On Moufang loops and related groups

Andrei V. Zavarnitsine

Denver, 2017

(based on joint research with A. N. Grishkov)

MOUFANG LOOPS

A groupoid (or magma) (M, \cdot) is just a set M with a binary operation '·' A groupoid M is a quasigroup if

• $L_m: x \mapsto m \cdot x, \quad R_m: x \mapsto x \cdot m$ are bijections of $M \quad \forall m \in M$, A quasigroup M is a *loop* if

• $\exists e \in M : e \cdot x = x \cdot e = x \quad \forall x \in M$. (the *identity* element) Loops are "nonassociative groups".

Convention: $xy = x \cdot y$, $xy \cdot z = (x \cdot y) \cdot z$, $x \cdot yz = x \cdot (y \cdot z)$, etc. Definition. A loop M is *Moufang* if it satisfies one (hence, all) of the following *Moufang identities*:

- $(xy \cdot x)z = x(y \cdot xz)$ (left)
- $x(y \cdot zy) = (xy \cdot z)y$ (right)
- $xy \cdot zx = (x \cdot yz)x$ (left central)
- $xy \cdot zx = x(yz \cdot x)$ (right central)

Moufang loops are *diassociative*: $\forall x, y \in M$, $\langle x, y \rangle$ is a group. In particular, x.yx = xy.x = xyx

- [R. Moufang, 1935] For $x, y, z \in M$, $(x, y, z) = 1 \Rightarrow \langle x, y, z \rangle$ is assoc. The associator a = (x, y, z) is defined by $xy \cdot z = (x \cdot yz)a$.
- [A. Drápal, 2010] A simplified proof of Moufang's theorem.

GROUPS WITH TRIALITY

Definition. A group G is with triality if there are $\rho, \sigma \in \operatorname{Aut}(G)$ satisfying $\rho^3 = \sigma^2 = (\rho\sigma)^2 = \varepsilon,$ $(x^{-1}x^{\sigma})(x^{-1}x^{\sigma})^{\rho}(x^{-1}x^{\sigma})^{\rho^2} = 1 \quad \forall x \in G.$ G is a group with triality $S = \langle \sigma, \rho \rangle$ (an image of Sym₃). Operation '*' on $M = \{x^{-1}x^{\sigma} \mid x \in G\}$: for $m, n \in M$, set $m \star n = m^{-\rho}nm^{-\rho^2}$

- $(M, \star) = \mathcal{M}(G)$ is a Moufang loop.
- Every ML has the form $\mathcal{M}(G)$ for some group w/triality G.
- $H \leq G \Rightarrow \mathcal{M}(H) \leq \mathcal{M}(G).$
- $L \leq \mathcal{M}(G) \Rightarrow \exists H \leq_{S} G : \mathcal{M}(H) = L.$

TRIALITY ACTION OF G on $\mathcal{M}(G)$

G is a group w/triality $S = \langle \rho, \sigma \rangle$, $M = \mathcal{M}(G)$, $g \in G$.

- $\chi(g): m \mapsto g^{-1}mg^{\sigma}$ is a permutation of M.
- $\chi: G \to \operatorname{Sym}(M)$ is a homomorphism.

For $m \in M$, $\chi(m^{\rho}) = L_m$, $\chi(m^{\rho^2}) = R_m$, $\chi(m) = P_m = L_{m^{-1}}R_{m^{-1}}$.

• $\operatorname{Mlt}(M) = \langle L_m, R_m \mid m \in M \rangle$ lies in $\operatorname{Im}(\chi)$.

Since $\rho: M \to M^{\rho} \to M^{\rho^2} \to M$, $\sigma: M^{\rho} \leftrightarrow M^{\rho^2}$, $M^{\sigma} = M$,

we have the triality (no homomorphism $S \rightarrow \operatorname{Aut}(\operatorname{Mlt}(G))$ in general)

$$P_m \xrightarrow{\rho} L_m \xrightarrow{\rho} R_m \xrightarrow{\rho} P_m$$
$$L_m \xrightarrow{\sigma} R_m^{-1}, \quad R_m \xrightarrow{\sigma} L_m^{-1}, \quad P_m \xrightarrow{\sigma} P_m^{-1}$$

For M with Nuc(M) = 1 and G = Mlt(M), this dates back to [G. Glauberman, 1968].

