
Fast Computation of Small Cuts via Cycle Space Sampling∗

David Pritchard and Ramakrishna Thurimella

September 1, 2009

Abstract

We describe a new sampling-based method to determine cuts in an undirected graph. For a graph
(V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove
that with high probability, sampling the cycle space identifies the cuts of a graph. This leads to simple
new linear-time sequential algorithms for finding all cut edges and cut pairs (a set of 2 edges that form
a cut) of a graph.

In the model of distributed computing in a graph G = (V, E) with O(log |V |)-bit messages, our
approach yields faster algorithms for several problems. The diameter of G is denoted by D, and the
maximum degree by ∆. We obtain simple O(D)-time distributed algorithms to find all cut edges,
2-edge-connected components, and cut pairs, matching or improving upon previous time bounds. Under
natural conditions these new algorithms are universally optimal — i.e. a Ω(D)-time lower bound holds
on every graph. We obtain a O(D + ∆/ log |V |)-time distributed algorithm for finding cut vertices;
this is faster than the best previous algorithm when ∆,D = O(

√

|V |). A simple extension of our
work yields the first distributed algorithm with sub-linear time for 3-edge-connected components. The
basic distributed algorithms are Monte Carlo, but they can be made Las Vegas without increasing the
asymptotic complexity.

In the model of parallel computing on the EREW PRAM our approach yields a simple algorithm with
optimal time complexity O(log V) for finding cut pairs and 3-edge-connected components.

1 Introduction

Let G = (V,E) be a connected undirected graph. A part of G is said to be a cut if, after deleting it from G,
the remaining graph is disconnected. We use the following terminology:

• A cut vertex is a vertex v such that {v} is a cut.

• A cut edge is an edge e such that {e} is a cut (i.e., a bridge).

• A cut pair is a cut consisting of two edges e, f such that neither e nor f is a cut edge.

For brevity we call all of these objects small cuts. In a network (e.g., for communication or transportation),
the small cuts are relevant because they represent the critical points where local failures can cause global
disruption. Our primary motivation is to efficiently find all small cuts of an undirected graph. We study
this problem in the sequential, distributed, and parallel models of computation.

The fundamentally new idea in this paper is to identify cuts by sampling the cycle space. For a graph
(V,E) we say that φ ⊆ E is a binary circulation if every vertex has even degree in (V, φ); the cycle space
of graph (V,E) is the set of all its binary circulations. For S ⊆ V , let δ(S) denote the edges with exactly
one end in S. An induced edge cut is a set of the form δ(S) for some S; cut edges and cut pairs are induced
edge cuts1. The family of all induced edge cuts is called the cut space of a graph. The cycle space and

∗A preliminary version of this work appeared as “Fast Distributed Computation of Cuts via Random Circulations” at ICALP
2008 [31].

1Our convention is that δ(∅) = δ(V) = ∅ is an induced edge cut — so we don’t in general assume δ(S) is a cut.

1

cut space are orthogonally complementary vector subspaces of ZE2 (see Section 2), which implies that the
intersection of any binary circulation and induced edge cut is of even size. At a high level, our algorithms
depend on a probabilistic converse (Proposition 5): if F ⊂ E is not an induced edge cut, the number of
edges of F intersecting a uniformly random binary circulation is even with probability exactly 1/2. This
specific observation seems new, although it is a simple consequence of standard results on the cut and cycle
spaces. To make use of this observation we give efficient algorithms to sample a uniformly random binary
circulation in the sequential, parallel, and distributed models of computing.

The Distributed Model. Our approach improves several known time bounds in the distributed com-
puting model with congestion. The precise model, denoted CONGEST (e.g. by Peleg [29, §2.3]), works as
follows. The computation takes place in the graph G = (V,E) where each vertex is a computer and each
edge is a bidirectional communication link; i.e., we study the problem of having a network compute the small
cuts of its own topology. There is no globally shared memory, only local memory at each vertex. Initially
only local topology is known: each vertex knows its ID value, which is unique, and its neighbours’ IDs.
Time elapses in discrete rounds. In each round, every vertex performs local computations and may send one
message to each of its neighbors, to be received at the start of the next round. The time complexity of a
distributed algorithm is the number of rounds that elapse, and the message complexity is the total number
of messages that are sent.

