On Moufang loops and related groups

Andrei V. Zavarnitsine

Denver, 2017

MOUFANG LOOPS

A groupoid (or magma) (M, \cdot) is just a set M with a binary operation '.'
A groupoid M is a quasigroup if

- $L_{m}: x \mapsto m \cdot x, \quad R_{m}: x \mapsto x \cdot m \quad$ are bijections of $M \quad \forall m \in M$, A quasigroup M is a loop if
- $\exists e \in M: e \cdot x=x \cdot e=x \quad \forall x \in M$. (the identity element) Loops are "nonassociative groups".
Convention: $x y=x \cdot y, \quad x y \cdot z=(x \cdot y) \cdot z, \quad x \cdot y z=x \cdot(y \cdot z)$, etc.
Definition. A loop M is Moufang if it satisfies one (hence, all) of the following Moufang identities:
- $\quad(x y \cdot x) z=x(y \cdot x z) \quad$ (left)
- $x(y \cdot z y)=(x y \cdot z) y \quad$ (right)
- $x y \cdot z x=(x \cdot y z) x \quad$ (left central)
- $x y \cdot z x=x(y z \cdot x) \quad$ (right central)

Moufang loops are diassociative: $\forall x, y \in M,\langle x, y\rangle$ is a group.
In particular, $x \cdot y x=x y \cdot x=x y x$

- [R. Moufang, 1935] For $x, y, z \in M,(x, y, z)=1 \Rightarrow\langle x, y, z\rangle$ is assoc. The associator $a=(x, y, z)$ is defined by $x y \cdot z=(x \cdot y z) a$.
- [A. Drápal, 2010] A simplified proof of Moufang's theorem.

Groups with triality

Definition. A group G is with triality if there are $\rho, \sigma \in \operatorname{Aut}(G)$ satisfying

$$
\begin{aligned}
& \rho^{3}=\sigma^{2}=(\rho \sigma)^{2}=\varepsilon, \\
& \left(x^{-1} x^{\sigma}\right)\left(x^{-1} x^{\sigma}\right)^{\rho}\left(x^{-1} x^{\sigma}\right)^{\rho^{2}}=1 \quad \forall x \in G .
\end{aligned}
$$

G is a group with triality $S=\langle\sigma, \rho\rangle \quad$ (an image of Sym_{3}).

$$
m \star n=m^{-\rho} n m^{-\rho^{2}}
$$

- $(M, \star)=\mathcal{M}(G)$ is a Moufang loop.
- Every ML has the form $\mathcal{M}(G)$ for some group w/triality G.
- $H \leqslant{ }_{S} G \quad \Rightarrow \quad \mathcal{M}(H) \leqslant \mathcal{M}(G)$.
- $L \leqslant \mathcal{M}(G) \quad \Rightarrow \quad \exists H \leqslant{ }_{S} G: \mathcal{M}(H)=L$.

Triality action of G on $\mathcal{M}(G)$
G is a group w/triality $S=\langle\rho, \sigma\rangle, M=\mathcal{M}(G), g \in G$.

- $\chi(g): m \mapsto g^{-1} m g^{\sigma}$ is a permutation of M.
- $\chi: G \rightarrow \operatorname{Sym}(M)$ is a homomorphism.

For $m \in M, \quad \chi\left(m^{\rho}\right)=L_{m}, \quad \chi\left(m^{\rho^{2}}\right)=R_{m}, \quad \chi(m)=P_{m}=L_{m^{-1}} R_{m^{-1}}$.

- $\operatorname{Mlt}(M)=\left\langle L_{m}, R_{m} \mid m \in M\right\rangle$ lies in $\operatorname{Im}(\chi)$.

