Commutator theory for quandles

David Stanovský

Charles University, Prague, Czech Republic

Denver, August 2017

\dots describe solvable / nilpotent quandles

\dots describe solvable / nilpotent quandles

Corollaries:

- Topologically slice knots cannot be colored by latin quandles.
- Bruck loops of odd order are *really* solvable.

Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are $N_i \leq G$ such that

$$1 = N_0 \le N_1 \le \dots \le N_k = G$$

and N_{i+1}/N_i is an abelian, resp. central subgroup of G/N_i , for all *i*.

Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are $N_i \leq G$ such that

$$1 = N_0 \le N_1 \le \dots \le N_k = G$$

and N_{i+1}/N_i is an abelian, resp. central subgroup of G/N_i , for all *i*.

A general algebraic structure A is solvable, resp. nilpotent, if there are congruences α_i such that

$$0_{\mathcal{A}} = \alpha_0 \le \alpha_1 \le \dots \le \alpha_k = 1_{\mathcal{A}}$$

and α_{i+1}/α_i is an abelian, resp. central congruence of A/α_i , for all *i*.

Need a good notion of *abelianness* and *centrality* for congruences.

Solvability and nilpotence, via commutator

$$G^{(0)} = G_{(0)} = G, \qquad G_{(i+1)} = [G_{(i)}, G_{(i)}], \qquad G^{(i+1)} = [G^{(i)}, G]$$

A group G is

• solvable iff
$$G_{(n)} = 1$$
 for some n

• nilpotent iff $G^{(n)} = 1$ for some n

Solvability and nilpotence, via commutator

$$G^{(0)} = G_{(0)} = G,$$
 $G_{(i+1)} = [G_{(i)}, G_{(i)}],$ $G^{(i+1)} = [G^{(i)}, G]$

A group G is

• solvable iff
$$G_{(n)} = 1$$
 for some n

• nilpotent iff $G^{(n)} = 1$ for some n

$$\alpha^{(0)} = \alpha_{(0)} = 1_A, \qquad \alpha_{(i+1)} = [\alpha_{(i)}, \alpha_{(i)}], \qquad \alpha^{(i+1)} = [\alpha^{(i)}, 1_A]$$

A general algebraic structure A is

• solvable iff
$$\alpha_{(n)} = 0_A$$
 for some n

• nilpotent iff
$$\alpha^{(n)} = 0_A$$
 for some n

Need a good notion of commutator of congruences.

Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of *A*:

 $C(\alpha, \beta; \delta)$ iff for every term $t(x, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b, u_i \stackrel{\beta}{\equiv} v_i$

$$t(\mathbf{a}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{b}, v_1, \ldots, v_n)$$

Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of *A*:

 $C(\alpha, \beta; \delta)$ iff for every term $t(x, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b, u_i \stackrel{\beta}{\equiv} v_i$

$$t(\mathbf{a}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{b}, v_1, \ldots, v_n)$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$.

A congruence α is called

- abelian if $C(\alpha, \alpha; 0_A)$, i.e., if $[\alpha, \alpha] = 0_A$.
- central if $C(\alpha, 1_A; 0_A)$, i.e., if $[\alpha, 1_A] = 0_A$.

Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α , β , δ of A:

 $C(\alpha, \beta; \delta)$ iff for every term $t(x, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b, u_i \stackrel{\beta}{\equiv} v_i$

$$t(\mathbf{a}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{b}, v_1, \ldots, v_n)$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$.

A congruence α is called

- abelian if $C(\alpha, \alpha; 0_A)$, i.e., if $[\alpha, \alpha] = 0_A$.
- central if $C(\alpha, 1_A; 0_A)$, i.e., if $[\alpha, 1_A] = 0_A$.

An easy but non-trivial fact:

In groups, this gives the usual commutator, abelianness, centrality.

A deep theory: works well in varieties with modular congruence lattices.

Abelian algebras

An algebra A is called abelian if 1_A is abelian, i.e., if $[1_A, 1_A] = 0_A$, i.e., if

$$t(\mathbf{a}, u_1, \ldots, u_n) = t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) = t(\mathbf{b}, v_1, \ldots, v_n)$$

for every term $t(x, y_1, \ldots, y_n)$ and every a, b, u_i, v_i .

Observation

Modules are abelian.

Proof:
$$t(x, y_1, \ldots, y_n) = rx + \sum r_i y_i$$
, cancel ra , add rb .

Abelian algebras

An algebra A is called abelian if 1_A is abelian, i.e., if $[1_A, 1_A] = 0_A$, i.e., if

$$t(\mathbf{a}, u_1, \ldots, u_n) = t(\mathbf{a}, v_1, \ldots, v_n) \implies t(\mathbf{b}, u_1, \ldots, u_n) = t(\mathbf{b}, v_1, \ldots, v_n)$$

for every term $t(x, y_1, \ldots, y_n)$ and every a, b, u_i, v_i .

