Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Homotopy link invariants from geometric realizations of SD-homology

Seung Yeop Yang

University of Denver

July 31, 2017 Fourth Mile High Conference on Nonassociative Mathematics

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Contents

1. Geometric realizations of SD-homology

- 2. An application to Knot Theory
 - Shadow homotopy invariants of classical links -

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants 00000000

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Geometric realizations of SD-homology

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants 00000000

Definition

A **pre-simplicial set** $X = (X_n, d_i)$ consists of a collection of sets X_n for $n \ge 0$ and face maps $d_i := d_{i,n} : X_n \to X_{n-1}$ for $0 \le i \le n$ satisfying $d_i d_j = d_{j-1} d_i$ if i < j.

An application to Knot Theory: shadow homotopy invariants

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Definition

A **pre-simplicial set** $X = (X_n, d_i)$ consists of a collection of sets X_n for $n \ge 0$ and face maps $d_i := d_{i,n} : X_n \to X_{n-1}$ for $0 \le i \le n$ satisfying $d_i d_j = d_{j-1} d_i$ if i < j.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\partial_n = \sum_{i=0}^n (-1)^i d_i$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.

An application to Knot Theory: shadow homotopy invariants

Definition

A **pre-simplicial set** $X = (X_n, d_i)$ consists of a collection of sets X_n for $n \ge 0$ and face maps $d_i := d_{i,n} : X_n \to X_{n-1}$ for $0 \le i \le n$ satisfying $d_i d_j = d_{j-1} d_i$ if i < j.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\partial_n = \sum_{i=0}^n (-1)^i d_i$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.

Definition

The **geometric realization** |X| of a pre-simplicial set X is a CW-complex defined as the quotient of the disjoint union $\prod_{n} (X_n \times \Delta^n)$ by $(d_i(\mathbf{x}), \mathbf{t}) \sim (\mathbf{x}, d^i(\mathbf{t}))$, where Δ^n be the standard *n*-simplex and $d^i := d^{i,n} : \Delta^{n-1} \to \Delta^n$ are maps defined by $d^i(t_0, \ldots, t_{n-1}) = (t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_{n-1})$ for $0 \le i \le n$.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants 00000000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Definition

A **pre-cubic set** $X = (X_n, d_i^{\varepsilon})$ consists of a collection of sets X_n for $n \ge 0$ and face maps $d_i^{\varepsilon} := d_{i,n}^{\varepsilon} : X_n \to X_{n-1}$ for $1 \le i \le n$ and $\varepsilon \in \{0, 1\}$ satisfying $d_i^{\varepsilon} d_j^{\delta} = d_{j-1}^{\delta} d_i^{\varepsilon}$ for i < j and $\delta, \varepsilon \in \{0, 1\}$.

An application to Knot Theory: shadow homotopy invariants

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Definition

A **pre-cubic set** $\chi = (X_n, d_i^{\varepsilon})$ consists of a collection of sets X_n for $n \ge 0$ and face maps $d_i^{\varepsilon} := d_{i,n}^{\varepsilon} : X_n \to X_{n-1}$ for $1 \le i \le n$ and $\varepsilon \in \{0, 1\}$ satisfying $d_i^{\varepsilon} d_j^{\delta} = d_{j-1}^{\delta} d_i^{\varepsilon}$ for i < j and $\delta, \varepsilon \in \{0, 1\}$.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\vartheta_n = \sum_{i=1}^n (-1)^i (d_i^0 - d_i^1)$. Then (C_n, ϑ_n) forms a chain complex, so we can define homology groups of it.

An application to Knot Theory: shadow homotopy invariants

Definition

A **pre-cubic set** $\chi = (X_n, d_i^{\varepsilon})$ consists of a collection of sets X_n for $n \ge 0$ and face maps $d_i^{\varepsilon} := d_{i,n}^{\varepsilon} : X_n \to X_{n-1}$ for $1 \le i \le n$ and $\varepsilon \in \{0, 1\}$ satisfying $d_i^{\varepsilon} d_j^{\delta} = d_{j-1}^{\delta} d_i^{\varepsilon}$ for i < j and $\delta, \varepsilon \in \{0, 1\}$.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\partial_n = \sum_{i=1}^n (-1)^i (d_i^0 - d_i^1)$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.