In the CONGEST model, every message must be at most O(log V) bits long. The model does not bound
the memory capacity or computational power of the vertices, although our algorithms use time and space
polynomial in |V | at each vertex. Let D denote the diameter of (V,E), i.e. D := maxu,v∈V distG(u, v). The
message size bound, in addition to making the algorithms more practical, affects what is possible in the
model, as the following example from Lotker, Patt-Shamir & Peleg [24] shows. On the one hand, if messages
are allowed to be arbitrarily long, any graph property whatsoever can be trivially computed in D time2. On
the other hand, Lotker et al. gave a family of graphs with D = 3, such that in CONGEST on this family, a
Ω(4

√

|V |/
√

log |V |)-time lower bound holds to find the minimum spanning tree (MST).
A distributed time complexity faster than Θ(V) on some graphs is called sub-linear. Determining whether

a task in this model can be accomplished in sub-linear time, or better yet O(D) time, is a fundamental
problem. E.g. one breakthrough was a sub-linear MST algorithm [12] which was later improved [23] to time
complexity O(D+

√

|V | log∗ |V |) — here log∗ x is the number of times which log must be iteratively applied
to x before obtaining a number less than 1. Our breakthroughs in this regard are O(D) time algorithms
for cut pairs, cut edges, and 2-edge-connected components, and a sub-linear algorithm for 3-edge-connected
components.

1.1 Existing Results

Our results apply to three common models of computation: sequential, distributed, and parallel. Abusing
notation for readability, we sometimes abbreviate |V | to V and |E| to E.

Sequential. In the usual sequential (RAM) model of computing, Tarjan in the 1970s was the first to
obtain linear-time (O(V +E)-time) algorithms to find all cut vertices [33], cut edges [33], and cut vertex-pairs
(cuts C ⊆ V with |C| = 2) [17]. These algorithms are based on depth-first search (DFS). Galil & Italiano
[11], in 1991, gave the first linear-time algorithm to compute all cut pairs, by reducing to the cut vertex-pair
problem.

Distributed. Here we only mention results valid in CONGEST , ignoring results with Ω(n) message size
such as one of Chang [5]. Cut Edges/Vertices. Two early distributed algorithms for cut edges and vertices,
by Ahuja & Zhu [1] and Hohberg [16], use DFS. The smallest time complexity of any known distributed
DFS algorithm is Θ(V); as such, the algorithms of Ahuja & Zhu and Hohberg have Ω(V) time complexity.
Huang [18] gave a non-DFS-based algorithm with Θ(V) time complexity. The first sub-linear distributed
algorithms for any type of small cuts appear in Thurimella [36]; using an MST subroutine, he obtained time
complexity O(D +

√
V log∗ V) for both cut edges and cut vertices. Cut Pairs. For cut pairs, Jennings and

2In D rounds each vertex broadcasts its local topology to all other vertices, then each vertex deduces the global topology
and solves the problem with a local computation.

2

Motyckova [20] gave a distributed algorithm with worst-case time and message complexity Θ(n3), and Tsin
[38] recently obtained a DFS-based algorithm with improved time complexity O(D2 + V).

Distributed Optimality. Distributed Θ(V)-time algorithms for cut edges are optimal (up to a constant
factor) on some graphs: e.g. it is straightforward to see, even guaranteed that G is either a |V |-cycle or a
|V |-path, not all edges can determine if they are cut edges in less than |V |/2 − 2 rounds. One term for this
property is existentially optimal, due to Garay, Kutten and Peleg [12]. However, as Thurimella’s algorithm
[36] showed, there are some graphs on which Θ(V) time is not asymptotically optimal. The stronger term
universally optimal [12] applies to algorithms which, on every graph, have running time within a constant
factor of the minimum possible.

Parallel. In the PRAM model, an optimal O(log V)-time and O(V + E)-work Las Vegas algorithm for
cut edges and vertices was obtained by Tarjan & Vishkin [35] (provided that for spanning forests, recent work
of Halperin & Zwick [14] is used). For cut pairs, it may be possible to combine a a 3-vertex-connectivity
algorithm of Fussell, Ramachandran & Thurimella [10] with the reduction of Galil & Italiano [11] (and
spanning forest routines from [14]) to yield a time- and work-optimal EREW algorithm. This is mentioned
as a “future application” in Halperin & Zwick [14]. However, this approach appears not to have been fully
analyzed and is fairly complicated.