Observation

Modules are abelian.

Proof:
$$t(x, y_1, \ldots, y_n) = rx + \sum r_i y_i$$
, cancel r_a , add r_b .

Observation

An abelian group is commutative.

Proof:
$$t(x, y, z) = yxz$$
, $a11 = 11a \Rightarrow ab1 = 1ba$

Observation

An abelian loop is a commutative group.

Pf:
$$t = (xy)(uv)$$
, $(11)(bc) = (1b)(1c) \Rightarrow (a1)(bc) = (ab)(1c)$

David Stanovský (Prague)

Abelian algebras = modules

Observation

Modules are abelian.

Theorem (Gumm-Smith, 1970s)

In a variety with modular congruence lattices, TFAE

- A is abelian
- A is polynomially equivalent to a module

Example: groups, loops, quasigroups

Non-example: quandles

Quandles

An algebraic structure $(Q, *, \backslash)$ is called a *quandle* if

•
$$x * x = x$$

• all left translations $L_x(y) = x * y$ are automorphisms, with $L_x^{-1}(y) = x \setminus y$.

Multiplication group, displacement group:

$$\operatorname{LMlt}(Q) = \langle L_x : x \in Q \rangle \leq \operatorname{Aut}(Q)$$

 $\operatorname{Dis}(Q) = \langle L_x L_y^{-1} : x, y \in Q \rangle \leq \operatorname{LMlt}(Q)$

A quandle is called *connected* if LMlt(Q) is transitive on Q.

Affine quandles (aka Alexander) Aff(A, f): x * y = (1 - f)(x) + f(y) on an abelian group A, $f \in Aut(A)$

Abelian quandles

Theorem (Jedlička, Pilitowska, S., Zamojska-Dzienio)

TFAE for a quandle Q:

- abelian
- embeds into (a reduct of) a module
- **3** Dis(Q) abelian, semiregular
- $Q \simeq Ext(A, f, \overline{d})$, a certain kind of extension of Aff(A, f)

.. see Přemysl's talk for details (and much more)

Congruences of quandles

Let $N(Q) = \{N \leq \text{Dis}(Q) : N \text{ is normal in } \text{LMlt}(Q)\}$

There is a Galois correspondence

$$Con(Q) \longleftrightarrow N(Q)$$

$$\alpha \to \text{Dis}_{\alpha}(Q) = \langle L_{x}L_{y}^{-1} : x \alpha y \rangle$$

$$\alpha_{N} = \{(x, y) : L_{x}L_{y}^{-1} \in N\} \leftarrow N$$

Congruences of quandles

Let $N(Q) = \{N \le Dis(Q) : N \text{ is normal in } LMlt(Q)\}$

There is a Galois correspondence

$$Con(Q) \longleftrightarrow N(Q)$$

$$\alpha \to \text{Dis}_{\alpha}(Q) = \langle L_{x}L_{y}^{-1} : x \alpha y \rangle$$

$$\alpha_{N} = \{(x, y) : L_{x}L_{y}^{-1} \in N\} \leftarrow N$$

Proposition (Bonatto, S.)

TFAE for $\alpha, \beta \in Con(Q)$, Q a quandle:

• α centralizes β over 0_Q , i.e., $C(\alpha, \beta; 0_Q)$

2 $\operatorname{Dis}_{\beta}(Q)$ centralizes $\operatorname{Dis}_{\alpha}(Q)$ and acts semiregularly on every α -block

Abelian congruences and solvable quandles

Theorem

TFAE for a congruence α of a quandle Q:

- $\textcircled{0} \ \alpha \ \textit{is abelian}$
- **2** $\operatorname{Dis}_{\alpha}(Q)$ is abelian and acts semiregularly on every block of α

Q is an abelian extension of F = Q/α, i.e., (F × A, *) with
 $(x, a) * (y, b) = (xy, \varphi_{x,y}(a) + \psi_{x,y}(b) + \theta_{x,y})$ where A is an abelian group, $\varphi : Q^2 \to End(A), \psi : Q^2 \to Aut(A),$ $\theta : Q^2 \to A$ satisfying the cocycle condition.

The last item only assuming that α has connected blocks.

Abelian congruences and solvable quandles

Theorem

TFAE for a congruence α of a quandle Q:

- $\bullet \ \alpha \ \text{is abelian}$
- **2** $\operatorname{Dis}_{\alpha}(Q)$ is abelian and acts semiregularly on every block of α
- Q is an abelian extension of F = Q/α, i.e., (F × A, *) with
 $(x, a) * (y, b) = (xy, \varphi_{x,y}(a) + \psi_{x,y}(b) + \theta_{x,y})$ where A is an abelian group, $\varphi : Q^2 \to End(A), \psi : Q^2 \to Aut(A),$ $\theta : Q^2 \to A$ satisfying the cocycle condition.

The last item only assuming that α has connected blocks.