Since $\rho: M \rightarrow M^{\rho} \rightarrow M^{\rho^{2}} \rightarrow M, \quad \sigma: M^{\rho} \leftrightarrow M^{\rho^{2}}, \quad M^{\sigma}=M$, we have the triality (no homomorphism $S \rightarrow \operatorname{Aut}(\operatorname{Mlt}(G))$ in general)

$$
\begin{aligned}
& P_{m} \stackrel{\rho}{\longmapsto} L_{m} \stackrel{\rho}{\longmapsto} R_{m} \stackrel{\rho}{\longmapsto} P_{m} \\
& L_{m} \stackrel{\sigma}{\longmapsto} R_{m}^{-1}, \quad R_{m} \stackrel{\sigma}{\longmapsto} L_{m}^{-1}, \quad P_{m} \stackrel{\sigma}{\longmapsto} P_{m}^{-1} .
\end{aligned}
$$

For M with $\operatorname{Nuc}(M)=1$ and $G=\operatorname{Mlt}(M)$, this dates back to
[G. Glauberman, 1968].
$\operatorname{Nuc}(M)=\{m \in M \mid(m, M, M)=(M, m, M)=(M, M, m)=1\} \sharp M$
Groups with triality generalise the classical triality on $\operatorname{Mlt}(M)$ for a general Moufang loop M.

Multiplication formulas

$M=L N$, where L, N are subloops of M.
$l_{1} n_{1} \cdot l_{2} n_{2}=l n$, where $l_{1}, l_{2}, l \in L, n_{1}, n_{2}, n \in N$.
Example. $\quad l_{1} n_{1} \cdot l_{2} n_{2}=l_{1} l_{2} \cdot n_{1}^{l_{2}} n_{2}$ if M is a group and $N \geqq M$.
Many new (Moufang) loops are defined in a similar way.
The loop $\mathcal{M}(G)$ has a generic multiplication formula.

- Let G be a group w/triality $S=\langle\rho, \sigma\rangle$ and $l, k, n, m \in \mathcal{M}(G)$ then

$$
\begin{equation*}
(l \star n) \star(k \star m)=(l \star k) \star x, \tag{*}
\end{equation*}
$$

where

$$
x=n^{-\rho k^{-\rho} \rho^{\rho^{2}}} m^{\left[k^{\rho^{2}}, l^{-\rho}\right]} n^{-\rho^{2} k^{\rho^{2}} l^{-\rho}} \in \mathcal{M}(G)
$$

- Let K and V be S-subgroups of a group $G \mathrm{w} /$ triality. Suppose $V \geqq G$ and $G=K V$. Then $(*)$ is a multiplication formula in $M=\mathcal{N}(G)$ w.r.t. the decomposition $M=\mathcal{M}(K) \star \mathcal{N}(V)$, where $\mathcal{M}(V) \sharp M$ and $l, k \in \mathcal{M}(K)$, $n, m \in \mathcal{M}(V)$.
- If $M=L N$ with $N 太 M$, there is a group $\mathrm{w} /$ triality G as above such that $\mathcal{N}(G)=M, \mathcal{M}(K)=L, \mathcal{M}(V)=N$.

Normal abelian subloops

M is a Moufang loop, $x, y \in M$.
Define operators $\quad T_{x}=R_{x} L_{x}^{-1}, \quad L_{x, y}=L_{x} L_{y} L_{y x}^{-1}, \quad D_{x, y}=L_{x} R_{y} L_{x y}^{-1}$

- If $N 太 M$ then N is invariant under $T_{x}, L_{x, y}, D_{x, y}$.

Example. $l n \cdot k m=l k \cdot\left(n T_{k}+m\right) \quad$ if $M=L N$ is a group, where $N \preccurlyeq M, N$ is abelian, $l, k \in L, n, m \in N$.

- As above, let $G=K V$ with K and V being S-subgroups and $V \geqq G$ abelian. Then the multiplication formula in $M=\mathcal{N}(G)$ has the inner form

$$
\begin{equation*}
(l \star n) \star(k \star m)=(l \star k) \star x, \quad x=n D_{l, k}+m L_{k, l}, \tag{*}
\end{equation*}
$$

where $l, k \in \mathcal{M}(K), n, m \in \mathcal{M}(V) \boxtimes \mathcal{M}(G)$.
Problem. Does $M=L N$ with N normal abelian admit mult. formula (*)?

