Higher Homotopy

Gavin N. Nop
email: gnnop@iastate.edu and
Jonathan D.H. Smith
email: jdhsmith@iastate.edu
http://orion.math.iastate.edu/jdhsmith/homepage.html
Iowa State University

Homotopy

Homotopy

Homotopy: $(f, g, h):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$

$$
\text { with } x^{f} \circ y^{g}=(x * y)^{h} \text { for all } x, y \in P .
$$

Homotopy

Homotopy: $(f, g, h):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$

$$
\text { with } x^{f} \circ y^{g}=(x * y)^{h} \text { for all } x, y \in P .
$$

Isotopy: f, g, h bijective.

Homotopy

Homotopy: $(f, g, h):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$

$$
\text { with } x^{f} \circ y^{g}=(x * y)^{h} \text { for all } x, y \in P .
$$

Isotopy: f, g, h bijective.
Homomorphism: $f=g=h$.

Homotopy

Homotopy: $(f, g, h):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$

$$
\text { with } x^{f} \circ y^{g}=(x * y)^{h} \text { for all } x, y \in P .
$$

Isotopy: f, g, h bijective.
Homomorphism: $f=g=h$.

Homotopy category:
Qtp with $\left(f_{1}, g_{1}, h_{1}\right)\left(f_{2}, g_{2}, h_{2}\right)=\left(f_{1} f_{2}, g_{1} g_{2}, h_{1} h_{2}\right)$.

Homotopy

Homotopy: $(f, g, h):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$

$$
\text { with } x^{f} \circ y^{g}=(x * y)^{h} \text { for all } x, y \in P .
$$

Isotopy: f, g, h bijective.
Homomorphism: $f=g=h$.

Homotopy category:
Qtp with $\left(f_{1}, g_{1}, h_{1}\right)\left(f_{2}, g_{2}, h_{2}\right)=\left(f_{1} f_{2}, g_{1} g_{2}, h_{1} h_{2}\right)$.

Example: $\operatorname{Qtp}\left(\mathbb{O}^{*}, \mathbb{O}^{*}\right)^{*}=\operatorname{Spin}_{8}(\mathbb{R})$

Higher homotopy

Higher homotopy

Higher homotopy: $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$
with homotopies $(f, g, h),(f, m, f),(m, g, g)$.

Higher homotopy

Higher homotopy: $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$
with homotopies $(f, g, h),(f, m, f),(m, g, g)$. Mnemonic $\left[\begin{array}{ccc}f & m & f \\ m & g & g \\ f & g & h\end{array}\right]$

Higher homotopy

Higher homotopy: $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$
with homotopies $(f, g, h),(f, m, f),(m, g, g)$. Mnemonic $\left[\begin{array}{ccc}f & m & f \\ m & g & g \\ f & g & h\end{array}\right]$
Higher isotopy: f, g, h, m bijective.

Higher homotopy

Higher homotopy: $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$
with homotopies $(f, g, h),(f, m, f),(m, g, g)$. Mnemonic $\left[\begin{array}{ccc}f & m & f \\ m & g & g \\ f & g & h\end{array}\right]$
Higher isotopy: f, g, h, m bijective.
Homomorphism: $f=g=h=m$.

Higher homotopy

Higher homotopy: $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$
with homotopies $(f, g, h),(f, m, f),(m, g, g)$. Mnemonic $\left[\begin{array}{ccc}f & m & f \\ m & g & g \\ f & g & h\end{array}\right]$
Higher isotopy: f, g, h, m bijective.
Homomorphism: $f=g=h=m$.
Higher homotopy category:
Qhh with $\left(f_{1}, g_{1}, h_{1} ; m_{1}\right)\left(f_{2}, g_{2}, h_{2} ; m_{2}\right)=\left(f_{1} f_{2}, g_{1} g_{2}, h_{1} h_{2} ; m_{1} m_{2}\right)$.

Higher homotopy

Higher homotopy: $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash)$
with homotopies $(f, g, h),(f, m, f),(m, g, g)$. Mnemonic $\left[\begin{array}{ccc}f & m & f \\ m & g & g \\ f & g & h\end{array}\right]$
Higher isotopy: f, g, h, m bijective.
Homomorphism: $f=g=h=m$.
Higher homotopy category:
Qhh with $\left(f_{1}, g_{1}, h_{1} ; m_{1}\right)\left(f_{2}, g_{2}, h_{2} ; m_{2}\right)=\left(f_{1} f_{2}, g_{1} g_{2}, h_{1} h_{2} ; m_{1} m_{2}\right)$.