Definition

The **geometric realization** |X| of a pre-cubic set X is a CW-complex defined as the quotient of the disjoint union $\prod_{n} (X_n \times I^n)$ by $(d_i^{\varepsilon}(\mathbf{x}), \mathbf{t}) \sim (\mathbf{x}, d_{\varepsilon}^{i}(\mathbf{t}))$, where $I^n = [0, 1]^n \subset \mathbb{R}^n$ $(n \ge 0)$ and $d_{\varepsilon}^{i} := d_{\varepsilon}^{i,n} : I^{n-1} \to I^n$ are maps defined by $d_{\varepsilon}^{i}(t_1, \ldots, t_{n-1}) = (t_1, \ldots, t_{i-1}, \varepsilon, t_i, \ldots, t_{n-1})$ for $1 \le i \le n$.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants $\verb"ooooooooo"$

SD-homology

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants 000000000

SD-homology

Definition

A **right SD structure** (or a **shelf**) (X, *) is a set X with the right self-distributive binary operation $*: X \times X \to X$ (i.e. (a * b) * c = (a * c) * (b * c) for all $a, b, c \in X$).

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

SD-homology

Definition

A **right SD structure** (or a **shelf**) (X, *) is a set X with the right self-distributive binary operation $*: X \times X \to X$ (i.e. (a * b) * c = (a * c) * (b * c) for all $a, b, c \in X$).

Definition (Przytycki, 2014)

The homology obtained from the pre-simplicial set $(X^{n+1}, d_i^{(*)})$ (the pre-cubic set $(X^{n+1}, d_i^{(*)}, d_i^{(*0)})$, respectively) is said to be a **one-term** (two-term, respectively) **SD-homology**.

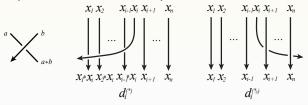


Figure: Graphical descriptions of face maps $d_i^{(*)}$ and $d_i^{(*_0)}$.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2 , respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2 , respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.

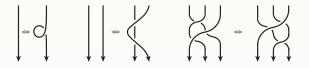


Figure: Quandle axioms from Reidemeister moves.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2 , respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.

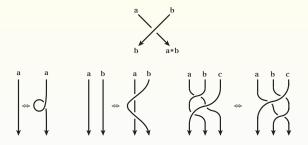


Figure: Quandle axioms from Reidemeister moves.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2 , respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.

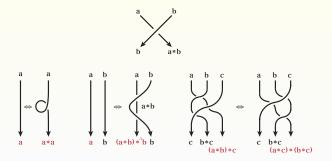


Figure: Quandle axioms from Reidemeister moves.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Quandles

Definition (Joyce/Matveev, 1982)

A **quandle** (X, *) is an algebraic structure with a set X and a binary operation $*: X \times X \to X$ satisfying the following axioms:

- 1. (Idempotency) For any $a \in X$, a * a = a.
- 2. (Invertibility) For each $b \in X$, $*_b : X \to X$ given by $*_b(x) = x * b$ is invertible.
- 3. (Right self-distributivity) For any $a, b, c \in X$, (a * b) * c = (a * c) * (b * c).

Notice that the three quandle axioms above are motivated by Knot Theory.

An application to Knot Theory: shadow homotopy invariants

Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*)})$ (or $(X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*)})$) is called the **rack** homology of X.

An application to Knot Theory: shadow homotopy invariants

Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*_0)})$ (or $(X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*_0)})$) is called the **rack** homology of X.

i.e.
$$C_n(X) = \mathbb{Z}X^n$$
 and $\partial_n = \sum_{i=1}^n (-1)^i (d_i^{(*)} - d_i^{(*)})$

(or
$$C_n(X) = \mathbb{Z}X^{n+1}$$
 and $\partial_n = \sum_{i=2}^n (-1)^i (d_{i+1}^{(*)} - d_{i+1}^{(*)})$).