- A necessary condition: $(M, N, N)=1 .\left(\Rightarrow D_{l, k}, L_{k, l}\right.$ are linear on $\left.N\right)$
- A series of abelian-by-cyclic MLs (i. e. with N abelian, L cyclic) of orders $3.2^{6}, 7.2^{9}, 3.5^{6}, 3.7^{3}, \ldots$ with $(M, N, N) \neq 1$.

Wreathlike triality groups

H is a group. $T=H \times H \times H$ is naturally a group w/triality $S=\langle\rho, \sigma\rangle$.

- $\mathcal{M}(T) \cong H$
R is a comm. assoc. ring, V is an $R H$-module free of R-rank n.
- $W=V \# V \# V$ is an $R T$-module with natural S-action.

Problem. When is $T<W$ a group with triality S ?

- $T<W$ has triality S if and only if $n \leqslant 2$.
- If $n=1$ then $\mathcal{M}(T<W) \cong H$. The case $n=2$ is of main interest.
- Let $G \leqslant \mathrm{GL}_{2}(R)$ and let V the free R-module of rank 2 with the natural action " \circ " of G. Denote by $G{人_{M}} V$ the set of pairs (g, u) for $g \in G, u \in V$. Then

$$
(g, u) \cdot(h, w)=\left(g h, u \circ(\operatorname{det} h) g h^{-2} g^{-1}+w \circ\left[h^{-1}, g^{-1}\right]\right)
$$

defines a Moufang loop structure on $G \curlywedge_{M} V$. This Moufang loop is isomorphic to $\mathcal{N}(T$ 人 $W)$, where $W=V \# V \# V$ is as above.

- $D_{g, h} \leftrightarrow(\operatorname{det} h) g h^{-2} g^{-1}, \quad L_{h, g} \leftrightarrow\left[h^{-1}, g^{-1}\right]$

We call $G \wedge_{M} V$ the（outer）Moufang semidirect product of G and V ．

- $G 人_{M} V$ is nonassociative iff G is nonabelian．
- $\operatorname{Sc}(G) \sharp G 人_{M} V$ ，where $\operatorname{Sc}(G)=\{$ scalars of $G\}$ ．
\Rightarrow Moufang loops $\bar{G} 人_{M} V$ ，where $\bar{G}=G / \operatorname{Sc}(G)$ ．
The structure of $\mathrm{GL}_{2}(q) \Rightarrow$ existence of abelian－by－simple finite MLs：
－ $\operatorname{PSL}_{2}(q) \curlywedge_{M} \mathbb{F}_{q}^{2}, \quad$ where $q \geqslant 4$ is a prime power；
- $A_{5}{人_{M}}^{\mathbb{F}_{p}^{2}}$ ，where $p \equiv \pm 1(\bmod 10)$ is prime；
- $A_{5}{人_{M}}^{\mathbb{F}_{p^{2}}^{2}}, \quad$ where $p \equiv \pm 3(\bmod 10)$ is prime．

Embedding into $\mathbb{O}(R)$

R is an associative commutative ring with 1.
The Cayley algebra $\mathbb{O}(R)$ is the set of Zorn matrices

$$
\left(\begin{array}{cc}
a & \mathbf{v} \\
\mathbf{w} & b
\end{array}\right), \quad a, b \in R, \quad \mathbf{v}, \mathbf{w} \in R^{3}
$$

viewed as a free R－module（of rank 8）with multiplication

$$
\begin{aligned}
& \quad\left(\begin{array}{cc}
a_{1} & \mathbf{v}_{1} \\
\mathbf{w}_{1} & b_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{2} & \mathbf{v}_{2} \\
\mathbf{w}_{2} & b_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2}+\mathbf{v}_{1} \cdot \mathbf{w}_{2} & a_{1} \mathbf{v}_{2}+b_{2} \mathbf{v}_{1} \\
a_{2} \mathbf{w}_{1}+b_{1} \mathbf{w}_{2} & \mathbf{w}_{1} \cdot \mathbf{v}_{2}+b_{1} b_{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & -\mathbf{w}_{1} \times \mathbf{w}_{2} \\
\mathbf{v}_{1} \times \mathbf{v}_{2} & 0
\end{array}\right), \\
& \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right), \mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right), \quad \mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}, \\
& \mathbf{v} \times \mathbf{w}=\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right) \in R^{3}
\end{aligned}
$$