Nuc $(M) = \{m \in M \mid (m, M, M) = (M, m, M) = (M, M, m) = 1\} \leq M$ Groups with triality generalise the classical triality on Mlt(M)for a general Moufang loop M.

MULTIPLICATION FORMULAS

M = LN, where L, N are subloops of M. $l_1n_1 \cdot l_2n_2 = ln$, where $l_1, l_2, l \in L$, $n_1, n_2, n \in N$. **Example**. $l_1n_1 \cdot l_2n_2 = l_1l_2 \cdot n_1^{l_2}n_2$ if M is a group and $N \leq M$. Many new (Moufang) loops are defined in a similar way. The loop $\mathcal{M}(G)$ has a generic multiplication formula.

• Let G be a group w/triality $S = \langle \rho, \sigma \rangle$ and $l, k, n, m \in \mathcal{M}(G)$ then

$$(l \star n) \star (k \star m) = (l \star k) \star x, \qquad (*)$$

where

$$x = n^{-\rho k^{-\rho} l^{\rho^2}} m^{[k^{\rho^2}, l^{-\rho}]} n^{-\rho^2 k^{\rho^2} l^{-\rho}} \in \mathcal{M}(G).$$

• Let K and V be S-subgroups of a group G w/triality. Suppose $V \leq G$ and G = KV. Then (*) is a multiplication formula in $M = \mathcal{M}(G)$ w.r.t. the decomposition $M = \mathcal{M}(K) \star \mathcal{M}(V)$, where $\mathcal{M}(V) \leq M$ and $l, k \in \mathcal{M}(K)$, $n, m \in \mathcal{M}(V)$.

• If M = LN with $N \leq M$, there is a group w/triality G as above such that $\mathcal{M}(G) = M$, $\mathcal{M}(K) = L$, $\mathcal{M}(V) = N$.

NORMAL ABELIAN SUBLOOPS

M is a Moufang loop, $x, y \in M$.

where l,

Define operators $T_x = R_x L_x^{-1}$, $L_{x,y} = L_x L_y L_{yx}^{-1}$, $D_{x,y} = L_x R_y L_{xy}^{-1}$

• If $N \leq M$ then N is invariant under T_x , $L_{x,y}$, $D_{x,y}$.

Example. $ln \cdot km = lk \cdot (nT_k + m)$ if M = LN is a group, where $N \leq M$, N is abelian, $l, k \in L$, $n, m \in N$.

• As above, let G = KV with K and V being S-subgroups and $V \triangleleft G$ abelian. Then the multiplication formula in $M = \mathcal{M}(G)$ has the *inner* form

$$(l \star n) \star (k \star m) = (l \star k) \star x, \qquad x = nD_{l,k} + mL_{k,l}, \qquad (*)$$
$$k \in \mathcal{M}(K), n, m \in \mathcal{M}(V) \triangleleft \mathcal{M}(G).$$

Problem. Does M = LN with N normal abelian admit mult. formula (*)?

- A necessary condition: (M, N, N) = 1. ($\Rightarrow D_{l,k}$, $L_{k,l}$ are linear on N)
- A series of *abelian-by-cyclic* MLs (i. e. with N abelian,

L cyclic) of orders 3.2⁶, 7.2⁹, 3.5⁶, 3.7³, ... with $(M, N, N) \neq 1$.

WREATHLIKE TRIALITY GROUPS

H is a group. $T = H \times H \times H$ is naturally a group w/triality $S = \langle \rho, \sigma \rangle$. • $\mathcal{M}(T) \cong H$

R is a comm. assoc. ring, V is an RH-module free of R-rank n.

• W = V # V # V is an *RT*-module with natural *S*-action.

Problem. When is $T \prec W$ a group with triality S?

- $T \land W$ has triality S if and only if $n \leq 2$.
- If n = 1 then $\mathcal{M}(T \land W) \cong H$. The case n = 2 is of main interest.