Faithful lowering functor $\wedge_{3}: \mathbf{Q h h} \rightarrow \operatorname{Qtp} ;(f, g, h ; m) \mapsto(f, g, h)$

Extension conditions

Extension conditions

$$
\text { Pair }(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots
$$

Extension conditions

Pair $(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots$
...extends to a homotopy (f, g, h) iff

Extension conditions

Pair $(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots$
...extends to a homotopy (f, g, h) iff

$$
\forall x, y, z \in P, x^{f} \circ(x \backslash y)^{g}=(y / z)^{f} \circ z^{g}
$$

Extension conditions

Pair $(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots$
...extends to a homotopy (f, g, h) iff

$$
\forall x, y, z \in P, x^{f} \circ(x \backslash y)^{g}=(y / z)^{f} \circ z^{g} \quad\left[=y^{h} \quad\right]
$$

Extension conditions

Pair $(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots$
...extends to a homotopy (f, g, h) iff

$$
\forall x, y, z \in P, x^{f} \circ(x \backslash y)^{g}=(y / z)^{f} \circ z^{g} \quad\left[\quad=y^{h} \quad\right]
$$

...then extends to a higher homotopy $(f, g, h ; m)$ iff

Extension conditions

Pair $(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots$
...extends to a homotopy (f, g, h) iff

$$
\forall x, y, z \in P, x^{f} \circ(x \backslash y)^{g}=(y / z)^{f} \circ z^{g} \quad\left[\quad=y^{h} \quad\right]
$$

...then extends to a higher homotopy ($f, g, h ; m$) iff

$$
\forall x, y, z \in P, x^{f} \backslash \backslash(x * y)^{f}=(y * z)^{g} / / z^{g}
$$

Extension conditions

Pair $(f, g):(P, *, /, \backslash) \rightarrow(Q, \circ, / /, \backslash \backslash) \ldots$
...extends to a homotopy (f, g, h) iff

$$
\forall x, y, z \in P, x^{f} \circ(x \backslash y)^{g}=(y / z)^{f} \circ z^{g} \quad\left[\quad=y^{h} \quad\right]
$$

... then extends to a higher homotopy ($f, g, h ; m$) iff

$$
\forall x, y, z \in P, x^{f} \backslash(x * y)^{f}=(y * z)^{g} / / z^{g} \quad\left[=y^{m} \quad\right]
$$

Example

Example

For an abelian group $(A,+, 0)$,

Example

For an abelian group $(A,+, 0)$,
consider the isotopy
$\left(1_{A},-1_{A}, 1_{A}\right):(A,-) \rightarrow(A,+)$.

Example

For an abelian group $(A,+, 0)$,
consider the isotopy
$\left(1_{A},-1_{A}, 1_{A}\right):(A,-) \rightarrow(A,+)$.

Extends to a higher isotopy,

Example

For an abelian group $(A,+, 0)$,
consider the isotopy
$\left(1_{A},-1_{A}, 1_{A}\right):(A,-) \rightarrow(A,+)$.

Extends to a higher isotopy,
namely $\left(1_{A},-1_{A}, 1_{A} ;-1_{A}\right):(A,-) \rightarrow(A,+)$,

Example

For an abelian group $(A,+, 0)$,
consider the isotopy
$\left(1_{A},-1_{A}, 1_{A}\right):(A,-) \rightarrow(A,+)$.

Extends to a higher isotopy,
namely $\left(1_{A},-1_{A}, 1_{A} ;-1_{A}\right):(A,-) \rightarrow(A,+)$,
iff $(A,+, 0)$ is Boolean.

Duality

Duality

Duality

The triple ($h_{1}^{2}, h_{2}^{2}, h_{1}^{1}$): $P \rightarrow Q$ is a homotopy iff the right hand square commutes.

Duality

The triple $\left(h_{1}^{2}, h_{2}^{2}, h_{1}^{1}\right): P \rightarrow Q$ is a homotopy iff the right hand square commutes.