1.2 Our Contributions

Since our algorithms are randomized, we differentiate between two types of algorithms: Monte Carlo ones
have deterministically bounded running time but may be incorrect with probability at most 1/V and Las
Vegas ones are always correct and have bounded expected running time3. (Note, a Las Vegas algorithm can
always be converted to Monte Carlo, so Las Vegas is generally better).

Sequential. The random circulation approach yields new linear-time algorithms to compute all cut edges
and cut pairs of the Las Vegas type. As far as we are aware, our linear-time cut pair algorithm is the first
one that does not rely on either DFS (e.g., see references in Tsin [37]) or open ear decomposition (e.g., see
references in Fussell et al. [10]).

Distributed. We remark that all existing distributed algorithms mentioned for finding small cuts are
deterministic. The random circulation approach yields faster distributed algorithms for small cuts of the Las
Vegas type. For cut edges and pairs, we obtain O(D)-time algorithms. Compared to the previous best time
of O(D +

√
V log∗ V) for cut edges, we remove the dependence on |V |. Compared to the previous best time

of O(D2 + V) for cut pairs, we obtain a quadratic speedup on every graph. For cut vertices, we obtain a
O(D + ∆/ logV)-time algorithm where ∆ is the maximum degree. Compared to the previous best time of
O(D +

√
V log∗ V) for cut vertices, this is faster on graphs with ∆,D = O(

√
V). We also obtain the first

sub-linear distributed algorithm for 3-edge-connected components, using a connected components subroutine
of Thurimella [36]. In Table 1 we depict our main results and earlier work, showing both time and message
complexity.

Universal Optimality. If we assume distributed algorithms must act globally in a natural sense —
either by initiating at a single vertex, or by reporting termination — then a Ω(D)-time lower bound holds for
the problems of finding cut edges or cut pairs, on any graph. Hence under natural conditions, our O(D)-time
algorithms for cut edges and cut pairs are universally optimal.

Parallel. In the PRAM model, we obtain a Las Vegas algorithm for cut pairs and 3-edge-connected
components with time complexity O(log V + T (E)), space complexity O(E + S(E)), and work complexity
O(E +W (E)), where T (n), S(n),W (n) are respectively the time, space, work complexity to sort n numbers
of length O(log n) bits. E.g. on the EREW PRAM, we can implement our algorithm in O(log V) time, O(E)
space and O(E logE) work using a sorting subroutine of Kruskal, Rudolph and Snir [22], or in O(log V)
time, O(E1+ǫ) space and O(E

√
logE) work using a subroutine of Han and Shen [15].

3More generally, our algorithms can obtain error probability ≤ 1/V c for any constant c without changing the asymptotic
complexity.

3

Cuts Found Time Messages
[1] ’89 Vertices & Edges O(V) O(E)

[36] ’95 Vertices & Edges O(D +
√
V log∗ V) O(E · (D +

√
V log∗ V))

[38] ’06 Pairs O(V + D2) O(E + V · D)
Theorem 6† Edges O(D) O(E)
Theorem 9† Pairs O(D) O(min{V 2, E · D})
Theorem 7† Vertices O(D + ∆/ logV) O(E(1 + ∆/ logV))

Table 1: Comparison of our three main distributed results (denoted by †) to the best previously known
algorithms.

1.3 Organization of the Paper

In Section 2 we define random circulations and show how to construct them efficiently. In Section 3 we show
how random circulations yield algorithms for small cuts and give sequential implementations. In Section
4 we precisely define the assumptions in our distributed model and give the Monte Carlo algorithms; we
introduce a technique called fundamental cycle-cast which may be of independent interest. In Section 5 we
discuss 2- and 3-edge-connected components. In Section 6 we give the Las Vegas analogues of our distributed
algorithms. We give Ω(D) distributed time lower bounds under precise assumptions in Section 7. We give
the parallel cut pair algorithm in Section 8.

2 Preliminaries on Circulations

Results on the cut space and cycle space over Z in directed graphs goes back to the 1970s (e.g., [4]) but for
our purposes it is convenient to work modulo 2; informally, the results then apply to undirected graphs since
+1 ≡ −1 (mod 2). For the sake of completeness, we prove the needed results. See also Diestel [7] which
proves material equivalent to Propositions 1, 2, and 3.