- $\mathbb{O}(R)$ is an alternative algebra. $\quad(x x \cdot y=x \cdot x y, \quad y \cdot x x=y x \cdot x)$
- $\mathbb{O}(R)^{\times}$is a Moufang loop (invertible elements of $\mathbb{O}(R)$).

The parabolic subloop $\mathbb{P}(R) \leqslant \mathbb{O}(R)^{\times}$consists of the matrices

$$
\left(\begin{array}{cc}
a_{11} & \left(0, a_{12}, r_{1}\right) \\
\left(r_{2}, a_{21}, 0\right) & a_{22}
\end{array}\right),
$$

where $\left(a_{i j}\right) \in \mathrm{GL}_{2}(R)$ and $r_{1}, r_{2} \in R$.

- $\mathrm{GL}_{2}(R){人_{M}} R^{2} \cong \mathbb{P}(R)$.

Action of Moufang Loops on abelian groups

R is a commut．assoc．ring，A is an alternative R－algebra $L_{x}: a \mapsto x a, R_{x}: a \mapsto a x$ belong to $\mathrm{GL}(A)$ for $x \in A^{\times}$

$$
L_{x, y}=L_{x} L_{y} L_{y x}^{-1}, \quad D_{x, y}=L_{x} R_{y} L_{x y}^{-1} .
$$

－Let M be a subloop of A^{\times}and U a subgroup of the additive group of A that is invariant under the operators $L_{n, m}$ and $D_{n, m}$ for all $m, n \in M$ ．Then the set of pairs (m, u) for $m \in M, u \in U$ which we denote by M 人U becomes a Moufang loop w．r．t．the operation

$$
(m, u) \cdot(n, w)=\left(m n, u D_{m, n}+w L_{n, m}\right)
$$

We call $M \curlywedge U$ the outer semidirect product of M and U ．

- Natural embeddings $M \rightarrow M \curlywedge U$ and $U \rightarrow M 人 U$ ．
- The＂inner＂loop action of $L_{n, m}, D_{n, m}$ on U in $M 人 U$ coincides with the linear action of $L_{n, m}, D_{n, m}$ on U in A for all $m, n \in M$ ．
－ $\operatorname{Sc}(M) \preccurlyeq M 人 U$ ，where $\operatorname{Sc}(M)=R 1 \cap M$ ．
\Rightarrow Moufang loops $\bar{M} \curlywedge V$ ，where $\bar{M}=M / \operatorname{Sc}(M)$ ．

SEmidirect Products for simple Moufang loops

$\mathbb{O}=\mathbb{O}\left(\mathbb{F}_{q}\right)$ is equipped with a quadratic form $(=$ norm $)$.
$\mathrm{SL}(\mathbb{O}) \leqslant \mathbb{O}^{\times}$the subloop of elements with norm 1 .
$\mathrm{M}(q)=\operatorname{PSL}(\mathbb{O})=\operatorname{SL}(\mathbb{O}) / \operatorname{Sc}(\operatorname{SL}(\mathbb{O}))$, the simple Paige-Moufang loop over \mathbb{F}_{q}.

- [M. Liebeck, 1987] Every nonassociative finite simple Moufang loop is isomorphic to some $\mathrm{M}(q)$.
1^{\perp} is 7 -dimensional and $\mathrm{SL}(\mathbb{O})$-invariant.
The following abelian-by-simple finite Moufang loops exist:
- $\mathrm{M}(q)<\mathbb{F}_{q}^{7}$, where q is an odd prime power;
- $\mathrm{M}(q)<\mathbb{F}_{q}^{6}$, where q is a power of 2 ;
- $\mathrm{M}(2)<\mathbb{F}_{p}^{7}$, where p is an odd prime.