• Let $G \leq \operatorname{GL}_2(R)$ and let V the free R-module of rank 2 with the natural action " \circ " of G. Denote by $G \prec_M V$ the set of pairs (g, u) for $g \in G$, $u \in V$. Then

$$(g, u) \cdot (h, w) = (gh, u \circ (\det h)gh^{-2}g^{-1} + w \circ [h^{-1}, g^{-1}])$$

defines a Moufang loop structure on $G \prec_M V$. This Moufang loop is isomorphic to $\mathcal{M}(T \prec W)$, where W = V # V # V is as above.

• $D_{g,h} \leftrightarrow (\det h)gh^{-2}g^{-1}, \quad L_{h,g} \leftrightarrow [h^{-1}, g^{-1}]$

We call $G \prec_M V$ the (outer) *Moufang semidirect product* of G and V.

- $G \prec_M V$ is nonassociative iff G is nonabelian.
- $Sc(G) \leq G \prec_M V$, where $Sc(G) = \{$ scalars of $G \}$.
- $\Rightarrow \text{ Moufang loops } \overline{G} \rtimes_{_M} V \text{, where } \overline{G} = G / \operatorname{Sc}(G).$

The structure of $GL_2(q) \Rightarrow$ existence of *abelian-by-simple* finite MLs:

- $\mathrm{PSL}_2(q) \rtimes_M \mathbb{F}_q^2$, where $q \ge 4$ is a prime power;
- $A_5 \swarrow_M \mathbb{F}_p^2$, where $p \equiv \pm 1 \pmod{10}$ is prime;
- $A_5 \swarrow_M \mathbb{F}_{p^2}^2$, where $p \equiv \pm 3 \pmod{10}$ is prime.

Embedding into $\mathbb{O}(R)$

R is an associative commutative ring with 1.

The Cayley algebra $\mathbb{O}(R)$ is the set of *Zorn matrices*

$$\begin{pmatrix} a & \mathbf{v} \\ \mathbf{w} & b \end{pmatrix}, a, b \in R, \mathbf{v}, \mathbf{w} \in R^3,$$

viewed as a free R-module (of rank 8) with multiplication

$$\begin{pmatrix} a_1 & \mathbf{v}_1 \\ \mathbf{w}_1 & b_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & \mathbf{v}_2 \\ \mathbf{w}_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + \mathbf{v}_1 \cdot \mathbf{w}_2 & a_1 \mathbf{v}_2 + b_2 \mathbf{v}_1 \\ a_2 \mathbf{w}_1 + b_1 \mathbf{w}_2 & \mathbf{w}_1 \cdot \mathbf{v}_2 + b_1 b_2 \end{pmatrix} + \begin{pmatrix} 0 & -\mathbf{w}_1 \times \mathbf{w}_2 \\ \mathbf{v}_1 \times \mathbf{v}_2 & 0 \end{pmatrix},$$

(v_1, v_2, v_3), $\mathbf{w} = (w_1, w_2, w_3)$, $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$,

 $\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1) \in \mathbb{R}^3$

 $\mathbf{v} =$

- $\mathbb{O}(R)$ is an alternative algebra. $(xx \cdot y = x \cdot xy, y \cdot xx = yx \cdot x)$
- $\mathbb{O}(R)^{\times}$ is a Moufang loop (invertible elements of $\mathbb{O}(R)$).

The parabolic subloop $\mathbb{P}(R) \leq \mathbb{O}(R)^{\times}$ consists of the matrices

$$\begin{pmatrix} a_{11} & (0, a_{12}, r_1) \\ (r_2, a_{21}, 0) & a_{22} \end{pmatrix}$$
,

where $(a_{ij}) \in \operatorname{GL}_2(R)$ and $r_1, r_2 \in R$.

• $\operatorname{GL}_2(R) \rtimes_M R^2 \cong \mathbb{P}(R).$

ACTION OF MOUFANG LOOPS ON ABELIAN GROUPS

R is a commut. assoc. ring, A is an alternative R-algebra $L_x: a \mapsto xa, R_x: a \mapsto ax$ belong to GL(A) for $x \in A^{\times}$

$$L_{x,y} = L_x L_y L_{yx}^{-1}, \qquad D_{x,y} = L_x R_y L_{xy}^{-1}.$$

• Let M be a subloop of A^{\times} and U a subgroup of the additive group of A that is invariant under the operators $L_{n,m}$ and $D_{n,m}$ for all $m, n \in M$. Then the set of pairs (m, u) for $m \in M$, $u \in U$ which we denote by $M \not\prec U$ becomes a Moufang loop w.r.t. the operation

$$(m,u)\cdot(n,w)=(mn,uD_{m,n}+wL_{n,m}).$$

We call $M \prec U$ the *outer semidirect product* of M and U.

