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Homotopy: (f, g, h): (P, ∗, /, \) → (Q, ◦, //, \\) .
.

with xf ◦ yg = (x ∗ y)h for all x, y ∈ P . .
.

Isotopy: f, g, h bijective. .
.
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.
.

Homotopy category: .
.

Qtp with (f1, g1, h1)(f2, g2, h2) = (f1f2, g1g2, h1h2). .
.
.

Example: Qtp(O∗,O∗)∗ = Spin8(R)
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Higher homotopy: (f, g, h;m): (P, ∗, /, \) → (Q, ◦, //, \\) .
.

with homotopies (f, g, h), (f,m, f), (m, g, g). Mnemonic

 f m f
m g g
f g h

 .

.
Higher isotopy: f, g, h,m bijective. .

.
Homomorphism: f = g = h = m. .

.
Higher homotopy category: .

.
Qhh with (f1, g1, h1;m1)(f2, g2, h2;m2) = (f1f2, g1g2, h1h2;m1m2). .

.

.
Faithful lowering functor Λ3 : Qhh → Qtp; (f, g, h;m) 7→ (f, g, h)
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Example

For an abelian group (A,+,0), .
.

consider the isotopy .
.

(1A,−1A,1A): (A,−) → (A,+). .
.
.

Extends to a higher isotopy, .
.

namely (1A,−1A,1A;−1A): (A,−) → (A,+), .
.

iff (A,+,0) is Boolean.
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∇P⊗1P //

1P⊗∇P

//

h31⊗h32⊗h33

��

P ⊗ P
∇P //

h21⊗h22

��

P

h11

��

Q⊗Q⊗Q
∇Q⊗1Q

//

1Q⊗∇Q

//Q⊗Q ∇Q

//Q

.

.

.
The triple (h21, h

2
2, h

1
1): P → Q is a homotopy .

iff the right hand square commutes. .
.

Then the quadruple (h21, h
2
2, h

1
1;h

3
2): P → Q is a higher homotopy .

iff the upper and lower left hand squares commute.
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.
.
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Loop isotopes of groups

. . . are isomorphic to groups. (Albert 1943) .
.
.
.

Theorem: .
.
.

A principal isotopy (f, g,1P ): (P, ∗, e) → (P, ·,1) from a loop to a group .
.

extends to a higher isotopy (f, g,1P ;m): (P, ∗, e) → (P, ·,1) .
.

with isomorphism m : (P, ∗, e) → (P, ·,1);x 7→ (ef)−1x(eg)−1.
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Points and 3-nets

Singleton quasigroup ⊤ = {d} (terminal object of Qtp or Qhh) .
.
.

For a quasigroup (Q, ∗, /, \): .
.

• Qtp(⊤, Q) is the 3-net {(u, v, u ∗ v) | (u, v) ∈ Q2} of Q. .
.

[u = df , v = dg, u ∗ v = df ∗ dg = (dd)h = dh] .
.

• Qhh(⊤, Q) = {(u, v, u ∗ v) | (u, v) ∈ Q2, u\u = v/v} .
.

[Extension condition says u\u = df\df = dm = dg/dg = v/v]
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Points and loops

Theorem: .
.

A nonempty quasigroup Q is a loop iff each Qtp-point of Q .
is the image under Λ3 of a Qhh-point of Q. .

.
Proof: A nonempty quasigroup Q is a loop iff x\x = y/y holds. � .

.

.
Example: .

.
For a loop (G, ·, /, \,1) with set I of involutions, .

have Qhh
(
⊤, (G, /)

)
Λ3 as the subset G× (I ∪ {1}) .

of the 3-net Qtp
(
⊤, (G, /)

)
of (G, /).
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