For \mathbb{O} the classical octonions over \mathbb{R}, we have the loop

- $\operatorname{PSL}(\mathbb{O})<\mathbb{R}^{7}$.

Linear representations of Moufang loops

 Classification (up to equivalence) of short exact sequences of MLs$$
\begin{equation*}
0 \rightarrow V \rightarrow E \rightarrow M \rightarrow 1 \tag{*}
\end{equation*}
$$

with V an abelian group. A finite extension E is said to be

- minimal, if $N \lessgtr E, N \subseteq V \Rightarrow N=V$ or $N=0$;
- nontrivial, if E is nonassociative and $\not \approx V \times M$.

Minimal nontrivial extensions for finite simple noncyclic Moufang loops:

- $A_{5} \wedge_{M} \mathbb{F}_{p}^{2}, p \equiv \pm 1(\bmod 10)$ is prime;
- $A_{5} \wedge_{M} \mathbb{F}_{p^{2}}^{2}, p \equiv \pm 3(\bmod 10)$ is prime;
- $\mathrm{M}(q) \curlywedge \mathbb{F}_{q}^{7}, q$ is an odd prime power;
- $\mathrm{M}(q)<\mathbb{F}_{q}^{6}, q$ is a power of 2 ;
- $\mathrm{M}(2)<\mathbb{F}_{p}^{7}, p$ is an odd prime;
- $\operatorname{SL}(\mathbb{O}(q)), q$ is an odd prime power $(V \cong \mathbb{Z} / 2 \mathbb{Z}, M=\mathrm{M}(q))$;
- $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow E \rightarrow \mathrm{M}(2) \rightarrow 1$.

Problem. Are these all such extensions?

Identities in Moufang loops

Groups are (multiplicative) subgroups of associative algebras.

- [I. Shestakov, 2003] Not all MLs are subloops of alternative algebras.

The free (countable) group embeds into $\mathrm{GL}_{2}(\mathbb{Z})$.
Problem. Does a free ML embed into \mathbb{O}^{\times}, where $\mathbb{O}=\mathbb{O}(\mathbb{Z})$?
Problem. Does a nontrivial identity hold in \mathbb{O}^{\times}?
An identity is trivial if it holds in free Moufang loops (or, equivalently, follows from the Moufang identities).
Example. Trivial identities:

- $(x \cdot y z \cdot x) y=x y \cdot z \cdot x y=x(y \cdot z x \cdot y) ; \quad$ (two-sided Moufang)
- $z^{-1}(z x \cdot y)=x z^{-1} \cdot z y=\left(x \cdot y z^{-1}\right) z$;
- $z^{-1}(x z \cdot y)=z^{-1} x \cdot z y ; \quad x z^{-1} \cdot y z=\left(x \cdot z^{-1} y\right) z$;
- $\left(z^{-1} x \cdot y\right) z=z^{-1}(x \cdot y z)$;
- $\left((x y \cdot z) t \cdot y^{-1}\right) x^{-1}=x\left(y \cdot z\left(t \cdot y^{-1} x^{-1}\right)\right)$;
(Computer-aided) search for identities in \mathbb{O}^{\times}of small degree.
Sketch of the algorithm:
- $\mathcal{W}=\mathcal{W}_{d, n}$, the set of all words of degree d in n variables
- $a_{1} \in\left(\mathbb{O}^{\times}\right)^{n}$, a random n-tuple of elements
- Substituting a_{1} into all words in \mathcal{W} we get l_{1} distinct values
- $\mathcal{W}=\mathcal{W}_{1}^{(1)} \cup \mathcal{W}_{2}^{(1)} \cup \ldots \cup \mathcal{W}_{l_{1}}^{(1)}$, where $\left.\mathcal{W}_{i}^{(1)}\right|_{a_{1}}$ is constant
- Discard one-element sets $\mathcal{W}_{i}^{(1)}$ (as no identity involves such words)
- $a_{2} \in\left(\mathbb{O}^{\times}\right)^{n}$, a new random n-tuple
- Substituting a_{2} gives a finer decomposition $\mathcal{W}_{1}^{(2)} \cup \mathcal{W}_{2}^{(2)} \cup \ldots \cup \mathcal{W}_{l_{2}}^{(2)}$
- ... repeat until the sets $\mathcal{W}_{i}^{(j)}$ can no longer be refined
$v, w \in \mathcal{W}_{i}^{(j)} \quad \longrightarrow \quad v=w$ is a candidate for an identity
Attempt to prove $v=w$ in a free loop.
All identities can be found in this way.