An application to Knot Theory: shadow homotopy invariants

Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*_0)})$ (or $(X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*_0)})$) is called the **rack** homology of X.

i.e.
$$C_n(X) = \mathbb{Z}X^n$$
 and $\partial_n = \sum_{i=1}^n (-1)^i (d_i^{(*)} - d_i^{(*)})$

(or
$$C_n(X) = \mathbb{Z}X^{n+1}$$
 and $\partial_n = \sum_{i=2}^n (-1)^i (d_{i+1}^{(*)} - d_{i+1}^{(*)})$).

The geometric realization of the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*)})$ $((X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*)})$, respectively) is said to be the **rack space** (**extended rack space**, respectively) of *X*. We denote it by *BX* ($B_X X$, respectively).

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants

Quandle Homology

For a quandle X, we consider the subgroup $C_n^D(X)$ of $C_n(X)$ generated by *n*-tuples (x_1, \ldots, x_n) of elements of X with $x_i = x_{i+1}$ for some $i = 1, \ldots, n-1$. Notice that $(C_n^D(X), \partial_n)$ is a subchain complex of a rack chain complex $(C_n(X), \partial_n)$.

An application to Knot Theory: shadow homotopy invariants

Quandle Homology

For a quandle X, we consider the subgroup $C_n^D(X)$ of $C_n(X)$ generated by *n*-tuples (x_1, \ldots, x_n) of elements of X with $x_i = x_{i+1}$ for some $i = 1, \ldots, n-1$. Notice that $(C_n^D(X), \partial_n)$ is a subchain complex of a rack chain complex $(C_n(X), \partial_n)$.

Definition (Carter, Jelsovsky, Kamada, Langford, Saito, 2001)

For a quandle X, the quotient chain complex $(C_n^Q(X), \partial_n) = (C_n(X)/C_n^D(X), \partial_n)$ is called the **quandle chain** complex of X.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants ••••••••

An application to Knot Theory -Shadow homotopy invariants of classical links-

An application to Knot Theory: shadow homotopy invariants $\odot \bullet \circ \circ \circ \circ \circ \circ \circ$

Rack Space and Extended Rack Space

Definition (Fenn, Rourke, Sanderson, 1993 / 1995) Let X be a rack and let $d_i^{(*_0)}, d_i^{(*)}$ be face maps in the boundary homomorphism of rack homology. The geometric realization of the pre-cubic set $(X^n, d_i^{(*_0)}, d_i^{(*)})$ is called the **rack space** BX of X.

Rack Space and Extended Rack Space

Definition (Fenn, Rourke, Sanderson, 1993 / 1995) Let X be a rack and let $d_i^{(*_0)}, d_i^{(*)}$ be face maps in the boundary homomorphism of rack homology. The geometric realization of the pre-cubic set $(X^n, d_i^{(*_0)}, d_i^{(*)})$ is called the **rack space** BX of X. Especially, the geometric realization of $(X^{n+1}, d_{i+1}^{(*_0)}, d_{i+1}^{(*)})$ is said to be the **extended rack space** $B_X X$ of X.

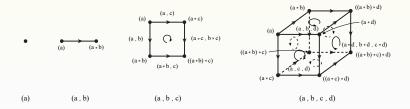


Figure: Low-dimensional cells of an extended rack space.

An application to Knot Theory: shadow homotopy invariants $\circ \circ \bullet \circ \circ \circ \circ \circ \circ$

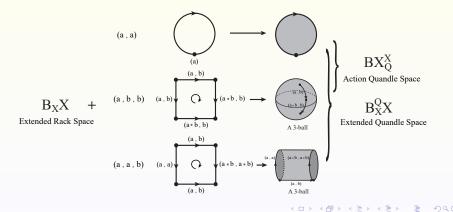
Extended Quandle Space and Action Quandle Space

For a quandle X, Nosaka introduced the quandle space $B^Q X$ modifying the rack space of X, and defined the quandle homotopy invariant using quandle spaces.

Extended Quandle Space and Action Quandle Space

For a quandle X, Nosaka introduced the quandle space $B^Q X$ modifying the rack space of X, and defined the quandle homotopy invariant using quandle spaces.