• Natural embeddings $M \to M \land U$ and $U \to M \land U$.

• The "inner" loop action of $L_{n,m}$, $D_{n,m}$ on U in $M \not\prec U$ coincides with the linear action of $L_{n,m}$, $D_{n,m}$ on U in A for all $m, n \in M$.

• $\operatorname{Sc}(M) \triangleleft M \prec U$, where $\operatorname{Sc}(M) = R1 \cap M$.

 \Rightarrow Moufang loops $\overline{M} \prec V$, where $\overline{M} = M/\operatorname{Sc}(M)$.

Semidirect products for simple Moufang loops

- $\mathbb{O} = \mathbb{O}(\mathbb{F}_q)$ is equipped with a quadratic form (= norm).
- $SL(\mathbb{O}) \leq \mathbb{O}^{\times}$ the subloop of elements with norm 1.
- $M(q) = PSL(\mathbb{O}) = SL(\mathbb{O}) / Sc(SL(\mathbb{O}))$, the simple Paige–Moufang loop over \mathbb{F}_q .
- [M. Liebeck, 1987] Every nonassociative finite simple Moufang loop is isomorphic to some M(q).
- 1^{\perp} is 7-dimensional and $SL(\mathbb{O})$ -invariant.

The following abelian-by-simple finite Moufang loops exist:

- $M(q) \prec \mathbb{F}_q^7$, where q is an odd prime power;
- $M(q) \rtimes \mathbb{F}_q^6$, where q is a power of 2;
- $M(2) \prec \mathbb{F}_p^7$, where p is an odd prime.

For \mathbb{O} the classical octonions over \mathbb{R} , we have the loop

• $\operatorname{PSL}(\mathbb{O}) \rtimes \mathbb{R}^7$.

LINEAR REPRESENTATIONS OF MOUFANG LOOPS

Classification (up to equivalence) of short exact sequences of MLs $0 \rightarrow V \rightarrow E \rightarrow M \rightarrow 1$ (*)

with V an abelian group. A *finite* extension E is said to be

- minimal, if $N \leq E$, $N \subseteq V \Rightarrow N = V$ or N = 0;
- nontrivial, if E is nonassociative and $\cong V \times M$.

Minimal nontrivial extensions for finite simple noncyclic Moufang loops:

- $\mathrm{PSL}_2(q) \prec_M \mathbb{F}_q^2$, $q \ge 4$ is a prime power;
- $A_5 \swarrow_M \mathbb{F}_p^2$, $p \equiv \pm 1 \pmod{10}$ is prime;
- $A_5 \swarrow_M \mathbb{F}_{p^2}^2$, $p \equiv \pm 3 \pmod{10}$ is prime;
- $M(q) \prec \mathbb{F}_q^7$, q is an odd prime power;
- $M(q) \prec \mathbb{F}_q^6$, q is a power of 2;
- $M(2) \prec \mathbb{F}_p^{\overline{7}}$, p is an odd prime;
- $SL(\mathbb{O}(q))$, q is an odd prime power $(V \cong \mathbb{Z}/2\mathbb{Z}, M = M(q))$;
- $0 \to \mathbb{Z}/2\mathbb{Z} \to E \to M(2) \to 1.$

Problem. Are these all such extensions?

Identities in Moufang loops

Groups are (multiplicative) subgroups of associative algebras.

• [I. Shestakov, 2003] Not all MLs are subloops of alternative algebras.

The free (countable) group embeds into $GL_2(\mathbb{Z})$.

- Problem. Does a free ML embed into \mathbb{O}^{\times} , where $\mathbb{O} = \mathbb{O}(\mathbb{Z})$?
- Problem. Does a nontrivial identity hold in \mathbb{O}^{\times} ?