No (nontrivial) identities in \mathbb{O}^{\times}of degree $\leqslant d$ in n variables found for

- $d=4, n=6$
- $d=5, n=5$
- $d=6, n=3$

No identities of positive type found for

- $d=7, n=3$

An identity $v=w$ is of positive type (or inverse-free) if both v and w involve no negative exponents of the basis variables.

Positive-type identities in free Moufang loops:

- The Moufang identities (left, right, central)
- $(x . y z . x) y=x y . z . x y=x(y . z x . y) \quad$ (two-sided)
- Consequences of the diassociativity ($x y . x=x . y x$, etc.)

Prb. Are there other positive-type identities?

- $d=8, n=3$

In this case, the following identities of positive type hold in \mathbb{O}^{\times}:

1. $b\left(\left(a \cdot c^{2} b \cdot a\right) \cdot c b\right)=b\left(a \cdot c^{2} b\right) \cdot(a \cdot c b)$
2. $\left(a^{2} b \cdot c\right)(a \cdot b c b)=\left(a^{2} b \cdot c a\right) \cdot b c b$
3. $a\left((b \cdot c a \cdot b) \cdot c^{2} a\right)=a(b \cdot c a) \cdot\left(b \cdot c^{2} a\right)$
4. $a b \cdot\left(c b c \cdot a^{2} b\right)=(a b \cdot c b)\left(c \cdot a^{2} b\right)$
5. $a b \cdot\left(c \cdot a^{2} b \cdot c\right) b=\left(a b \cdot\left(c \cdot a^{2} b\right)\right) \cdot c b$
6. $a b \cdot\left((a c \cdot b) \cdot a c^{2}\right)=a(b \cdot a c \cdot b) \cdot a c^{2}$
7. $a^{2} b \cdot(c b c \cdot a b)=\left(a^{2} b \cdot c b\right)(c \cdot a b)$

- [P.Vojtěchovský, M.Kinyon] A computer proof for idens. 1-7. (Prover9)
\Rightarrow These identities hold in all MLs. Are they really "new"?

Moufang semiloops

"semiloop" $=$ "groupoid" $=$ "magma"
Moufang semiloops are sometimes defined as semiloops satisfying the Moufang identities (left,right,central).

- A free semigrp. on X is embedded into a free grp. on $X, \quad i d: X \rightarrow X$. It is natural to expect a free Moufang semiloop to be the "freest" semiloop that can be similarly embedded into a free Moufang loop.
Definition. A semiloop satisfying all identities of positive type that hold in Moufang loops is called a Moufang semiloop.
- Moufang semiloops are diassociative,
- satisfy the Moufang identities + identities 1-7.

An identity $1-7$ is new if it is not a consequence (in the variety of semiloops) of the diassociativity + Moufang + the other 6 identities.

- This is true for identities 1,3-7. Unknown for identity 2. (Mace4)

Problem. Is the variety of Moufang semiloops finitely based?
Problem. Does every new positive-type identity contain the square of an indeterminate?