For notational convenience we identify any subset S of E with its characteristic vector χS ∈ ZE2 defined
by χSe = 1 for e ∈ S and χSe = 0 for e 6∈ S. We use ⊕ to stand for vector addition modulo 2, so in accordance
with our notational convention, for S, T ⊂ E the expression S ⊕ T denotes the symmetric difference of S
and T .

As mentioned earlier, φ ⊆ E is a binary circulation if in (V, φ) every vertex has even degree; the cycle
space of graph (V,E) is the set of all its binary circulations; δ(S) denotes the edges of G with exactly one
end in S; an induced edge cut is a set of the form δ(S) for some S; and the family of all induced edge cuts
is called the cut space of a graph. For v ∈ V we use δ(v) as short for δ({v}).

Proposition 1. The cut space and cycle space are vector subspaces of ZE2 .

Proof. Note it suffices to show each space contains ∅ and is closed under ⊕. For the cut space, this holds
since δ(∅) = ∅ and δ(S ⊕ T) = δ(S) ⊕ δ(T). For the cycle space, clearly (V,∅) has even degree at each
vertex; and if (V, φ1) and (V, φ2) have even degree at each vertex, then the degree of vertex v in (V, φ1 ⊕φ2)
is degφ1

(v) + degφ2
(v) − 2 degφ1∩φ2

(v) ≡ 0 + 0 − 0 (mod 2), so φ1 ⊕ φ2 is a binary circulation.

Proposition 2. The cut space and cycle space are orthogonal.

Proof. We need precisely to show that for any binary circulation φ and any S ⊂ V that the dot product
φ · δ(S) ≡ 0 (mod 2), or equivalently that |φ ∩ δ(S)| is even. Now

∑

s∈S degφ(s) =
∑

s∈S |φ ∩ δ(s)| and the
former quantity is even since φ is a circulation. The latter sum counts every edge of φ ∩ δ(S) once, every
edge of φ with both ends in S twice, and every other edge zero times. Since this sum is even, |φ ∩ δ(S)| is
even.

4

In the next proposition, we assume G is connected, and hence has a spanning tree T . We need to define
the fundamental cuts and fundamental cycles of T . For each edge e of E\E(T), we define the fundamental
cycle Ce to be the unique cycle in T ∪ {e}. Note cycles are binary circulations. For each edge e of T , we
define Se to be one of the two connected components of T \e, and define the fundamental cut of e to be δ(Se)
(note δ(Se) does not depend on which connected component we chose).

Proposition 3. (a) The cut space and cycle space are orthogonal complements. (b) The cycle space has
dimension |E| − |V | + 1 and the cut space has dimension |V | − 1. (c) For any spanning tree T of G, its
fundamental cycles form a basis of the cycle space, and its fundamental cuts form a basis of the cut space.

Proof. We will show that the |E|−|V |+1 fundamental cycles are linearly independent in the cycle space and
the |V | − 1 fundamental cuts are linearly independent in the cut space. Basic linear algebra shows the sum
of the dimensions of two orthogonal subspaces of ZE2 is at most |E|, with equality only if they are orthogonal
complements, thus by Proposition 2, Proposition 3(a) and (b) follow, and so does (c). We use the following
claim.

Claim 4. Let H ⊂ E and consider a family of vectors {xe}e∈H over ZE2 . If xee = 1 for all e ∈ H, and
xef = 0 for all distinct e, f ∈ H, then {xe}e∈H is linearly independent.

Proof. Suppose for the sake of contradiction that
⊕

e∈H aex
e is the zero vector, where ae ∈ {0, 1} for each

e and not all ae are zero. Pick f such that af = 1, then
∑

e∈H aex
e
f = 1, a contradiction.

Note that e ∈ Ce but for any other edge f of E\E(T), f 6∈ Ce, so by Claim 4 with H = E\E(T) and
xe = Ce, these vectors are linearly independent. Note that e ∈ δ(Se) but for any other edge f of T , f 6∈ δ(Se),
so by Claim 4 with H = E(T) and xe = δ(Se), these vectors are linearly independent. This completes the
proof of Proposition 3.