An identity is *trivial* if it holds in free Moufang loops (or, equivalently, follows from the Moufang identities).

Example. Trivial identities:

- $(x \cdot yz \cdot x)y = xy \cdot z \cdot xy = x(y \cdot zx \cdot y);$ (two-sided Moufang)
- $z^{-1}(zx \cdot y) = xz^{-1} \cdot zy = (x \cdot yz^{-1})z;$
- $z^{-1}(xz \cdot y) = z^{-1}x \cdot zy; \quad xz^{-1} \cdot yz = (x \cdot z^{-1}y)z;$
- $(z^{-1}x \cdot y)z = z^{-1}(x \cdot yz);$
- $((xy \cdot z)t \cdot y^{-1})x^{-1} = x(y \cdot z(t \cdot y^{-1}x^{-1}));$

(Computer-aided) search for identities in \mathbb{O}^{\times} of small degree.

Sketch of the algorithm:

- $\mathcal{W} = \mathcal{W}_{d,n}$, the set of all words of degree d in n variables
- $a_1 \in (\mathbb{O}^{\times})^n$, a random *n*-tuple of elements
- Substituting a_1 into all words in \mathcal{W} we get l_1 distinct values
- $\mathcal{W} = \mathcal{W}_1^{(1)} \cup \mathcal{W}_2^{(1)} \cup \ldots \cup \mathcal{W}_{l_1}^{(1)}$, where $\mathcal{W}_i^{(1)}|_{a_1}$ is constant
- Discard one-element sets $\mathcal{W}_i^{(1)}$ (as no identity involves such words)
- $a_2 \in (\mathbb{O}^{\times})^n$, a new random *n*-tuple
- Substituting a_2 gives a finer decomposition $\mathcal{W}_1^{(2)} \cup \mathcal{W}_2^{(2)} \cup \ldots \cup \mathcal{W}_{l_2}^{(2)}$
- ... repeat until the sets $\mathcal{W}_i^{(j)}$ can no longer be refined

 $v, w \in \mathcal{W}_i^{(j)} \longrightarrow v = w$ is a *candidate* for an identity Attempt to prove v = w in a free loop.

All identities can be found in this way.

No (nontrivial) identities in \mathbb{O}^{\times} of degree $\leq d$ in n variables found for

- d = 4, n = 6
- d = 5, n = 5
- d = 6, n = 3

No identities of positive type found for • d = 7, n = 3

An identity v = w is of *positive type* (or *inverse-free*) if both v and w involve no negative exponents of the basis variables.

Positive-type identities in free Moufang loops:

- The Moufang identities (left, right, central)
- (x.yz.x)y = xy.z.xy = x(y.zx.y) (two-sided)
- Consequences of the diassociativity (xy.x = x.yx, etc.)

Prb. Are there other positive-type identities?

•
$$d = 8$$
, $n = 3$

In this case, the following identities of positive type hold in \mathbb{O}^{\times} :

1.
$$b((a \cdot c^{2}b \cdot a) \cdot cb) = b(a \cdot c^{2}b) \cdot (a \cdot cb)$$

2.
$$(a^{2}b \cdot c)(a \cdot bcb) = (a^{2}b \cdot ca) \cdot bcb$$

3.
$$a((b \cdot ca \cdot b) \cdot c^{2}a) = a(b \cdot ca) \cdot (b \cdot c^{2}a)$$

4.
$$ab \cdot (cbc \cdot a^{2}b) = (ab \cdot cb)(c \cdot a^{2}b)$$

5.
$$ab \cdot (c \cdot a^{2}b \cdot c)b = (ab \cdot (c \cdot a^{2}b)) \cdot cb$$

6.
$$ab \cdot ((ac \cdot b) \cdot ac^{2}) = a(b \cdot ac \cdot b) \cdot ac^{2}$$

7.
$$a^{2}b \cdot (cbc \cdot ab) = (a^{2}b \cdot cb)(c \cdot ab)$$

• [P.Vojtěchovský, M.Kinyon] A computer proof for idens. 1-7. (Prover9)

 \Rightarrow These identities hold in all MLs. Are they really "new"?