Free Moufang loops

The free Moufang loop F_{n} is a mysterious object. $\quad(n \geqslant 3)$
Problem. No useful canonical form for elements of F_{n}. (reduced words)
Problem. Is every subloop of F_{n} free? (Nielsen-Schreier)
Problem. Is F_{n} torsion-free? (true for groups)
Problem. Is F_{n} Hopfian? (true for groups)
The associator-commutator series
Let M be a Moufang loop.
Commutator of $x, y \in M: \quad x y=y x . c, \quad c=[x, y]$
Associator of $x, y, z \in M: \quad x y . z=(x . y z) a, \quad a=(x, y, z)$

- $\delta_{1}(M)=M$,
- $\delta_{n}(M)$ is the normal subloop of M generated by
$\diamond \quad\left[\delta_{i}(M), \delta_{j}(M)\right], \quad i, j<n, \quad i+j \geqslant n$
$\diamond \quad\left(\delta_{i}(M), \delta_{j}(M), \delta_{k}(M)\right), \quad i, j, k<n, \quad i+j+k \geqslant n$
$x \in \delta_{i}(M) \backslash \delta_{i+1}(M) \quad \rightarrow \quad x$ has weight $i \quad(\infty$, otherwise $)$

The normal series

$$
M=\delta_{1}(M) \unrhd \delta_{2}(M) \unrhd \ldots
$$

is central: $\delta_{i}(M) / \delta_{i+1}(M) \leqslant Z\left(M / \delta_{i+1}(M)\right)$.
The center $Z(M)=\{x \in M \mid[x, M]=1,(x, M, M)=1\}$.
The associator-commutator approximation for F_{3}.

- Let $F=F_{3}$. The abelian groups $\delta_{i}(F) / \delta_{i+1}(F)$ for $i=1,2, \ldots, 5$ are free or ranks $3,3,9,21,57$, respectively.
cf. For a 3 -generator free group, the ranks are $3,3,8,18,48$.
A multiplication formula for $F / \delta_{6}(F)$.
- $\left(n_{1}, n_{2}, \ldots, n_{5}\right)=(3,3,9,21,57)$;
- $A=\mathbb{Z}^{n_{1}} \oplus \mathbb{Z}^{n_{2}} \oplus \ldots \oplus \mathbb{Z}^{n_{5}} ; \quad x \in A$

$$
x=\left(x_{11}, x_{12}, x_{13} ; x_{21}, x_{22}, x_{23} ; \ldots, x_{i j}, \ldots\right),
$$

where $1 \leqslant i \leqslant 5,1 \leqslant j \leqslant n_{i}$.

For $x, y \in A$, we have $\quad x \star y=x+y+f$,
where $f=\left(f_{11}, f_{12}, f_{13} ; f_{21}, \ldots, f_{i j}, \ldots\right)$,
$f_{i j}$ are integer-valued polynomials in $x_{r s}, y_{r s}$ with $1 \leqslant r<i, 1 \leqslant s \leqslant n_{r}$.
$f_{i j}$ may be expressed as multilinear polynomials in the binomial variables $x_{r s}^{(t)}, y_{r s}^{(t)}, t \geqslant 1$, where we denote

