QUASIGROUP FUNCTIONAL EQUATIONS OF DISTRIBUTIVITY

Fedir Sokhatsky

Vasyl' Stus Donetsk National University, Ukraine

The Fourth Mile High Conference on Nonassociative Mathematics July 29 - August 5, 2017
University of Denver, Denver, Colorado, U.S.A.

Introduction

Together with algebraic methods (quasigroup algebras and their varieties), combinatorial methods (Latin squares, cubes and hypercubes), geometric methods (nets) of investigation of quasigroups there exists a functional method. According to this method, quasigroups are considered as invertible functions which are defined on the same carrier. These functions form some algebras (groups, position algebras,...) or are some part of algebras (iterative algebras, bi-unary semigroups, Menger algebras,...). Theorems on solutions of functional equations are the most effective applicable results of this method.
In my talk, I will try to show this effectiveness on examples of application of the functional equation of generalized distributivity.

Corollaries from func. equ. of gener. associativity:

A quasigroup $(Q ; \cdot)$ is isotopic to a group if it satisfies an identity:
(1) $\ldots(\ldots x \ldots y \ldots) \ldots z \ldots=\ldots x \ldots(\ldots y \ldots z \ldots) \ldots$
(V.D. Belousov, 1987);
(2) which is not Gemini (quadratic identity is gemini, if it is an identity in a free TS-loop) (A. Krapež, M. A. Taylor 1995);

B which has a subterm $\left(x^{\sigma} \cdot y\right)^{\tau} \cdot\left(y^{\nu} \cdot z\right)$ for some quadratic
variables x, y, z and some parastrophes \cdot, \cdot, \cdot of (.)
(F. Sokhatsky);
(4) $\left(x^{n} \cdot y^{k}\right) \cdot z=\left(z^{p} \cdot y\right) \cdot x(F$. Sokhatsky).

Corollaries from func. equ. of gener. associativity:

A quasigroup $(Q ; \cdot)$ is isotopic to a group if it satisfies an identity:
(1) $\ldots(\ldots x \ldots y \ldots) \ldots z \ldots=\ldots x \ldots(\ldots y \ldots z \ldots) \ldots$
(V.D. Belousov, 1987);
(2) which is not Gemini (quadratic identity is gemini, if it is an identity in a free TS-loop) (A. Krapež, M. A. Taylor 1995);
(3) which has a subterm $\left(x^{\sigma} \cdot y\right)^{\tau} \cdot\left(y^{\prime} \cdot z\right)$ for some quadratic variables x, y, z and some parastrophes
(4) $\left(x^{n} \cdot y^{k}\right) \cdot z=\left(z^{p} \cdot y\right) \cdot x(F$. Sokhatsky).

Corollaries from func. equ. of gener. associativity:

A quasigroup $(Q ; \cdot)$ is isotopic to a group if it satisfies an identity:
(1) $\ldots(\ldots x \ldots y \ldots) \ldots z \ldots=\ldots x \ldots(\ldots y \ldots z \ldots) \ldots$
(V.D. Belousov, 1987);
(2) which is not Gemini (quadratic identity is gemini, if it is an identity in a free TS-loop) (A. Krapež, M. A. Taylor 1995);
(3) which has a subterm $\left(x^{\sigma} \cdot y\right)^{\tau} \cdot\left(y^{\nu} \cdot z\right)$ for some quadratic variables x, y, z and some parastrophes ${ }^{\sigma}, \tau^{\tau}, \cdot$ of (\cdot) (F. Sokhatsky);

Corollaries from func. equ. of gener. associativity:

A quasigroup $(Q ; \cdot)$ is isotopic to a group if it satisfies an identity:
(1) $\ldots(\ldots x \ldots y \ldots) \ldots z \ldots=\ldots x \ldots(\ldots y \ldots z \ldots) \ldots$
(V.D. Belousov, 1987);
(2) which is not Gemini (quadratic identity is gemini, if it is an identity in a free TS-loop) (A. Krapež, M. A. Taylor 1995);
(3) which has a subterm $\left(x^{\sigma} \cdot y\right)^{\tau} \cdot\left(y^{\nu} \cdot z\right)$ for some quadratic variables x, y, z and some parastrophes ${ }^{\sigma},,^{\tau}, \cdot$ of (\cdot) (F. Sokhatsky);
(4) $\left(x^{n} \cdot y^{k}\right) \cdot z=\left(z^{p} \cdot y\right) \cdot x$ (F. Sokhatsky).

Corollaries from Pexider func. equation:

Proposition 2.(F.Sokhatsky,2016)

(1) Isotopic inverse property loops are pseudo-isomorphic.
(2) Isotopic commutative inverse property loops are isomorphic.

Definition

Two loops ($A ; \cdot)$ and $(B ;+)$ are said to be left
pseudo-isomorphic, if there exists an element $a \in B$ and a mapping $\theta: A \rightarrow B$ such that $a+\theta(x \cdot y)=(a+\theta x)+\theta y$ for all $x, y \in A$.

Corollaries from Pexider func. equation:

Proposition 2.(F.Sokhatsky,2016)

(1) Isotopic inverse property loops are pseudo-isomorphic.
(2) Isotopic commutative inverse property loops are isomorphic.