MOUFANG SEMILOOPS

"semiloop" = "groupoid" = "magma"

Moufang semiloops are sometimes defined as semiloops satisfying the Moufang identities (left,right,central).

• A free semigrp. on X is embedded into a free grp. on X, $id: X \rightarrow X$.

It is natural to expect a free Moufang semiloop to be the "freest" semiloop that can be similarly embedded into a free Moufang loop.

Definition. A semiloop satisfying all identities of positive type that hold in Moufang loops is called a *Moufang semiloop*.

- Moufang semiloops are diassociative,
- satisfy the Moufang identities + identities 1–7.

An identity 1–7 is *new* if it is not a consequence (in the variety of semiloops) of the diassociativity + Moufang + the other 6 identities.

• This is true for identities 1,3–7. Unknown for identity 2. (Mace4)

Problem. Is the variety of Moufang semiloops finitely based?

Problem. Does every new positive-type identity contain the square of an indeterminate?

FREE MOUFANG LOOPS

The free Moufang loop F_n is a mysterious object. $(n \ge 3)$ Problem. No useful canonical form for elements of F_n . (reduced words) Problem. Is every subloop of F_n free? (Nielsen—Schreier) Problem. Is F_n torsion-free? (true for groups) Problem. Is F_n Hopfian? (true for groups)

The associator-commutator series

Let M be a Moufang loop. Commutator of $x, y \in M$: xy = yx.c, c = [x, y]Associator of $x, y, z \in M$: xy.z = (x.yz)a, a = (x, y, z)• $\delta_1(M) = M$,

• $\delta_n(M)$ is the normal subloop of M generated by

 $\diamond \quad [\delta_i(M), \delta_j(M)], \quad i, j < n, \quad i+j \ge n$

 $\diamond \quad (\delta_i(M), \delta_j(M), \delta_k(M)), \quad i, j, k < n, \quad i+j+k \ge n$

 $x \in \delta_i(M) \setminus \delta_{i+1}(M) \rightarrow x$ has weight $i \pmod{\infty}$, otherwise)

The normal series

 $M = \delta_1(M) \triangleright \delta_2(M) \triangleright \dots$

is central: $\delta_i(M)/\delta_{i+1}(M) \leq Z(M/\delta_{i+1}(M))$. The center $Z(M) = \{x \in M \mid [x, M] = 1, (x, M, M) = 1\}.$

The associator-commutator approximation for F_3 .

• Let $F = F_3$. The abelian groups $\delta_i(F)/\delta_{i+1}(F)$ for $i = 1, 2, \ldots, 5$ are free or ranks 3, 3, 9, 21, 57, respectively.

cf. For a 3-generator free group, the ranks are 3, 3, 8, 18, 48.

A multiplication formula for $F/\delta_6(F)$.

•
$$(n_1, n_2, \dots, n_5) = (3, 3, 9, 21, 57);$$

• $A = \mathbb{Z}^{n_1} \oplus \mathbb{Z}^{n_2} \oplus \ldots \oplus \mathbb{Z}^{n_5}; \qquad x \in A$

 $x = (x_{11}, x_{12}, x_{13}; x_{21}, x_{22}, x_{23}; \dots, x_{ii}, \dots),$

where $1 \leq i \leq 5$, $1 \leq j \leq n_i$.

18

For $x, y \in A$, we have $x \star y = x + y + f$, where $f = (f_{11}, f_{12}, f_{13}; f_{21}, \dots, f_{ij}, \dots)$, f_{ij} are integer-valued polynomials in x_{rs}, y_{rs} with $1 \leq r < i$, $1 \leq s \leq n_r$.

 f_{ij} may be expressed as multilinear polynomials in the *binomial variables* $x_{rs}^{(t)}, y_{rs}^{(t)}, t \ge 1$, where we denote