$$
z^{(t)}=\frac{z(z-1)(z-2) \ldots(z-t+1)}{t!} \in \mathbb{Q}[z]
$$

$f_{11}=f_{12}=f_{13}=0, \quad f_{21}=-x_{12} y_{11}, \quad f_{22}=-x_{13} y_{11}, \quad f_{23}=-x_{13} y_{12}$,
$f_{31}=-2 x_{11} x_{13} y_{12}-x_{11} y_{12} y_{13}+2 x_{12} x_{13} y_{11}+x_{12} y_{11} y_{13}-3 x_{13} y_{11} y_{12}+6 x_{23} y_{11}$,
$f_{32}=-x_{12} y_{11}^{(2)}+x_{21} y_{11}, \quad f_{33}=-x_{12}^{(2)} y_{11}-x_{12} y_{11} y_{12}+x_{21} y_{12}$,
$f_{34}=-x_{12} x_{13} y_{11}-x_{12} y_{11} y_{13}+x_{21} y_{13}-x_{23} y_{11}, \quad f_{35}=-x_{13} y_{11}^{(2)}+x_{22} y_{11}$,
$f_{36}=-x_{13} y_{11} y_{12}+x_{22} y_{12}+x_{23} y_{11}, \quad f_{37}=-x_{13}^{(2)} y_{11}-x_{13} y_{11} y_{13}+x_{22} y_{13}$,
$f_{38}=-x_{13} y_{12}^{(2)}+x_{23} y_{12}, \quad f_{39}=-x_{13}^{(2)} y_{12}-x_{13} y_{12} y_{13}+x_{23} y_{13}$
$f_{41}=-2 x_{11}^{(2)} x_{13} y_{12}-x_{11}^{(2)} y_{12} y_{13}-x_{11} x_{12} y_{11} y_{13}-x_{11} x_{13} y_{11} y_{12}-x_{11} y_{11} y_{12} y_{13}$,
$-4 x_{12} x_{13} y_{11}^{(2)}-3 x_{12} y_{11}^{(2)} y_{13}+x_{13} y_{11}^{(2)} y_{12}+2 x_{11} x_{21} y_{13}-2 x_{11} x_{22} y_{12}-x_{11} y_{12} y_{22}$
$+x_{11} y_{13} y_{21}-3 x_{12} x_{13} y_{11}+2 x_{12} x_{22} y_{11}-2 x_{12} y_{11} y_{13}+4 x_{13} x_{21} y_{11}+2 x_{13} y_{11} y_{12}+\ldots$

- We have $(A, \star) \cong F / \delta_{6}(F)$, where $F=F_{3}$.

Consequence: modulo identities

- $(a, b, c)^{6} \equiv[[a, b], c][[b, c], a][[c, a], b] \bmod \delta_{4}$;
(cf. Hall-Witt, Jacobi)
- $(a, b,[a, c]) \equiv[(a, b, c), a] \bmod \delta_{5}$; (cf. Mal'cev)
- $\left(a^{n}, b, c\right) \equiv(a, b, c)^{n}[(a, b, c), a]^{n(n-1) / 2} \bmod \delta_{5} \quad \forall n \in \mathbb{Z}$;
- $(a b, c, d) \equiv(a, c, d)(b, c, d) \cdot[(b, c, d), a] \bmod \delta_{5}$;
- $((a, b, c), x, y) \equiv((a, x, y), b, c)((b, x, y), c, a)((c, x, y), a, b) \bmod \delta_{6}$.
(the last two identities hold in 3-generator loops only)
Open problems:
Problem. Are all quotients $\delta_{i}\left(F_{n}\right) / \delta_{i+1}\left(F_{n}\right)$ torsion-free, $i=1,2, \ldots$?
Problem. Is $\bigcap_{i=1}^{\infty} \delta_{i}\left(F_{n}\right)=1$?

ISOTOPY AND TRIALITY

Definition. Loops M and L are isotopic if \exists bijections $\alpha, \beta, \gamma: M \rightarrow L$ such that

$$
x \alpha \cdot y \beta=(x y) \gamma \quad \forall x, y \in M .
$$

- Moufang loops M and L are isotopic iff there is $m \in M$ such that $L \cong\left(M, \circ_{m}\right)$, where

$$
x \circ_{m} y=x m^{-1} \cdot m y \quad \forall x, y \in M .
$$

- Let G be a group with triality $S=\langle\sigma, \rho\rangle$ and $m \in \mathcal{N}(G)$. Then G is a group with triality $S_{m}=\left\langle\sigma, \rho^{2} m \rho^{2}\right\rangle$ whose corresponding Moufang loop M_{m} has multiplication

$$
x \star_{m} y=x m^{-1} \star m y \quad \forall x, y \in M_{m} .
$$

In particular, G is a group with triality for all loop-isotopes of M.