> Definition
> Two loops $(A ; \cdot)$ and $(B ;+)$ are said to be left
> pseudo-isomorphic, if there exists an element $a \in B$ and a mapping $\theta: A \rightarrow B$ such that $a+\theta(x \cdot y)=(a+\theta x)+\theta y$ for all $x, y \in A$.

Corollaries from Pexider func. equation:

Proposition 2.(F.Sokhatsky,2016)

(1) Isotopic inverse property loops are pseudo-isomorphic.
(2) Isotopic commutative inverse property loops are isomorphic.

Corollaries from Pexider func. equation:

Proposition 2.(F.Sokhatsky,2016)

(1) Isotopic inverse property loops are pseudo-isomorphic.
(2) Isotopic commutative inverse property loops are isomorphic.

Definition

Two loops $(A ; \cdot)$ and $(B ;+)$ are said to be left pseudo-isomorphic, if there exists an element $a \in B$ and a mapping $\theta: A \rightarrow B$ such that $a+\theta(x \cdot y)=(a+\theta x)+\theta y$ for all $x, y \in A$.

Invertibility

Left and right multiplications (Mann superpositions)

Let Q be an arbitrary set and $\Omega_{2}(Q)$ be the set of all binary operations defined on Q. One can define two associative superpositions on $\Omega_{2}(Q)$:

$$
(f \oplus g)(x, y):=f(g(x, y), y), \quad(f \oplus \underset{\ell}{\oplus} g)(x, y):=f(x, g(x, y))
$$

which are called left and right multiplications respectively.

Invertibility

Left and right multiplications (Mann superpositions)

Let Q be an arbitrary set and $\Omega_{2}(Q)$ be the set of all binary operations defined on Q. One can define two associative superpositions on $\Omega_{2}(Q)$:

$$
(f \oplus g)(x, y):=f(g(x, y), y), \quad(f \oplus \underset{\ell}{\oplus} g)(x, y):=f(x, g(x, y))
$$

which are called left and right multiplications respectively.

Two symmetric monoids

$\left(\Omega_{2}(Q) ; \underset{\ell}{\oplus}, e_{\ell}\right)$ and $\left(\Omega_{2}(Q) ; \underset{r}{\oplus}, e_{r}\right)$ are called left and right symmetric monoids of binary operations, where e_{ℓ} and e_{r} denote the left and right selectors: $e_{\ell}(x, y):=x, e_{r}(x, y):=y$.

Invertibility of binary operations

A binary operation f is called:

- left invertible, if it is invertible in the left symmetric monoid and its inverse element is denoted by ${ }^{\ell_{f}}$;
- right invertihle if it is invertible in the right symmetric monoid and its inverse element is denoted by ${ }^{r} f$;
- invertible, if it is both left and right invertible.

Left and right invertibility:

$f\left({ }^{\ell} f(x, y), y\right)={ }^{\ell} f(f(x, y), y)=x, \quad f\left(x,{ }^{r} f(x, y)\right)={ }^{r} f(x, f(x, y))=y$.
Therefore the algebra ($\cap \cdot f^{\ell} f{ }^{\prime} f$) is a quasigroun if f is an invertible function and ${ }^{\ell_{f}}$, ${ }^{r} f$ are its left and right inverses. f is also called a quasigroup operation.

Invertibility of binary operations

A binary operation f is called:

- left invertible, if it is invertible in the left symmetric monoid and its inverse element is denoted by ${ }^{\ell} f$;
- right invertible, if it is invertible in the right symmetric monoid and its inverse element is denoted by ${ }^{r} f$;
- invertible if it is both left and right invertible.
Left and right invertibility:
$f\left({ }^{l} f(x, y), y\right)={ }^{l} f(f(x, y), y)=x$ $f\left(x,{ }^{r} f(x, y)\right)={ }^{r} f(x, f(x, y))=y$Therefore, the algehra ($Q \cdot f, \ell_{f}, r f$) is a quasigroup, if f is aninvertible function and ${ }^{l f}$, ${ }^{r f}$ are its left and right inverses. f isalso called a quasigroup operation.

Invertibility of binary operations

A binary operation f is called:

- left invertible, if it is invertible in the left symmetric monoid and its inverse element is denoted by ${ }^{\ell} f$;
- right invertible, if it is invertible in the right symmetric monoid and its inverse element is denoted by ${ }^{r} f$;

- invertible, if it is both left and right invertible.

Left and right invertibility:
\squareTherefore the algebra ($Q \cdot f^{\ell} f r_{f}$) is a quasigroun if f is aninvertible function and ℓ_{f}, ${ }^{\prime} f$ are its left and right inverses. f isalso called a quasigroup operation.

Invertibility of binary operations

A binary operation f is called:

- left invertible, if it is invertible in the left symmetric monoid and its inverse element is denoted by ${ }^{\ell} f$;
- right invertible, if it is invertible in the right symmetric monoid and its inverse element is denoted by ${ }^{r} f$;
- invertible, if it is both left and right invertible.
\square
\squareTherefore the algebra ($\cap \cdot f^{\ell_{f}} r_{f}$) is a quasigroun if f is an

$$
\text { invertible function and }{ }^{\ell} f,{ }^{r} f \text { are its left and right inverses. } f \text { is }
$$

also called a quasigroup operation.

