Gavin N. Nop email: gnnop@iastate.edu

and

Jonathan D.H. Smith email: jdhsmith@iastate.edu http://orion.math.iastate.edu/jdhsmith/homepage.html

Iowa State University

Homotopy: (f, g, h): $(P, *, /, \backslash) \rightarrow (Q, \circ, //, \backslash \backslash)$

with $x^f \circ y^g = (x * y)^h$ for all $x, y \in P$.

Homotopy: (f, g, h): $(P, *, /, \backslash) \rightarrow (Q, \circ, //, \backslash \backslash)$

with $x^f \circ y^g = (x * y)^h$ for all $x, y \in P$.

Isotopy: f, g, h bijective.

Homotopy: (f, g, h): $(P, *, /, \backslash) \rightarrow (Q, \circ, //, \backslash \backslash)$

with $x^f \circ y^g = (x * y)^h$ for all $x, y \in P$.

Isotopy: f, g, h bijective.

Homomorphism: f = g = h.

Homotopy: (f, g, h): $(P, *, /, \backslash) \rightarrow (Q, \circ, //, \backslash \backslash)$

with
$$x^f \circ y^g = (x * y)^h$$
 for all $x, y \in P$.

Isotopy: f, g, h bijective.

Homomorphism: f = g = h.

Homotopy category:

Qtp with $(f_1, g_1, h_1)(f_2, g_2, h_2) = (f_1f_2, g_1g_2, h_1h_2).$

Homotopy: (f, g, h): $(P, *, /, \backslash) \rightarrow (Q, \circ, //, \backslash \backslash)$

with $x^f \circ y^g = (x * y)^h$ for all $x, y \in P$.

Isotopy: f, g, h bijective.

Homomorphism: f = g = h.

Homotopy category:

Qtp with $(f_1, g_1, h_1)(f_2, g_2, h_2) = (f_1f_2, g_1g_2, h_1h_2).$

Example: $\operatorname{Qtp}(\mathbb{O}^*, \mathbb{O}^*)^* = \operatorname{Spin}_8(\mathbb{R})$

Higher homotopy: $(f, g, h; m) \colon (P, *, /, \backslash) \to (Q, \circ, //, \backslash \backslash)$

with homotopies (f, g, h), (f, m, f), (m, g, g).

Higher homotopy: $(f, g, h; m) \colon (P, *, /, \backslash) \to (Q, \circ, //, \backslash \backslash)$

with homotopies (f, g, h), (f, m, f), (m, g, g). Mnemonic $\begin{bmatrix} f & m & f \\ m & g & g \\ f & g & h \end{bmatrix}$

Higher homotopy: $(f, g, h; m) \colon (P, *, /, \backslash) \to (Q, \circ, //, \backslash \backslash)$

with homotopies (f, g, h), (f, m, f), (m, g, g). Mnemonic $\begin{bmatrix} f & m & f \\ m & g & g \\ f & g & h \end{bmatrix}$

Higher isotopy: f, g, h, m bijective.

Higher homotopy: $(f, g, h; m) \colon (P, *, /, \backslash) \to (Q, \circ, //, \backslash \backslash)$

with homotopies (f, g, h), (f, m, f), (m, g, g). Mnemonic $\begin{vmatrix} f & m & f \\ m & g & g \\ f & g & h \end{vmatrix}$

Higher isotopy: f, g, h, m bijective.

Homomorphism: f = g = h = m.

Higher homotopy: $(f, g, h; m) \colon (P, *, /, \backslash) \to (Q, \circ, //, \backslash \backslash)$

with homotopies (f, g, h), (f, m, f), (m, g, g). Mnemonic $\begin{bmatrix} f & m & f \\ m & g & g \\ f & g & h \end{bmatrix}$

Higher isotopy: f, g, h, m bijective.

Homomorphism: f = g = h = m.

Higher homotopy category:

Qhh with $(f_1, g_1, h_1; m_1)(f_2, g_2, h_2; m_2) = (f_1f_2, g_1g_2, h_1h_2; m_1m_2).$

Higher homotopy: $(f, g, h; m) \colon (P, *, /, \backslash) \to (Q, \circ, //, \backslash \backslash)$

with homotopies (f, g, h), (f, m, f), (m, g, g). Mnemonic $\begin{bmatrix} f & m & f \\ m & g & g \\ f & g & h \end{bmatrix}$

Higher isotopy: f, g, h, m bijective.

Homomorphism: f = g = h = m.

