DISTRIBUTIVE ALGEBRAS

AND THE AXIOMATIZATION OF CONVEXITY

A. KOMOROWSKI, A. B. ROMANOWSKA

Faculty of Mathematics and Information
Science, Warsaw University of Technology,
00-661 Warsaw, Poland J. D. H. SMITH

Department of Mathematics, Iowa State University, Ames, Iowa, 50011, USA

OUTLINE

- Convex sets and barycentric algebras: basic definitions, examples and properties
- Threshold convexity and the problem of axiomatization of convexity
- Threshold barycentric algebras and their varieties
- Beyond threshold barycentric algebras

BARYCENTRIC ALGEBRAS

\mathbb{R} - the field of reals;
$\left.I^{\circ}:=\right] 0,1[=(0,1) \subset \mathbb{R}$.

Barycentric algebra - an algebra $\left(A, \underline{I}^{\circ}\right)$,
with a binary operation \underline{p} for each operator $p \in I^{\circ}$, axiomatized by the following:
idempotence (I): $\quad x x \underline{p}=x$,
skew-commutativity (SC):
$x y \underline{p}=x y \underline{1-p}=: x y \underline{p}^{\prime}$,
skew-associativity (SA):
$[x y \underline{p}] z \underline{q}=x[y z \underline{q /(p \circ q)}] \underline{p \circ q}$
for all $p, q \in I^{\circ}$, where
$p \circ q=\left(p^{\prime} q^{\prime}\right)^{\prime}=p+q-p q$.

Skew associativity is also written as:
$[x y \underline{p}] z \underline{q}=x[y z \underline{(p \circ q \rightarrow q)}] \underline{p \circ q}$
where

$$
p \rightarrow q= \begin{cases}1 & \text { if } p=0 \\ q / p & \text { otherwise }\end{cases}
$$

Proposition The class \mathcal{B} of barycentric algebras is a variety.
\mathcal{B} also satisfies:
entropicity (E):
$[x y \underline{p}][z t \underline{p}] \underline{q}=[x z q][y t \underline{q}] \underline{p}$
and
distributivity (D):
$[x y \underline{p}] z q=[x z q][y z \underline{q}] \underline{p}$,
$x[y z \underline{p}] \underline{q}=[x y \underline{q}][x z \underline{q}] \underline{p}$,
for all $p, q \in I^{\circ}$.

EXAMPLES

- Convex subsets of real spaces under the operations

$$
x y \underline{p}=x p^{\prime}+y p=x(1-p)+y p
$$

for each $p \in I^{\circ}$.
Convex sets form the subquasivariety \mathcal{C} of the variety \mathcal{B} defined by the cancellation laws

$$
(x y \underline{p}=x z \underline{p}) \rightarrow(y=z)
$$

for all operations \underline{p} of \underline{I}°.

- "Stammered" semilattices (S, \cdot) with the operation $x \cdot y=x y p$ for all $p \in I^{\circ}$.
They form the subvariety $\mathcal{S L}$ of \mathcal{B} defined by $x y \underline{p}=x y \underline{r}$ for all $p, r \in I^{\circ}$.
- Certain sums of convex sets over semilattices.

THEOREM Each barycentric algebra is a subalgebra of a Płonka sum of convex sets over its semilattice replica.

EXTENDED BARYCENTRIC ALGEBRAS

Barycentric algebras may be considered as extended barycentric algebras (A, \underline{I}), where $I=[0,1] \subset \mathbb{R}$, and with the operations $\underline{0}$ and $\underline{1}$ defined by

$$
x y \underline{0}=x \text { and } x y \underline{1}=y
$$

Proposition The class $\overline{\mathcal{B}}$ of extended barycentric algebras is a variety, specified by the identities (I), (SC), (SA) and the two above.

Examples: convex sets and semilattices considered as usual barycentric algebras, with two additional operations $\underline{0}$ and $\underline{1}$.

THRESHOLD CONVEXITY

Given a real number $0 \leq t \leq 1 / 2$, known as the threshold.