Invertibility of binary operations

A binary operation f is called:

- left invertible, if it is invertible in the left symmetric monoid and its inverse element is denoted by ${ }^{l} f$;
- right invertible, if it is invertible in the right symmetric monoid and its inverse element is denoted by ${ }^{r} f$;
- invertible, if it is both left and right invertible.

Left and right invertibility:

$$
\underset{\ell}{\oplus} \oplus_{\ell}^{\ell} f={ }^{\ell} f \underset{\ell}{\oplus} f=e_{\ell}, \quad f \underset{r}{\oplus}{ }_{r}^{r} f={ }^{r} f \underset{r}{\oplus} f=e_{r},
$$

$$
f\left(\ell^{\ell} f(x, y), y\right)={ }^{\ell} f(f(x, y), y)=x, \quad f\left(x,{ }^{r} f(x, y)\right)=^{r} f(x, f(x, y))=y
$$

Therefore, the algebra ($Q ; f,{ }^{\ell} f,{ }^{r} f$) is a quasigroup, if f is an invertible function and ${ }^{\ell} f$, ${ }^{r} f$ are its left and right inverses. f is also called a quasigroup operation.

Parastrophes

Parastrophe

σ-parastrophe of an arbitrary operation (\cdot) is defined by:

$$
\begin{equation*}
x_{1 \sigma}{ }^{\sigma} \cdot x_{2 \sigma}=x_{3 \sigma}: \Longleftrightarrow x_{1} \cdot x_{2}=x_{3} \quad \forall \sigma \in S_{3}, \tag{2}
\end{equation*}
$$

where $S_{3}:=\{\iota, \ell, r, s, s \ell, s r\}, \ell:=(13), r:=(23), s:=(12)$.

Let \mathfrak{A} be a class of quasigroups. A class ${ }^{\sigma} \mathfrak{A}$ of σ-parastrophes of all quasigroups from \mathfrak{A} is called σ-parastrophe of \mathfrak{A}.

Parastrophes

Parastrophe

σ-parastrophe of an arbitrary operation (\cdot) is defined by:

$$
\begin{equation*}
x_{1 \sigma}{ }^{\sigma} \cdot x_{2 \sigma}=x_{3 \sigma}: \Longleftrightarrow x_{1} \cdot x_{2}=x_{3} \quad \forall \sigma \in S_{3}, \tag{2}
\end{equation*}
$$

where $S_{3}:=\{\iota, \ell, r, s, s \ell, s r\}, \ell:=(13), r:=(23), s:=(12)$.

Let \mathfrak{A} be a class of quasigroups. A class ${ }^{\sigma} \mathfrak{A}$ of σ-parastrophes of all quasigroups from \mathfrak{A} is called σ-parastrophe of \mathfrak{A}.

Functional equations and identities

- Aczél J. "Lectures on Functional Equations their Applications" (1966);
- Grätzer "Universal Algebras" (1979)

Universal quantified equality is

$$
\forall x \forall y \ldots \forall u \quad W=U,
$$

where W, U are second order terms and $\{x, y, \ldots, u\}$ is the set of all individual variables appearing in $W=U$.

Functional equations and identities

- Aczél J. "Lectures on Functional Equations their Applications" (1966);
- Grätzer "Universal Algebras" (1979)

Universal quantified equality is

where W, U are second order terms and $\{x, y, \ldots, u\}$ is the set of all individual variables appearing in $W=U$.

Functional equations and identities

- Aczél J. "Lectures on Functional Equations their Applications" (1966);
- Grätzer "Universal Algebras" (1979)

Universal quantified equality is

where W, U are second order terms and $\{x, y, \ldots, u\}$ is the set
of all individual variables appearing in $W=U$.

Functional equations and identities

- Aczél J. "Lectures on Functional Equations their Applications" (1966);
- Grätzer "Universal Algebras" (1979)

Universal quantified equality is

$$
\forall x \forall y \ldots \forall u \quad W=U
$$

where W, U are second order terms and $\{x, y, \ldots, u\}$ is the set of all individual variables appearing in $W=U$.

Functional equations and identities

Functional equations

A universal quantified equality is said to be a functional equation, if it has functional variables.

Pure identities
We will consider only identities which are universal quantified equalities without constants (neither functional nor individual) Every identity defines a variety.

Note, if an identity has a functional or individual constant, then it does not define a variety, because the carrier is defined and the family of functions satisfying the identity forms a set which is empty, if it has no functional variables.

Functional equations and identities

Functional equations

A universal quantified equality is said to be a functional equation, if it has functional variables.

Pure identities

We will consider only identities which are universal quantified equalities without constants (neither functional nor individual). Every identity defines a variety.

Note, if an identity has a functional or individual constant, then it does not define a variety, because the carrier is defined and the family of functions satisfying the identity forms a set which is empty, if it has no functional variables.

Functional equations and identities

Functional equations

A universal quantified equality is said to be a functional equation, if it has functional variables.

Pure identities

We will consider only identities which are universal quantified equalities without constants (neither functional nor individual). Every identity defines a variety.