Definition



An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\bullet\circ\circ\circ\circ\circ$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

The shadow homotopy invariant of classical links

[Ingredients]

- An oriented link diagram D on I^2 .
- A shadow coloring $\widetilde{\mathbb{C}}$ of *D* by a quandle *X*.
- The extended quandle space B^Q_XX (or the action quandle space BX^X_Q) of X.

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\bullet\circ\circ\circ\circ\circ$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The shadow homotopy invariant of classical links

[Ingredients]

- An oriented link diagram D on I^2 .
- A shadow coloring $\widetilde{\mathbb{C}}$ of *D* by a quandle *X*.
- The extended quandle space B^Q_XX (or the action quandle space BX^X_Q) of X.

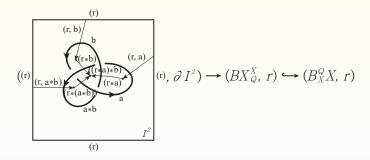


Figure: A shadow homotopy invariant of an oriented knot.

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\bullet\circ\circ\circ\circ$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

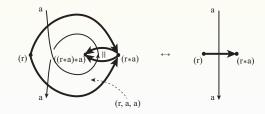
The shadow homotopy invariant of classical links

Theorem (Y., 2017) Let $\psi_X(D_L; \widetilde{\mathbb{C}}) : (I^2, \partial I^2) \to (B_X^Q X, r)(or (BX_Q^X, r))$ be the map defined as above. We denote by $\Psi_X(L; \widetilde{\mathbb{C}})$ the homotopy class of $\psi_X(D_L; \widetilde{\mathbb{C}})$ in $\pi_2(B_X^Q X)$ (or $\pi_2(BX_Q^X))$. Then $\Psi_X(L; \widetilde{\mathbb{C}})$ is invariant under Reidemeister moves.

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\bullet\circ\circ\circ\circ$

The shadow homotopy invariant of classical links

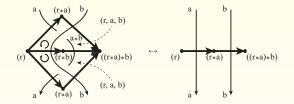
Theorem (Y., 2017) Let $\psi_X(D_L; \widetilde{\mathbb{C}}) : (I^2, \partial I^2) \to (B_X^Q X, r)(or (BX_Q^X, r))$ be the map defined as above. We denote by $\Psi_X(L; \widetilde{\mathbb{C}})$ the homotopy class of $\psi_X(D_L; \widetilde{\mathbb{C}})$ in $\pi_2(B_X^Q X)$ (or $\pi_2(BX_Q^X)$). Then $\Psi_X(L; \widetilde{\mathbb{C}})$ is invariant under Reidemeister moves. **Proof**



Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\circ\bullet\circ\circ\circ$

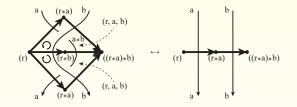
The shadow homotopy invariant of classical links

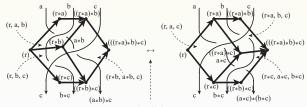


Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\circ\bullet\circ\circ\circ$

The shadow homotopy invariant of classical links





(r, a, b, c)

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

The shadow homotopy invariant of classical links

Definition (Y., 2017)

For a connected quandle X, if we let

$$\Psi_{X}(L) = \sum_{\widetilde{\mathbb{C}} \in SCol_{X}(L)} \Psi_{X}(L; \widetilde{\mathbb{C}}) \in \mathbb{Z}[\pi_{2}(B_{X}^{Q}X)](\text{or } \mathbb{Z}[\pi_{2}(BX_{Q}^{X})]),$$

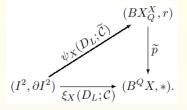
then $\Psi_X(L)$ is a link invariant called the **shadow homotopy** invariant of an oriented link *L*.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\circ\circ\circ\bullet\circ$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The shadow homotopy invariant of classical links



Theorem (Y., 2017)

Let X be a finite connected quandle, and let $\Xi_X(L)$ be the quandle homotopy invariant of an oriented link L. Then

 $\Psi_X(L) = |X| \Xi_X(L).$

Contents Geometric real

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants $\circ\circ\circ\circ\circ\circ\circ\circ\bullet$

Thank you for your attention!