Then the quadruple $\left(h_{1}^{2}, h_{2}^{2}, h_{1}^{1} ; h_{2}^{3}\right): P \rightarrow Q$ is a higher homotopy iff the upper and lower left hand squares commute.

Principal (higher) isotopies

Principal (higher) isotopies

Isotopy $(f, g, h):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$ is principal if $h=1_{P}$.

Principal (higher) isotopies

Isotopy $(f, g, h):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$ is principal if $h=1_{P}$.
$($ ISOTOPY $)=($ PRINCIPAL ISOTOPY $)($ ISOMORPHISM $)$

Principal (higher) isotopies

Isotopy $(f, g, h):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$ is principal if $h=1_{P}$.
$($ ISOTOPY $)=($ PRINCIPAL ISOTOPY $)($ ISOMORPHISM $)$

Higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$ is principal if $h=f g=g f$.

Principal (higher) isotopies

Isotopy $(f, g, h):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$ is principal if $h=1_{P}$.
$($ ISOTOPY $)=($ PRINCIPAL ISOTOPY $)($ ISOMORPHISM)

Higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$ is principal if $h=f g=g f$.
(HIGHER ISOTOPY) $=($ HIGHER PRINCIPAL ISOTOPY) (ISOMORPHISM)

Loop isotopes of groups

Loop isotopes of groups

... are isomorphic to groups. (Albert 1943)

Loop isotopes of groups

... are isomorphic to groups. (Albert 1943)

Theorem:

A principal isotopy $\left(f, g, 1_{P}\right):(P, *, e) \rightarrow(P, \cdot, 1)$ from a loop to a group

Loop isotopes of groups

... are isomorphic to groups. (Albert 1943)

Theorem:

A principal isotopy $\left(f, g, 1_{P}\right):(P, *, e) \rightarrow(P, \cdot, 1)$ from a loop to a group extends to a higher isotopy $\left(f, g, 1_{P} ; m\right):(P, *, e) \rightarrow(P, \cdot, 1)$

Loop isotopes of groups

... are isomorphic to groups. (Albert 1943)

Theorem:

A principal isotopy $\left(f, g, 1_{P}\right):(P, *, e) \rightarrow(P, \cdot, 1)$ from a loop to a group extends to a higher isotopy $\left(f, g, 1_{P} ; m\right):(P, *, e) \rightarrow(P, \cdot, 1)$ with isomorphism $m:(P, *, e) \rightarrow(P, \cdot, 1) ; x \mapsto\left(e^{f}\right)^{-1} x\left(e^{g}\right)^{-1}$.

Conservation laws

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.
- For $s \in P, f$ takes roots of s in (P, \backslash) to roots of s in $(P, \backslash \backslash)$.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.
- For $s \in P, f$ takes roots of s in (P, \backslash) to roots of s in $(P, \backslash \backslash)$.
- $(P, *)$ has a left unit iff (P, \circ) has a left unit.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.
- For $s \in P, f$ takes roots of s in (P, \backslash) to roots of s in $(P, \backslash \backslash)$.
- $(P, *)$ has a left unit iff (P, \circ) has a left unit.
- $\quad(P, *)$ has a right unit iff (P, \circ) has a right unit.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.
- For $s \in P, f$ takes roots of s in (P, \backslash) to roots of s in $(P, \backslash \backslash)$.
- $(P, *)$ has a left unit iff (P, \circ) has a left unit.
- $\quad(P, *)$ has a right unit iff (P, \circ) has a right unit.
- $(P, *)$ is a loop iff (P, \circ) is a loop.

Conservation laws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.
- For $s \in P, f$ takes roots of s in (P, \backslash) to roots of s in $(P, \backslash \backslash)$.
- $(P, *)$ has a left unit iff (P, \circ) has a left unit.
- $(P, *)$ has a right unit iff (P, \circ) has a right unit.
- $(P, *)$ is a loop iff (P, \circ) is a loop.

Fact: Isotopes of loops are not necessarily loops.

Conservation Iaws

Consider a higher isotopy $(f, g, h ; m):(P, *, /, \backslash) \rightarrow(P, \circ, / /, \backslash \backslash)$.