Note, if an identity has a functional or individual constant, then it does not define a variety, because the carrier is defined and the family of functions satisfying the identity forms a set which is empty, if it has no functional variables.

Functional equations and identities

Pure functional equations

A pure functional equation and a pure identity are assumed to be the same. Therefore, "an algebra satisfies a pure identity $W=U$ " and "the algebra is a solution of the pure functional equation" will be the same too.

> Quasigroup solutions
> The sequence is called quasigroup solution, if all functions from the solution are invertible. An equation is called a quasigroup functional equation, if it is studied on invertible functions.

A functional equation is said to be generalized, if all functional variables are pairwise different.

Functional equations and identities

Pure functional equations

A pure functional equation and a pure identity are assumed to be the same. Therefore, "an algebra satisfies a pure identity $W=U$ " and "the algebra is a solution of the pure functional equation" will be the same too.

Quasigroup solutions

The sequence is called quasigroup solution, if all functions from the solution are invertible. An equation is called a quasigroup functional equation, if it is studied on invertible functions.

A functional equation is said to be generalized, if all functional variables are pairwise different.

Functional equations and identities

Pure functional equations

A pure functional equation and a pure identity are assumed to be the same. Therefore, "an algebra satisfies a pure identity $W=U$ " and "the algebra is a solution of the pure functional equation" will be the same too.

Quasigroup solutions

The sequence is called quasigroup solution, if all functions from the solution are invertible. An equation is called a quasigroup functional equation, if it is studied on invertible functions.

A functional equation is said to be generalized, if all functional variables are pairwise different.

Functional equation of distributivity

Generelized distributive functional equation

is a universal quantified equality

$$
\begin{equation*}
F_{1}\left(F_{2}(x, y), F_{3}(x, z)\right)=F_{4}\left(x, F_{5}(y, z)\right) \tag{3}
\end{equation*}
$$

Well-known problem:

find all quasigroup solutions of (3).

Functional equation of distributivity

Generelized distributive functional equation

is a universal quantified equality

$$
\begin{equation*}
F_{1}\left(F_{2}(x, y), F_{3}(x, z)\right)=F_{4}\left(x, F_{5}(y, z)\right) \tag{3}
\end{equation*}
$$

Well-known problem:

find all quasigroup solutions of (3).

Parastrophic distributivity

Suppose in the functional equation of generalized distributivity, all functional variables are parastrophic. Such an equation is called functional equation or identity of parastrophic distributivity:

$$
{ }^{\sigma_{1}} F\left({ }^{\sigma_{2}} F(x, y),{ }^{\sigma_{3}} F(x, z)\right)={ }^{\sigma_{4}} F\left(x,{ }^{\sigma_{5}} F(y, z)\right), \quad \sigma_{i} \in S_{3} .
$$

Theorem 1. (Sokhatsky, 2015)
In the class of all loops, an arbitrary identity of parastrophic distributivity defines either trivial variety of loops or the variety of all commutative Moufang loops of degree three.

Parastrophic distributivity

Suppose in the functional equation of generalized distributivity, all functional variables are parastrophic. Such an equation is called functional equation or identity of parastrophic distributivity:

$$
{ }^{\sigma_{1}} F\left({ }^{\sigma_{2}} F(x, y),{ }^{\sigma_{3}} F(x, z)\right)={ }^{\sigma_{4}} F\left(x,{ }^{\sigma_{5}} F(y, z)\right), \quad \sigma_{i} \in S_{3} .
$$

Theorem 1. (Sokhatsky, 2015)

In the class of all loops, an arbitrary identity of parastrophic distributivity defines either trivial variety of loops or the variety of all commutative Moufang loops of degree three.

Three types of distributivity:

$$
\begin{array}{cr}
x \cdot y z=x y \cdot x z, & \text { left } \\
y z \cdot x=y x \cdot z x, & \text { right } \\
y z^{r} \cdot x=\left(y^{r} \cdot x\right) \cdot\left(z^{r} \cdot x\right) . & \text { middle }
\end{array}
$$

Remind that a middle translation of a quasigroup ($Q ; \cdot$) is defined by

Theorem 2 (Sokhatsky, 2016).

Every two identities of one-side clistributivity imply the third one.

Three types of distributivity:

$$
\begin{array}{cr}
x \cdot y z=x y \cdot x z, & \text { left } \\
y z \cdot x=y x \cdot z x, & \text { right } \\
y z^{r} \cdot x=\left(y^{r} \cdot x\right) \cdot\left(z^{r} \cdot x\right) . & \text { middle }
\end{array}
$$

Remind that a middle translation of a quasigroup ($Q ; \cdot$) is defined by

$$
M_{a}(x)=y: \Leftrightarrow x \cdot y=a, \quad M_{a}(x)=x^{r} \cdot a
$$

Theorem 2 (Sokhatsky, 2016).

Every two identities of one-side distributivity imply the third one.