Corollary

- Q solvable (of rank n) \Rightarrow Dis(Q) solvable (of rank $\leq 2n 1$)
- Dis(Q) solvable, Q is superconnected \Rightarrow Q solvable

superconnected = all subquandles are conected (example: latin quandles)

Central congruences and nilpotent quandles

Theorem

TFAE for a congruence α of a quandle Q:

- **1** α is central
- **2** $\text{Dis}_{\alpha}(Q)$ is central and Dis(Q) acts semiregularly on every block of α
- Q is a central extension of F = Q/A, i.e., (F × A, *) with (x, a) * (y, b) = (xy, (1 − f)(a) + f(b) + θ_{x,y}) where A is an abelian group, θ : Q² → A satisfying the cocycle condition.

The last item only assuming that *Q* is superconnected.

Corollary

- Q nilpotent (of rank n) \Rightarrow Dis(Q) nilpotent (of rank $\leq 2n 1$)
- Dis(Q) nilpotent, Q is superconnected \Rightarrow Q nilpotent

Extensions by constant cocycles (aka coverings)

Theorem

TFAE for a congruence α of a quandle Q:

- $\textbf{0} \ \alpha \text{ is strongly abelian}$
- 2 $\operatorname{Dis}_{\alpha}(Q) = 1$

• Q is an extension by constant cocycle of $F = Q/\alpha$, i.e., $(F \times A, *)$ with

 $(x, a) * (y, b) = (xy, \rho_{x,y}(b))$ where A is a set, $\rho : Q^2 \to Sym(A)$ satisfying the cocycle condition.

... coverings are a special case of our abelian extensions ($\varphi_{x,y} = 0$) ... coverings have a natural universal algebraic meaning (*strongly abelian congruences*)

Abeliannes for quandles vs. loops

Theorem

TFAE for a congruence α of a quandle Q:

1 α is abelian

2 $\operatorname{Dis}_{\alpha}(Q)$ is abelian and acts semiregularly on every block of α

• Q is an abelian extension of $F = Q/\alpha$, i.e., $(F \times A, *)$ with $(x, a) * (y, b) = (xy, \varphi_{x,y}(a) + \psi_{x,y}(b) + \theta_{x,y})$

Theorem (S., Vojtěchovský)

TFAE for a normal subloop $A \trianglelefteq Q$ of a loop:

• A is abelian (in Q)

3
$$\varphi_{r,s}(a) = \varphi_{u,v}(a)$$
 for every $a, r/u, s/v \in A$, $\varphi \in \{L, R, T\} \subseteq Inn(Q)$

• Q is an abelian extension of F = Q/A, i.e., $(F \times A, *)$ with $(x, a) * (y, b) = (xy, \varphi_{x,y}(a) + \psi_{x,y}(b) + \theta_{x,y})$

Centrality for quandles vs. loops

Theorem

TFAE for a congruence α of a quandle Q:

- **1** α is central
- **2** $\operatorname{Dis}_{\alpha}(Q)$ is central and $\operatorname{Dis}(Q)$ acts semiregularly on every block of α
- Q is a central extension of F = Q/A, i.e., $(F \times A, *)$ with $(x, a) * (y, b) = (xy, (1 f)(a) + f(b) + \theta_{x,y})$

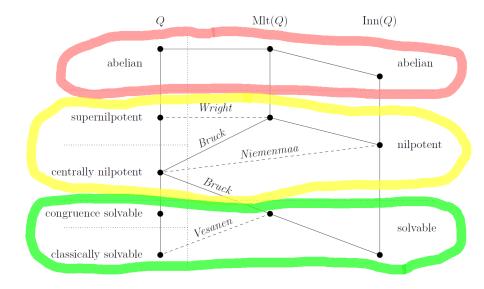
Theorem

TFAE for a normal subloop $A \trianglelefteq Q$ of a loop:

• A is central (in Q)

• Q is an central extension of F = Q/A, i.e., $(F \times A, *)$ with $(x, a) * (y, b) = (xy, a + b + \theta_{x,y})$

Solvability and nilpotence for loops



An application to quandles

Classification of latin quandles of order 3p. See Marco's talk.

An application to loop theory

Theorem (Stein 2001)

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Since latin quandles are superconnected, we obtain

Corollary

Finite latin quandles are solvable.

In particular,

- involutory latin quandles are solvable,
- all of their polynomial reducts are solvable,
- in particular,

Corollary

Bruck loops of odd order are solvable (in the stronger sense).

An application to knot theory

Coloring by affine quandles +++ Alexander invariant

Theorem (Bae, 2011)

Let K be a link and f its Alexander polynomial.

- $f = 0 \Rightarrow$ colorable by every affine quandle
- $f = 1 \Rightarrow$ not colorable by any affine quandle
- else, colorable by $Aff(\mathbb{Z}[t, t^{-1}]/(f), f)$.

Corollary

• $f = 1 \Rightarrow$ not colorable by any solvable quandle (in particular, latin)