Higher homotopy category:

Qhh with $(f_1, g_1, h_1; m_1)(f_2, g_2, h_2; m_2) = (f_1f_2, g_1g_2, h_1h_2; m_1m_2).$

Faithful lowering functor Λ_3 : Qhh \rightarrow Qtp; $(f, g, h; m) \mapsto (f, g, h)$

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

... extends to a homotopy (f, g, h) iff

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

... extends to a homotopy (f, g, h) iff

$$\forall x, y, z \in P, x^f \circ (x \setminus y)^g = (y/z)^f \circ z^g$$

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

... extends to a homotopy (f, g, h) iff

$$\forall x, y, z \in P, x^f \circ (x \setminus y)^g = (y/z)^f \circ z^g \quad [=y^h]$$

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

... extends to a homotopy (f, g, h) iff

$$\forall x, y, z \in P, x^f \circ (x \setminus y)^g = (y/z)^f \circ z^g [= y^h]$$

... then extends to a higher homotopy (f, g, h; m) iff

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

... extends to a homotopy (f, g, h) iff

$$\forall x, y, z \in P, x^f \circ (x \setminus y)^g = (y/z)^f \circ z^g [= y^h]$$

... then extends to a higher homotopy (f, g, h; m) iff

 $\forall x, y, z \in P, \ x^f \backslash \backslash (x * y)^f = (y * z)^g / / z^g$

Pair (f,g): $(P,*,/,\backslash) \rightarrow (Q,\circ,//,\backslash\backslash)$...

... extends to a homotopy (f, g, h) iff

$$\forall x, y, z \in P, x^f \circ (x \setminus y)^g = (y/z)^f \circ z^g [= y^h]$$

... then extends to a higher homotopy (f, g, h; m) iff

$$\forall x, y, z \in P, x^f \setminus (x * y)^f = (y * z)^g / z^g [= y^m]$$

For an abelian group (A, +, 0),

For an abelian group (A, +, 0),

consider the isotopy

 $(1_A, -1_A, 1_A): (A, -) \to (A, +).$

For an abelian group (A, +, 0),

consider the isotopy

$$(1_A, -1_A, 1_A): (A, -) \to (A, +).$$

Extends to a higher isotopy,

For an abelian group (A, +, 0),

consider the isotopy

 $(1_A, -1_A, 1_A): (A, -) \to (A, +).$

Extends to a higher isotopy,

namely $(1_A, -1_A, 1_A; -1_A) \colon (A, -) \to (A, +),$

For an abelian group (A, +, 0),

consider the isotopy

$$(1_A, -1_A, 1_A): (A, -) \to (A, +).$$

Extends to a higher isotopy,

namely $(1_A, -1_A, 1_A; -1_A) \colon (A, -) \to (A, +)$, iff (A, +, 0) is Boolean.

The triple (h_1^2, h_2^2, h_1^1) : $P \to Q$ is a homotopy iff the right hand square commutes.

The triple (h_1^2, h_2^2, h_1^1) : $P \rightarrow Q$ is a homotopy iff the right hand square commutes.

Then the quadruple $(h_1^2, h_2^2, h_1^1; h_2^3)$: $P \to Q$ is a higher homotopy iff the upper and lower left hand squares commute.

Isotopy (f, g, h): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$ is **principal** if $h = 1_P$.

Isotopy (f, g, h): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$ is principal if $h = 1_P$.

(ISOTOPY) = (PRINCIPAL ISOTOPY) (ISOMORPHISM)

Isotopy (f, g, h): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$ is **principal** if $h = 1_P$.

(ISOTOPY) = (PRINCIPAL ISOTOPY) (ISOMORPHISM)

Higher isotopy (f, g, h; m): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$ is principal if h = fg = gf.

Isotopy (f, g, h): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$ is **principal** if $h = 1_P$.

(ISOTOPY) = (PRINCIPAL ISOTOPY) (ISOMORPHISM)

Higher isotopy (f, g, h; m): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$ is principal if h = fg = gf.

(HIGHER ISOTOPY) = (HIGHER PRINCIPAL ISOTOPY) (ISOMORPHISM)

... are isomorphic to groups. (Albert 1943)

... are isomorphic to groups. (Albert 1943)

Theorem:

A principal isotopy $(f, g, 1_P)$: $(P, *, e) \rightarrow (P, \cdot, 1)$ from a loop to a group

... are isomorphic to groups. (Albert 1943)

Theorem:

A principal isotopy $(f, g, 1_P)$: $(P, *, e) \rightarrow (P, \cdot, 1)$ from a loop to a group extends to a higher isotopy $(f, g, 1_P; m)$: $(P, *, e) \rightarrow (P, \cdot, 1)$

... are isomorphic to groups. (Albert 1943)

Theorem:

A principal isotopy $(f, g, 1_P)$: $(P, *, e) \to (P, \cdot, 1)$ from a loop to a group extends to a higher isotopy $(f, g, 1_P; m)$: $(P, *, e) \to (P, \cdot, 1)$ with isomorphism m: $(P, *, e) \to (P, \cdot, 1)$; $x \mapsto (e^f)^{-1}x(e^g)^{-1}$.

Consider a higher isotopy (f, g, h; m): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$.

• (P, *) is commutative iff (P, \circ) is commutative.

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .
- For $s \in P$, f takes roots of s in (P, \setminus) to roots of s in (P, \setminus) .

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .
- For $s \in P$, f takes roots of s in (P, \setminus) to roots of s in (P, \setminus) .
- (P, *) has a left unit iff (P, \circ) has a left unit.