Three types of distributivity:

$$
\begin{array}{rr}
x \cdot y z=x y \cdot x z, & \text { left } \\
y z \cdot x=y x \cdot z x, & \text { right } \\
y z \cdot r=\left(y^{r} \cdot x\right) \cdot\left(z^{r} \cdot x\right) . & \text { middle }
\end{array}
$$

Remind that a middle translation of a quasigroup ($Q ; \cdot$) is defined by

$$
M_{a}(x)=y: \Leftrightarrow x \cdot y=a, \quad M_{a}(x)=x^{r} \cdot a
$$

Theorem 2 (Sokhatsky, 2016).

Every two identities of one-side distributivity imply the third one.

Systems of distributivities

Theorem (V.D. Belousov, 1966)

Every distributive quasigroup is isotopic to a commutative Moufang loop.

Theorem (F.Sokhatsky, 2016)
A quasigroup ($Q ; \cdot$) is distributive if and only if there exists a commutative Moufang loop $(Q ;+)$ and its automorphism such that $\psi:=\iota-\varphi$ is an automorphism of ($Q ;+$), $x \cdot y=\varphi x+\psi y$ and

$$
x+(y+z)=(\varphi x+y)+(\psi x+z) .
$$

Systems of distributivities

Theorem (V.D. Belousov, 1966)

Every distributive quasigroup is isotopic to a commutative Moufang loop.

Theorem (F.Sokhatsky, 2016)

A quasigroup ($Q ; \cdot$) is distributive if and only if there exists a commutative Moufang loop ($Q ;+$) and its automorphism φ such that $\psi:=\iota-\varphi$ is an automorphism of ($Q ;+$), $x \cdot y=\varphi x+\psi y$ and

$$
\begin{equation*}
x+(y+z)=(\varphi x+y)+(\psi x+z) . \tag{1}
\end{equation*}
$$

Moufang loops

$$
x y \cdot z x=x(y z \cdot x), \quad \text { Moufang identity }
$$

$$
L_{x}(y) \cdot R_{x}(z)=L_{x} R_{x}(y z)
$$

$\left(L_{X}, R_{X}, L_{X} R_{X}\right)$ is an autotopism of the loop $\left(Q_{;} \cdot\right)$.

Which functional equation of generalized distributivity defines Moufang loops?

Moufang loops

$$
x y \cdot z x=x(y z \cdot x), \quad \text { Moufang identity }
$$

$$
L_{x}(y) \cdot R_{x}(z)=L_{x} R_{x}(y z)
$$

$\left(L_{x}, R_{x}, L_{x} R_{x}\right)$ is an autotopism of the loop $(Q ; \cdot)$.

Which functional equation of generalized distributivity defines Moufang loops?

Moufang loops

$$
x y \cdot z x=x(y z \cdot x), \quad \text { Moufang identity }
$$

$$
L_{x}(y) \cdot R_{x}(z)=L_{x} R_{x}(y z)
$$

$\left(L_{x}, R_{x}, L_{x} R_{x}\right)$ is an autotopism of the loop $(Q ; \cdot)$.

Which functional equation of generalized distributivity defines Moufang loops?

Moufang Loops

Theorem

Let ($Q ; \cdot, e$) be a flexible loop and let

$$
f_{1}(x, y) \cdot z x=f_{2}(x, y z)
$$

hold for some functions f_{1} and f_{2}. Then ($Q ; \cdot$) is a Moufang loop, if $f_{1}(x, e)=x$.

Example
Let ($Q ; \cdot, e$) be a flexible loop and let

$$
y^{k}\left(x \cdot y^{n}\right) \cdot z x=\left(x^{D} \cdot(y z)^{D}\right) \cdot(y z \cdot u)
$$

hold, then ($Q_{;} \cdot \cdot$) is a Moufang loop, where ($Q_{;} \cdot, e$) is not necessary mono-associative.

Moufang Loops

Theorem

Let $(Q ; \cdot, e)$ be a flexible loop and let

$$
f_{1}(x, y) \cdot z x=f_{2}(x, y z)
$$

hold for some functions f_{1} and f_{2}. Then $(Q ; \cdot)$ is a Moufang loop, if $f_{1}(x, e)=x$.

Example

Let $(Q ; \cdot, e)$ be a flexible loop and let

$$
y^{k}\left(x \cdot y^{n}\right) \cdot z x=\left(x^{p} \cdot(y z)^{p}\right) \cdot(y z \cdot u)
$$

hold, then $(Q ; \cdot)$ is a Moufang loop, where $(Q ; \cdot, e)$ is not necessary mono-associative.

Moufang Loops

Corollary
Let a loop ($Q ; \cdot$, e) satisfy

$$
R_{x}^{-1}(x \cdot y x) \cdot z x=x(y z \cdot x) .
$$

Then $(Q ; \cdot, e)$ is Moufang if and only if it is flexible.

Generalized functional equation of distributivity

$$
F_{1}\left(F_{2}(x, y), F_{3}(x, z)\right)=F_{4}\left(x, F_{5}(y, z)\right) .
$$

If we put $x=a$, then we obtain an isotopy between F_{1} and F_{5}. Renaming the functional variables, we obtain

$$
F_{1}(x, y) \circ F_{2}(x, z)=F_{3}(x, y \circ z) .
$$

Suppose F_{1}, F_{2}, F_{3} are not necessary to be quasigroups, but right invertible functions. It is easy to see that every triplet of left translations of the operations is an autotopism of the quasigroup ($Q ; \circ$). The reverse is true as well.