For elements x, y of a convex set C, define

$$
x y \underline{\underline{r}}= \begin{cases}x & \text { if } r<t ; \\ x y \underline{r}=x(1-r)+y r & \text { if } t \leq r \leq t^{\prime} ; \\ y & \text { if } r>t^{\prime}\end{cases}
$$

for $0<r<1$. Then the binary operations $\underline{\underline{r}}$ are described as threshold-convex combinations (small, moderate and large).

Let $\underline{\underline{I}}^{\circ}=\left\{\underline{\underline{r}} \mid r \in I^{\circ}\right\}$.
Proposition Convex sets ($C, \underline{\underline{I}}^{\circ}$) are idempotent, skew-commutative and entropic algebras.

KEIMEL'S QUESTION

Keimel's question: Can the skew associativity be replaced by the entropic law?

THEOREM In the specification of barycentric algebras, the axiom of skew-associativity cannot be replaced by the axiom of entropicity.

Counterexample is given for $t=1 / 2$ by the algebra ($I, \underline{\underline{I}}^{\circ}$), which is not skew-associative.

For $p=q=1 / 2$,
$p \circ q=3 / 4$ and $p \circ q \rightarrow q=2 / 3$.
Then for $x=y=0$,
$(x y 1 / 2) z 1 / 2=1 / 2$ and
$x[y z(\underline{(p \circ q) \rightarrow q)}] \underline{\underline{p \circ q}}=1$.

THRESHOLD BARYCENTRIC ALGEBRAS

Given a threshold $0 \leq t \leq 1 / 2$.
\mathcal{B}^{t} - the variety of threshold- t barycentric algebras, generated by the convex sets $\left(C, \underline{\underline{I}}^{\circ}\right)$.

Examples:

- $\mathcal{B}^{0}=\mathcal{B}$
- $\mathcal{B}^{1 / 2}$
with $\underline{\underline{r}}=\underline{0}$ for $r<1 / 2$ and $\underline{\underline{r}}=\underline{1}$ for $r>1 / 2$
Proposition $\mathcal{B}^{1 / 2}$ is equivalent to the variety $\overline{\mathcal{C B M}}$ of commutative binary modes (commutative idempotent entropic groupoids) extended by the trivial operations $\underline{0}$ and $\underline{1}$.
- \mathcal{B}^{t} for $t \neq 0,1 / 2$
with $\underline{\underline{r}}=\underline{r}$ for $t \leq r \leq t^{\prime}$,
$\underline{\underline{r}}=\underline{0}$ for $r<t$ and
$\underline{\underline{r}}=\underline{1}$ for $r>t^{\prime}$.
THEOREM The variety \mathcal{B}^{t} is skew-associative if and only if $t=0$.

SIMPLICES

Δ_{k} - the real k-dimensional simplex

- the free barycentric algebra in \mathcal{B} over the set $X=\left\{x_{0}, \ldots, x_{k}\right\}$ of its vertices.

Proposition Let $0<t<1 / 2$ be a threshold. Then the closed unit interval ($I, \underline{\underline{I}}^{\circ}$) is generated by $\{0,1\}$.

THEOREM Let $0<t<1 / 2$ be a threshold. Then each simplex $\left(\Delta_{k}, \underline{\underline{I}}^{\circ}\right)$ is generated by its vertices.

Corollary Each simplex Δ_{k} is generated by its vertices under the moderate threshold-convex combinations.

VARIETIES

THEOREM Set a threshold $0<t<1 / 2$. Then each variety \mathcal{B}^{t} is equivalent to the variety $\overline{\mathcal{B}}$ of extended barycentric algebras.

THEOREM For a threshold $0<t<1 / 2$, the variety \mathcal{B}^{t} is defined by the following identities:
(a) Idempotence, skew-commutativity and entropicity for all operations of $\underline{\underline{I}}^{\circ}$;
(b) The identity $x y \underline{\underline{r}}=x$ for all $r<t$;
(c) The identity $x y \underline{\underline{r}}=y$ for all $r>t^{\prime}$;
(d) Skew-associativity for (derived) binary
operations generated by the moderate operations $\underline{\underline{p}}$ for $t \leq p \leq t^{\prime}$.

THRESHOLD SEMILATTICES

Proposition The variety \mathcal{B} of barycentric algebras contains only one proper non-trivial subvariety, namely the variety $\mathcal{S L}$ of
(stammered) semilattices.

