_k is generated by its vertices under the moderate threshold-convex combinations.

VARIETIES

THEOREM Set a threshold 0 < t < 1/2. Then each variety \mathcal{B}^t is equivalent to the variety $\overline{\mathcal{B}}$ of extended barycentric algebras.

THEOREM For a threshold 0 < t < 1/2, the variety \mathcal{B}^t is defined by the following identities:

(a) Idempotence, skew-commutativity and entropicity for all operations of \underline{I}° ; (b) The identity $xy \underline{r} = x$ for all r < t; (c) The identity $xy \underline{r} = y$ for all r > t'; (d) Skew-associativity for (derived) binary operations generated by the moderate operations \underline{p} for $t \le p \le t'$.

THRESHOLD SEMILATTICES

Proposition The variety \mathcal{B} of barycentric algebras contains only one proper non-trivial subvariety, namely the variety \mathcal{SL} of (stammered) semilattices.

Proposition Let $0 \le t \le 1/2$ be a threshold. Then the variety \mathcal{B}^t of threshold-*t* barycentric algebras contains only one proper non-trivial subvariety, namely the variety \mathcal{SL}^t of threshold-*t* semilattices.

For each t > 0, the variety SL^t is defined by:

- equality between the respective moderate operations \underline{p} , for $t \leq p \leq t'$;
- associativity for each moderate operation $\underline{\underline{p}}$ for $t \leq p \leq t'$.

 \mathcal{SL}^t is equivalent to the variety $\overline{\mathcal{SL}}$ of extended semilattices.

BEYOND THRESHOLD BARYCENTRIC ALGEBRAS

Set thresholds $0 \le s < t \le 1/2$.

 $\mathcal{B}^{s,t}$ - the variety of idempotent, entropic, skew-commutative $\underline{I}^\circ\text{-algebras}$ defined by the following identities:

- $xy \underline{p} = x$ for all p < s;
- $xy\overline{p} = y$ for all p > s';

• all identities true in the reducts $(C, [\underline{t}, \underline{t'}])$ of threshold-t convex sets $(C, \underline{\underline{I}}^{\circ})$ with respect to moderate threshold combinations.

THEOREM For $t \in [0, 1/2]$, the varieties \mathcal{B}^t of threshold-*t* barycentric algebras form an antichain.

• The meet of any two of them is the trivial variety \mathcal{T} .

• For thresholds $0 \le s < t \le 1/2$, the join $\mathcal{B}^s \lor \mathcal{B}^t$ of the varieties \mathcal{B}^s and \mathcal{B}^t is equal to the variety $\mathcal{B}^{s,t}$. $L(\mathcal{V})$ - the lattice of subvarieties of a variety $\mathcal{V}.$

Then $L(\mathcal{B}^{1/2}) \cong L(\mathcal{CBM})$; $L(\mathcal{CBM}) \setminus \mathcal{CBM} \cong 2 \times (\mathbb{N}, |)$. Each proper subvariety of \mathcal{CBM} is defined by one binary identity.

Corollary Let $0 \le s, t, u, w \le 1/2$ be thresholds, and let s < t and u < w. Then the variety $\mathcal{B}^{s,t}$ is a subvariety of $\mathcal{B}^{u,w}$ if and only if $u \le s < t \le w$.

Corollary The join of the varieties $\mathcal{B}^{s,t}$ is the variety $\mathcal{B}^{0,1/2}$, equivalent to the variety \mathcal{CBM} of commutative binary modes.

Some references

• Gudder, S.P.: Convex structures and operational quantum mechanics, Comm. Math. Phys. **29** (1973), 249–264.

 Ježek, J., Kepka, T.: The lattice of varieties of commutative abelian distributive groupoids, Algebra Universalis 5 (1975), 225–237.

• Komorowski, A., Romanowska, A., Smith, J. D. H.: Keimel's problem on the algebraic axiomatization of convexity, preprint, 2017.

Neumann, W. D.: On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel) **21** (1970), 11–16.

Orłowska, E., Romanowska, A.B., Smith, J.D.H.: Abstract barycentric algebras, Fund. Informaticae 81 (2007), 257–273.

Ostermann, F., Schmidt, J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie, J. Reine Angew. Math.
224 (1966), 44–57.

• Romanowska, A.B., Smith, J.D.H.: Modal Theory, Heldermann, Berlin, 1985.

Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras, Houston J.Math.
16 (1990), 431–448.

• Romanowska, A.B., Smith, J.D.H.: Modes, World Scientific, Singapore, 2002.

Skornyakov, L.A.: Stochastic algebras, Izv.
Vyssh. Uchebn. Zaved. Mat. 29 (1985), 3–11.