Generalized functional equation of distributivity

Theorem

Every solution of the functional equation

$$
F_{1}(x, y) \circ F_{2}(x, z)=F_{3}(x, y \circ z)
$$

over a quasigroup (Q; o) is bijectively defined by an autotopism mapping of the quasigroup.

This theorem reduces the description of all solutions of a functional equation of distributivity to description of the autotopisms of every quasigroup.

Theorem (Belousov, Sokhatsky)

Let $(Q ;+, 0)$ be an inverse property loop and $M(Q)$ be subloop of Moufang elements. Then a triplet (f_{1}, f_{2}, f_{3}) of operation is a solution of

$$
F_{1}(x, y)+F_{2}(x, z)=F_{3}(x, y+z)
$$

iff there exist mappings $\alpha, \gamma: Q \rightarrow M(Q)$ and binary quasigroup operation h such that

$$
\begin{aligned}
& \gamma(x)+h(x, y+z)=(\gamma(x)+h(x, y))+h(x, z) \text { and } \\
& \quad f_{1}(x, y)=\alpha(x)+h(x+y), \quad f_{2}(x, y)=(h(x, y)+\gamma(x))+\alpha(x), \\
& \quad f_{3}(x, y)=\alpha(x)+(h(x, y)+\gamma(x))+\alpha(x) .
\end{aligned}
$$

Theorem (Sokhatsky)

Let $(Q ;+, 0)$ be an inverse property loop and the equation

$$
F_{1}(x, y)+F_{2}(x, z)=F_{3}(x, y+z)
$$

has a solution $\left(f_{1}, f_{2}, f_{3}\right)$. If at least one of the operations has at least one permutation among its right translations, then $(Q ;+, 0)$ is a Moufang loop.

Let inverse property loop ($Q ;+, 0$) satisfy an identity

$$
(n x+y)+(p x+(z+k x))=x+(y+z), \quad n, p, k \in N
$$

then $(Q ;+, 0)$ is a Moufang loop.

Ternary quasigroups

$$
\begin{gathered}
f(x, y, z)=h_{1}\left(h_{2}(x, y), z\right) \\
f(x, y, z)=h_{3}\left(h_{4}(x, y), h_{5}(z, x)\right)
\end{gathered}
$$

Which function has both decompositions?

Ternary quasigroups

$$
\begin{gathered}
f(x, y, z)=h_{1}\left(h_{2}(x, y), z\right), \\
f(x, y, z)=h_{3}\left(h_{4}(x, y), h_{5}(z, x)\right) .
\end{gathered}
$$

Which function has both decompositions?

Relation between functional equations

Two equations are called parastrophically-primarily equivalent
if one can be obtained from the other in a finite number of the following steps:

```
1) application }F(\ellF(x;y),y)=x,\quad\ellF(F(x;y),y)=x
    F(x; 'r}F(x;y))=y,\quad\mp@subsup{}{}{r}F(x;F(x;y))=y
2) changing sides of the equation:
3) relabeling individual variables;
4) relabeling functional variables;
5) renlacing a suh-term F(x;x) with }\mp@subsup{\delta}{F}{}(x)\mathrm{ , if }F\mathrm{ is diagonal
    functional variable and vice versa.
```

A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Relation between functional equations

Two equations are called parastrophically-primarily equivalent
if one can be obtained from the other in a finite number of the following steps:

1) application $F\left({ }^{\ell} F(x ; y), y\right)=x, \quad{ }^{\ell} F(F(x ; y), y)=x$, $F\left(x ;{ }^{r} F(x ; y)\right)=y, \quad{ }^{r} F(x ; F(x ; y))=y ;$
2) changing sides of the equation;
3) relabeling individual variables;
4) relabeling functional variables:
5) replacing a sub-term $F(x ; x)$ with $\delta_{F}(x)$, if F is diagonal functional variable and vice versa.

A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Relation between functional equations

Two equations are called parastrophically-primarily equivalent
if one can be obtained from the other in a finite number of the following steps:

1) application $F\left({ }^{\ell} F(x ; y), y\right)=x, \quad{ }^{\ell} F(F(x ; y), y)=x$, $F\left(x ;{ }^{r} F(x ; y)\right)=y, \quad{ }^{r} F(x ; F(x ; y))=y ;$
2) changing sides of the equation;
3) relabeling individual variables;
4) relabeling functional variables;
5) replacing a sub-term $F(x ; x)$ with $\delta_{F}(x)$, if F is diagonal
functional variable and vice versa.

A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Relation between functional equations

Two equations are called parastrophically-primarily equivalent
if one can be obtained from the other in a finite number of the following steps:

1) application $F\left({ }^{\ell} F(x ; y), y\right)=x, \quad{ }^{\ell} F(F(x ; y), y)=x$, $F\left(x ;{ }^{r} F(x ; y)\right)=y, \quad{ }^{r} F(x ; F(x ; y))=y$;
2) changing sides of the equation;
3) relabeling individual variables;
4) relabeling functional variables;
5) replacing a sub-term $F(x ; x)$ with $\delta_{F}(x)$, if F is diagonal
functional variable and vice versa.