Proposition Let $0 \leq t \leq 1 / 2$ be a threshold. Then the variety \mathcal{B}^{t} of threshold- t barycentric algebras contains only one proper non-trivial subvariety, namely the variety $\mathcal{S} \mathcal{L}^{t}$ of thresholdt semilattices.

For each $t>0$, the variety $\mathcal{S} \mathcal{L}^{t}$ is defined by:

- equality between the respective moderate operations p, for $t \leq p \leq t^{\prime}$;
- associativity for each moderate operation $\underline{\underline{p}}$ for $t \leq p \leq t^{\prime}$.
$\mathcal{S} \mathcal{L}^{t}$ is equivalent to the variety $\overline{\mathcal{S L}}$ of extended semilattices.

BEYOND THRESHOLD BARYCENTRIC ALGEBRAS

Set thresholds $0 \leq s<t \leq 1 / 2$.
$\mathcal{B}^{s, t}$ - the variety of idempotent, entropic, skew-commutative \underline{I}°-algebras defined by the following identities:

- $x y \underline{\underline{p}}=x$ for all $p<s$;
- $x y p=y$ for all $p>s^{\prime}$;
- all identities true in the reducts $\left(C,\left[t, t^{\prime}\right]\right)$ of threshold- t convex sets ($C, \underline{\underline{I}}^{\circ}$) with respect to moderate threshold combinations.

THEOREM For $t \in[0,1 / 2]$, the varieties \mathcal{B}^{t} of threshold- t barycentric algebras form an antichain.

- The meet of any two of them is the trivial variety \mathcal{T}.
- For thresholds $0 \leq s<t \leq 1 / 2$, the join $\mathcal{B}^{s} \vee \mathcal{B}^{t}$ of the varieties \mathcal{B}^{s} and \mathcal{B}^{t} is equal to the variety $\mathcal{B}^{s, t}$.
$\mathrm{L}(\mathcal{V})-$
the lattice of subvarieties of a variety \mathcal{V}.
Then $\mathbf{L}\left(\mathcal{B}^{1 / 2}\right) \cong \mathrm{L}(\mathcal{C B M})$;
$\mathrm{L}(\mathcal{C B M}) \backslash \mathcal{C B M} \cong 2 \times(\mathbb{N}, \mid)$.
Each proper subvariety of $\mathcal{C B M}$ is defined by one binary identity.

Corollary Let $0 \leq s, t, u, w \leq 1 / 2$ be thresholds, and let $s<t$ and $u<w$. Then the variety $\mathcal{B}^{s, t}$ is a subvariety of $\mathcal{B}^{u, w}$ if and only if $u \leq s<t \leq w$.

Corollary The join of the varieties $\mathcal{B}^{s, t}$ is the variety $\mathcal{B}^{0,1 / 2}$, equivalent to the variety $\mathcal{C B M}$ of commutative binary modes.

Some references

- Gudder, S.P.: Convex structures and operational quantum mechanics, Comm. Math. Phys. 29 (1973), 249-264.
- Ježek, J., Kepka, T.: The lattice of varieties of commutative abelian distributive groupoids, Algebra Universalis 5 (1975), 225-237.
- Komorowski, A., Romanowska, A., Smith, J. D. H.: Keimel's problem on the algebraic axiomatization of convexity, preprint, 2017.
- Neumann, W. D.: On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel) 21 (1970), 11-16.
- Orłowska, E., Romanowska, A.B., Smith, J.D.H.: Abstract barycentric algebras, Fund. Informaticae 81 (2007), 257-273.
- Ostermann, F., Schmidt, J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie, J. Reine Angew. Math. 224 (1966), 44-57.
- Romanowska, A.B., Smith, J.D.H.: Modal Theory, Heldermann, Berlin, 1985.
- Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras, Houston J.Math. 16 (1990), 431-448.
- Romanowska, A.B., Smith, J.D.H.: Modes, World Scientific, Singapore, 2002.
- Skornyakov, L.A.: Stochastic algebras, Izv. Vyssh. Uchebn. Zaved. Mat. 29 (1985), 3-11.