- $(P, *)$ is commutative iff (P, \circ) is commutative.
- m takes squares in $(P, /)$ to squares in $(P, / /)$.
- For $s \in P, g$ takes roots of s in $(P, /)$ to roots of s in $(P, / /)$.
- m takes squares in (P, \backslash) to squares in $(P, \backslash \backslash)$.
- For $s \in P, f$ takes roots of s in (P, \backslash) to roots of s in $(P, \backslash \backslash)$.
- $(P, *)$ has a left unit iff (P, \circ) has a left unit.
- $(P, *)$ has a right unit iff (P, \circ) has a right unit.
- $(P, *)$ is a loop iff (P, \circ) is a loop.

Fact: Higher isotopes of loops are loops.

Points and 3-nets

Points and 3-nets

Singleton quasigroup $\top=\{d\}$

Points and 3-nets

Singleton quasigroup $\top=\{d\}$ (terminal object of Qtp or Qhh)

Points and 3-nets

Singleton quasigroup $\top=\{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

Points and 3-nets

Singleton quasigroup $T=\{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

- $\operatorname{Qtp}(\top, Q)$ is the 3-net $\left\{(u, v, u * v) \mid(u, v) \in Q^{2}\right\}$ of Q.

Points and 3-nets

Singleton quasigroup $T=\{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

- $\operatorname{Qtp}(\top, Q)$ is the 3-net $\left\{(u, v, u * v) \mid(u, v) \in Q^{2}\right\}$ of Q.

$$
\left[u=d^{f}, v=d^{g}, u * v=d^{f} * d^{g}=(d d)^{h}=d^{h}\right]
$$

Points and 3-nets

Singleton quasigroup $T=\{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

- $\operatorname{Qtp}(\top, Q)$ is the 3-net $\left\{(u, v, u * v) \mid(u, v) \in Q^{2}\right\}$ of Q.

$$
\left[u=d^{f}, v=d^{g}, u * v=d^{f} * d^{g}=(d d)^{h}=d^{h}\right]
$$

- $\operatorname{Qhh}(\top, Q)=\left\{(u, v, u * v) \mid(u, v) \in Q^{2}, u \backslash u=v / v\right\}$

Points and 3-nets

Singleton quasigroup $T=\{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

- $\operatorname{Qtp}(\top, Q)$ is the 3-net $\left\{(u, v, u * v) \mid(u, v) \in Q^{2}\right\}$ of Q.

$$
\left[u=d^{f}, v=d^{g}, u * v=d^{f} * d^{g}=(d d)^{h}=d^{h}\right]
$$

- $\operatorname{Qhh}(\top, Q)=\left\{(u, v, u * v) \mid(u, v) \in Q^{2}, u \backslash u=v / v\right\}$
[Extension condition says $u \backslash u=d^{f} \backslash d^{f}=d^{m}=d^{g} / d^{g}=v / v$]

Points and loops

Points and loops

Theorem:
A nonempty quasigroup Q is a loop iff each Qtp-point of Q is the image under Λ_{3} of a Qhh-point of Q.

Points and loops

Theorem:
A nonempty quasigroup Q is a loop iff each Qtp-point of Q is the image under Λ_{3} of a Qhh-point of Q.

Proof: A nonempty quasigroup Q is a loop iff $x \backslash x=y / y$ holds.

Points and loops

Theorem:

A nonempty quasigroup Q is a loop iff each Qtp-point of Q is the image under \wedge_{3} of a Qhh-point of Q.

Proof: A nonempty quasigroup Q is a loop iff $x \backslash x=y / y$ holds.

Example:

For a loop ($G, \cdot, /, \backslash, 1$) with set I of involutions, have $\operatorname{Qhh}(\top,(G, /)) \wedge_{3}$ as the subset $G \times(I \cup\{1\})$ of the 3-net $\operatorname{Qtp}(T,(G, /))$ of $(G, /)$.

References

A.A. Albert:

Quasigroups I. Fundamental concepts and isotopy.
Trans. Amer. Math. Soc. 54 (1943), 507-519.
J.D.H. Smith:

Quasigroup homotopies, semisymmetrization, and reversible automata.
Internat. J. Algebra Comput. 18 (2008), 1203-1221.
G.N. Nop and J.D.H. Smith:

Higher homotopies between quasigroups (preprint 2017).

Thank you for your attention!