A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Relation between functional equations

Two equations are called parastrophically-primarily equivalent
if one can be obtained from the other in a finite number of the following steps:

1) application $F\left({ }^{\ell} F(x ; y), y\right)=x, \quad{ }^{\ell} F(F(x ; y), y)=x$,

$$
F\left(x ;{ }^{r} F(x ; y)\right)=y, \quad{ }^{r} F(x ; F(x ; y))=y
$$

2) changing sides of the equation;
3) relabeling individual variables;
4) relabeling functional variables;
5) replacing a sub-term $F(x ; x)$ with $\delta_{F}(x)$, if F is diagonal functional variable and vice versa.

A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Relation between functional equations

Two equations are called parastrophically-primarily equivalent
if one can be obtained from the other in a finite number of the following steps:

1) application $F\left({ }^{\ell} F(x ; y), y\right)=x, \quad{ }^{\ell} F(F(x ; y), y)=x$,

$$
F\left(x ;{ }^{r} F(x ; y)\right)=y, \quad{ }^{r} F(x ; F(x ; y))=y
$$

2) changing sides of the equation;
3) relabeling individual variables;
4) relabeling functional variables;
5) replacing a sub-term $F(x ; x)$ with $\delta_{F}(x)$, if F is diagonal functional variable and vice versa.

> A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Relation between functional equations

Two equations are called parastrophically-primarily equivalent

if one can be obtained from the other in a finite number of the following steps:

1) application $F\left({ }^{\ell} F(x ; y), y\right)=x, \quad{ }^{\ell} F(F(x ; y), y)=x$, $F\left(x ;{ }^{r} F(x ; y)\right)=y, \quad{ }^{r} F(x ; F(x ; y))=y$;
2) changing sides of the equation;
3) relabeling individual variables;
4) relabeling functional variables;
5) replacing a sub-term $F(x ; x)$ with $\delta_{F}(x)$, if F is diagonal functional variable and vice versa.

A binary functional variable will be called diagonal, if it takes its values in the set of all diagonal operations.

Classification of distributivity-like functional equations

A functional equation is called distributivity-like, if it has three individual variables with 3,2,2 appearances.

Theorem (Sokhatsky, Krainichuk 2009)

Every quasigroup distributivity-like functional equation without squares is parastrophically-primarily equivalent to exactly one of the following equations:

$$
\begin{aligned}
& F_{1}\left(x ; F_{2}(y ; z)\right)=F_{3}\left(F_{4}(x ; y) ; F_{5}(x ; z)\right) \\
& F_{1}\left(y ; F_{2}(x ; z)\right)=F_{3}\left(x ; F_{4}\left(y ; F_{5}(x ; z)\right)\right. \\
& F_{1}\left(y ; F_{2}(x ; y)\right)=F_{3}\left(x ; F_{4}\left(F_{5}(x ; z) ; z\right)\right) \\
& F_{1}\left(y ; F_{2}(x ; y)\right)=F_{3}\left(F_{4}(x ; z) ; F_{5}(x ; z)\right) \\
& F_{1}\left(y ; F_{2}(x ; z)\right)=F_{3}\left(y ; F_{4}\left(x ; F_{5}(x ; z)\right)\right)
\end{aligned}
$$

Solutions of distributivity-like functional equations

Let $(Q ; \cdot)$ be a group; g be invertible and ${ }^{\ell} g \perp(\cdot) ; \alpha, \beta, \gamma, \delta, \mu$ be permutations of Q; then $\left(f_{1}, \ldots, f_{5}\right)$ being defined by

$$
\begin{gather*}
f_{1}(x ; y)=\alpha x \cdot \delta y ; \quad f_{2}(x ; z)=\delta^{-1}(g(z ; \gamma x) \cdot \gamma x) \\
f_{3}(x ; y)=\beta x \cdot \gamma y ; \quad f_{4}(x ; y)=\beta^{-1}(\alpha x \cdot \mu y) \tag{1}\\
f_{5}(x ; z)=\mu^{-1} g(z ; \gamma x)
\end{gather*}
$$

is a quasigroup solution of

$$
\begin{equation*}
F_{1}\left(y ; F_{2}(x ; z)\right)=F_{3}\left(x ; F_{4}\left(y ; F_{5}(x ; z)\right)\right. \tag{2}
\end{equation*}
$$

Conversely, if $\left(f_{1}, \ldots, f_{5}\right)$ is a quasigroup solution of (2), then $\forall e \in Q$ there exists a unique sequence $(\cdot, g, \alpha, \beta, \gamma, \delta, \mu)$ of invertible operations such that $(Q ; \cdot, e)$ is a group, $\alpha e=\beta e=\delta e=e,{ }^{\ell} g \perp(\cdot),(1)$ is valid and

$$
\begin{gather*}
\alpha x=f_{1}(x ; e), \quad \beta x=f_{3}\left(x ;{ }^{r} f_{3}(e ; e)\right), \quad \gamma x=f_{3}(e ; x), \\
\delta y=f_{1}(e ; y) \quad \mu x=f_{3}\left(f_{4}(e ; x) ;{ }^{r} f_{3}(e ; e)\right), \tag{3}\\
x \cdot y=f_{3}\left(\beta^{-1} x ; \gamma^{-1} y\right), \quad g(z ; x)=\mu f_{5}\left(\gamma^{-1} x ; z\right) .
\end{gather*}
$$