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .
- For $s \in P$, f takes roots of s in (P, \setminus) to roots of s in (P, \setminus) .
- (P, *) has a left unit iff (P, \circ) has a left unit.
- (P,*) has a right unit iff (P,\circ) has a right unit.

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .
- For $s \in P$, f takes roots of s in (P, \setminus) to roots of s in (P, \setminus) .
- (P,*) has a left unit iff (P,\circ) has a left unit.
- (P, *) has a right unit iff (P, \circ) has a right unit.
- (P,*) is a loop iff (P,\circ) is a loop.

Consider a higher isotopy (f, g, h; m): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$.

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .
- For $s \in P$, f takes roots of s in (P, \setminus) to roots of s in (P, \setminus) .
- (P,*) has a left unit iff (P,\circ) has a left unit.
- (P, *) has a right unit iff (P, \circ) has a right unit.
- (P,*) is a loop iff (P,\circ) is a loop.

Fact: Isotopes of loops are not necessarily loops.

Consider a higher isotopy (f, g, h; m): $(P, *, /, \backslash) \rightarrow (P, \circ, //, \backslash \backslash)$.

- (P, *) is commutative iff (P, \circ) is commutative.
- *m* takes squares in (P, /) to squares in (P, //).
- For $s \in P$, g takes roots of s in (P, /) to roots of s in (P, //).
- *m* takes squares in (P, \setminus) to squares in (P, \setminus) .
- For $s \in P$, f takes roots of s in (P, \setminus) to roots of s in (P, \setminus) .
- (P,*) has a left unit iff (P,\circ) has a left unit.
- (P, *) has a right unit iff (P, \circ) has a right unit.
- (P,*) is a loop iff (P,\circ) is a loop.

Fact: Higher isotopes of loops are loops.

Singleton quasigroup $\top = \{d\}$

Singleton quasigroup $\top = \{d\}$ (terminal object of Qtp or Qhh)

Singleton quasigroup $\top = \{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

Singleton quasigroup $\top = \{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

• $\mathbf{Qtp}(\top, Q)$ is the 3-net $\{(u, v, u * v) \mid (u, v) \in Q^2\}$ of Q.

Singleton quasigroup $\top = \{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

• $\mathbf{Qtp}(\top, Q)$ is the 3-net $\{(u, v, u * v) \mid (u, v) \in Q^2\}$ of Q.

$$[u = d^f, v = d^g, u * v = d^f * d^g = (dd)^h = d^h]$$

Singleton quasigroup $\top = \{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

• $\mathbf{Qtp}(\top, Q)$ is the 3-net $\{(u, v, u * v) \mid (u, v) \in Q^2\}$ of Q.

$$[u = d^f, v = d^g, u * v = d^f * d^g = (dd)^h = d^h]$$

• $\mathbf{Qhh}(\top, Q) = \{(u, v, u * v) \mid (u, v) \in Q^2, u \setminus u = v/v\}$

Singleton quasigroup $\top = \{d\}$ (terminal object of Qtp or Qhh)

For a quasigroup $(Q, *, /, \backslash)$:

• $\mathbf{Qtp}(\top, Q)$ is the 3-net $\{(u, v, u * v) \mid (u, v) \in Q^2\}$ of Q.

$$[u = d^f, v = d^g, u * v = d^f * d^g = (dd)^h = d^h]$$

• $\mathbf{Qhh}(\top, Q) = \{(u, v, u * v) \mid (u, v) \in Q^2, u \setminus u = v/v\}$

[Extension condition says $u \backslash u = d^f \backslash d^f = d^m = d^g/d^g = v/v$]

Theorem:

A nonempty quasigroup Q is a loop iff each Qtp-point of Q is the image under Λ_3 of a Qhh-point of Q.

Theorem:

A nonempty quasigroup Q is a loop iff each Qtp-point of Q is the image under Λ_3 of a Qhh-point of Q.

Proof: A nonempty quasigroup Q is a loop iff $x \setminus x = y/y$ holds.

 \square

Theorem:

A nonempty quasigroup Q is a loop iff each Qtp-point of Q is the image under Λ_3 of a Qhh-point of Q.

Proof: A nonempty quasigroup Q is a loop iff $x \setminus x = y/y$ holds.

Example:

For a loop $(G, \cdot, /, \backslash, 1)$ with set I of involutions, have $\mathbf{Qhh}(\top, (G, /)) \wedge_3$ as the subset $G \times (I \cup \{1\})$ of the 3-net $\mathbf{Qtp}(\top, (G, /))$ of (G, /).

References

A.A. Albert: Quasigroups I. Fundamental concepts and isotopy. *Trans. Amer. Math. Soc.* **54** (1943), 507–519.

J.D.H. Smith: Quasigroup homotopies, semisymmetrization, and reversible automata. *Internat. J. Algebra Comput.* **18** (2008), 1203–1221.

G.N. Nop and J.D.H. Smith: Higher homotopies between quasigroups (preprint 2017). Thank you for your attention!