$$z^{(t)} = \frac{z(z-1)(z-2)\dots(z-t+1)}{t!} \in \mathbb{Q}[z]$$

$$\begin{split} f_{11} = & f_{12} = f_{13} = 0, \quad f_{21} = -x_{12}y_{11}, \quad f_{22} = -x_{13}y_{11}, \quad f_{23} = -x_{13}y_{12}, \\ f_{31} = -2x_{11}x_{13}y_{12} - x_{11}y_{12}y_{13} + 2x_{12}x_{13}y_{11} + x_{12}y_{11}y_{13} - 3x_{13}y_{11}y_{12} + 6x_{23}y_{11}, \\ f_{32} = -x_{12}y_{11}^{(2)} + x_{21}y_{11}, \quad f_{33} = -x_{12}^{(2)}y_{11} - x_{12}y_{11}y_{12} + x_{21}y_{12}, \\ f_{34} = -x_{12}x_{13}y_{11} - x_{12}y_{11}y_{13} + x_{21}y_{13} - x_{23}y_{11}, \quad f_{35} = -x_{13}y_{11}^{(2)} + x_{22}y_{11}, \\ f_{36} = -x_{13}y_{11}y_{12} + x_{22}y_{12} + x_{23}y_{11}, \quad f_{37} = -x_{13}^{(2)}y_{11} - x_{13}y_{11}y_{13} + x_{22}y_{13}, \\ f_{38} = -x_{13}y_{12}^{(2)} + x_{23}y_{12}, \quad f_{39} = -x_{13}^{(2)}y_{12} - x_{13}y_{12}y_{13} + x_{23}y_{13}, \\ f_{41} = -2x_{11}^{(2)}x_{13}y_{12} - x_{11}^{(2)}y_{12}y_{13} - x_{11}x_{12}y_{11}y_{13} - x_{11}x_{13}y_{11}y_{12} - x_{11}y_{11}y_{12}y_{13}, \\ -4x_{12}x_{13}y_{11}^{(2)} - 3x_{12}y_{11}^{(2)}y_{13} + x_{13}y_{11}^{(2)}y_{12} + 2x_{11}x_{21}y_{13} - 2x_{11}x_{22}y_{12} - x_{11}y_{12}y_{22} \\ + x_{11}y_{13}y_{21} - 3x_{12}x_{13}y_{11} + 2x_{12}x_{22}y_{11} - 2x_{12}y_{11}y_{13} + 4x_{13}x_{21}y_{11} + 2x_{13}y_{11}y_{12} + \dots \end{split}$$

• We have $(A, \star) \cong F/\delta_6(F)$, where $F = F_3$.

Consequence: modulo identities

- $(a, b, c)^6 \equiv [[a, b], c] [[b, c], a] [[c, a], b] \mod \delta_4;$ (cf. Hall-Witt, Jacobi)
- $(a, b, [a, c]) \equiv [(a, b, c), a] \mod \delta_5;$
- $(a^n, b, c) \equiv (a, b, c)^n [(a, b, c), a]^{n(n-1)/2} \mod \delta_5 \quad \forall n \in \mathbb{Z};$
- $(ab, c, d) \equiv (a, c, d)(b, c, d) \cdot [(b, c, d), a] \mod{\delta_5};$
- $((a, b, c), x, y) \equiv ((a, x, y), b, c) ((b, x, y), c, a) ((c, x, y), a, b) \mod \delta_6.$

(the last two identities hold in 3-generator loops only)

Open problems:

Problem. Are all quotients $\delta_i(F_n)/\delta_{i+1}(F_n)$ torsion-free, i = 1, 2, ...? Problem. Is $\bigcap_{i=1}^{\infty} \delta_i(F_n) = 1$?

(cf. Mal'cev)

ISOTOPY AND TRIALITY

Definition. Loops M and L are *isotopic* if \exists bijections $\alpha, \beta, \gamma: M \to L$ such that

$$x\alpha \cdot y\beta = (xy)\gamma \qquad \forall x, y \in M.$$

• Moufang loops M and L are isotopic iff there is $m \in M$ such that $L \cong (M, \circ_m)$, where

$$x \circ_m y = xm^{-1} \cdot my \qquad \forall x, y \in M.$$

• Let G be a group with triality $S = \langle \sigma, \rho \rangle$ and $m \in \mathcal{M}(G)$. Then G is a group with triality $S_m = \langle \sigma, \rho^2 m \rho^2 \rangle$ whose corresponding Moufang loop M_m has multiplication

$$x \star_m y = xm^{-1} \star my \qquad \forall x, y \in M_m.$$

In particular, G is a group with triality for all loop-isotopes of M.