Corollary 1 for functional equation (2)

Let $(Q ; T)$ be an arbitrary topological space and a quintuple $\left(f_{1} ; \ldots ; f_{5}\right)$ of operations be defined on a set Q by (1), where $(Q ; \cdot)$ is a topological group, $(Q ; g)$ is a topological quasigroup, ${ }^{\ell} g \perp(\cdot), \alpha, \beta, \gamma, \delta, \mu$ are homeomorphisms of $(Q ; T)$. Then $\left(f_{1} ; \ldots ; f_{5}\right)$ is a topological quasigroup solution of the functional equation (2).
Conversely, if a quintuple ($f_{1} ; \ldots ; f_{5}$) of topological quasigroup operations is a solution of (2), then for an arbitrary element $e \in Q$ there exists a single sequence $(\cdot ; g ; \alpha ; \beta ; \gamma ; \delta ; \mu)$ of operations such that ($Q ; \cdot$) is a topological group and e is its neutral element, g is a topological quasigroup operation and ${ }^{\ell} g \perp(\cdot), \alpha, \beta, \gamma, \delta, \mu$ are homeomorphisms, $\alpha e=\beta \boldsymbol{e}=\delta \boldsymbol{e}=\boldsymbol{e}$ and (2) are fulfilled. In this case, the sequence ($(; g ; \alpha ; \beta ; \gamma ; \delta ; \mu)$ is defined by (3).

Corollary 2

Let \mathbf{R} be the topological space of the real numbers with the natural topology and binary operations f_{1}, \ldots, f_{5} be defined on R. Then a quintuple $\left(f_{1} ; \ldots ; f_{5}\right)$ is a topological quasigroup solution of the functional equation (2) if and only if there exist homeomorphisms $\alpha, \beta, \gamma, \mu, \delta, \varphi$ of the space and a topological quasigroup operation g such that ${ }^{\ell} g$ is orthogonal to the additive operation (+) of the field \mathbf{R} and

$$
\begin{gathered}
f_{1}(x ; y)=\varphi(\alpha x+\delta y), \quad f_{2}(x ; z)=\delta^{-1}(g(z ; \gamma x)+\gamma x), \\
f_{3}(x ; y)=\varphi(\beta y+\gamma x), \quad f_{4}(x ; y)=\beta^{-1}(\alpha x+\mu y), \\
f_{5}(x ; y)=\mu^{-1} g(y ; \gamma x) .
\end{gathered}
$$

Solutions of functional equation (3)

Theorem

Let f_{1}, \ldots, f_{5} be binary operations, defined on a set Q. Then $\left(f_{1} ; \ldots ; f_{5}\right)$ is a quasigroup solution of the functional equation

$$
F_{1}\left(y ; F_{2}(x ; y)\right)=F_{3}\left(x ; F_{4}\left(F_{5}(x ; z) ; z\right)\right)
$$

if and only if f_{1}, f_{3} and f_{4} are quasigroup operations and there exist permutations α and θ of Q such that the identities

$$
f_{3}(x ; \theta x)=\alpha x, \quad f_{2}(x ; y)={ }^{l} f_{1}(\alpha x ; y), \quad f_{5}(x ; y)={ }^{\ell} f_{4}(\theta x ; y)
$$

hold.

Solutions of functional equation (4)

Theorem

Let Q be a set and f_{1}, \ldots, f_{5} be binary operations, defined on Q. Then $\left(f_{1} ; \ldots ; f_{5}\right)$ is a quasigroup solution of the functional equation

$$
F_{1}\left(y ; F_{2}(x ; y)\right)=F_{3}\left(F_{4}(x ; z) ; F_{5}(x ; z)\right)
$$

if and only if f_{1}, f_{2} and f_{4} are quasigroup operations, $f_{1} \perp{ }^{r} f_{2}$ and there exists a permutation α of Q such that the identities

$$
f_{3}(x ; z)=f_{1}\left(\alpha^{-1} x ; f_{2}\left(\alpha^{-1} x ; z\right)\right) ; \quad f_{5}(x ; y)={ }^{\ell} f_{4}(\alpha x ; y)
$$

hold.

Solutions of functional equation (5)

Theorem

Let Q be a set and f_{1}, \ldots, f_{5} be binary operations, defined on Q. Then $\left(f_{1} ; \ldots ; f_{5}\right)$ is a quasigroup solution of the functional equation

$$
F_{1}\left(y ; F_{2}(x ; z)\right)=F_{3}\left(y ; F_{4}\left(x ; F_{5}(x ; z)\right)\right)
$$

if and only if the operations f_{2}, f_{3} and f_{5} are quasigroups, $f_{2} \perp f_{5}$ and there exists a permutation α of Q such that the identities

$$
f_{1}(x ; y)=f_{3}(x ; \alpha y), \quad f_{4}(x ; y)=\alpha f_{2}\left(x ; f_{5}(x ; y)\right)
$$

hold.

THANK YOU FOR YOUR ATTENTION!