2.1 Random Circulations

Next we show why uniform sampling of the cycle space is useful for identifying cuts.

Proposition 5. Let F ⊂ E be a set that is not an induced edge cut. If φ is a uniformly random binary
circulation, then Pr[|F ∩ φ| is even] = 1/2.

Proof. Since F is not in the cut space, by Proposition 3(a) it is not orthogonal to the cycle space, i.e. there
is a binary circulation φF with |F ∩φF | odd. Now we pair up each binary circulation ψ on G with the binary
circulation ψ′ := ψ ⊕ φF . This yields a pairing of all binary circulations on G since for all ψ, ψ′ 6= ψ and
ψ′′ = ψ. Modulo 2, |F ∩ψ′| ≡ |F ∩ψ|+ |F ∩φF | ≡ |F ∩ψ|+1, so in each pair, exactly one of the two binary
circulations has even intersection with F . Thus, exactly half of all binary circulations have even intersection
with F , which proves the result.

Next we give a method for constructing binary circulations (it is implicit in [4, Ex. 12.1.1]). Given a
spanning tree T and subset ψ of E\E(T), we say that φ is a completion of ψ if φ is a binary circulation and
φ ∩ (E\E(T)) = ψ.

Proposition 6. For any ψ ⊆ E\E(T), ψ has a unique completion φ.

Proof. First, we give a succinct proof sketch. By Proposition 3(c) the cycle space can be expressed as

{⊕e∈E\E(T) aeCe|a ∈ Z
E\E(T)
2 }. For which a does this yield a completion of ψ? From the observations in

the proof of Proposition 3, for f ∈ E\E(T), the coordinate of
⊕

e∈E\E(T) aeCe at index f is just af , hence
the unique completion of ψ is the one in which a is the indicator vector of ψ, i.e. the unique completion is
φ =

⊕

e∈ψ Ce. Explicitly, for f ∈ T , we have f ∈ φ iff f appears in an odd number of the fundamental cycles
{Ce | e ∈ ψ}. This completes the proof, but we now give a second, algorithmic proof, which is needed later.

For a leaf node v incident to e ∈ E(T), since the degree of (V, φ) at v must be even, notice that we must
have e ∈ φ if |ψ∩δ(v)| is odd, and e 6∈ φ if |ψ∩δ(v)| is even. Iterating this argument on T \v yields Algorithm
1, which will show constructs the unique completion of ψ.

5

Algorithm 1 Given G, T and ψ ⊂ E\E(T), construct binary circulation φ such that φ\E(T) = ψ.

1: Initialize φ := ψ, S := T ⊲ S is the subtree of T where φ is not yet defined
2: while S has any edges,
3: Let v be any leaf of S and e be the unique incident edge of v in S
4: if |δ(v) ∩ φ| is odd then φ := φ ∪ {e} ⊲ Satisfy degree constraint at v
5: Delete v from S
6: Output φ

See Figure 1 for an illustration of Algorithm 1. Now we prove Proposition 6 using Algorithm 1. It is
clear that every vertex of (V, φ) has even degree except possibly the last vertex left in S. However, by the
handshake lemma, no graph can have exactly one vertex of odd degree, so φ is indeed a binary circulation.
To show uniqueness, suppose for the sake of contradiction that ψ has two distinct completions φ, φ′. Then
φ⊕ φ′ ⊂ E(T), and as such the nonempty forest φ⊕ φ′ has at least one vertex of degree 1. This contradicts
the fact that φ⊕ φ′ is a binary circulation.

v

e

Figure 1: Completing a binary circulation. The spanning tree T is given by thick edges. Solid edges are
in the circulation, dotted edges will not be in the circulation, and dashed edges are undecided. Left: the
initial value of φ (which equals ψ). Middle: we ensure a leaf vertex v has even degree. Right: repeating the
previous step yields the completed circulation φ.

We now give the method for constructing uniformly random binary circulations, illustrated in Algorithm
2: pick a uniformly random subset of E\E(T) and then compute its completion.

Algorithm 2 Given G and spanning tree T , output a uniformly random binary circulation.

1: for each e in E\E(T), put e in ψ with independent probability 1/2
2: Return the completion of ψ, using Algorithm 1

Theorem 1. Algorithm 2 outputs a uniformly random binary circulation.

Proof. By Proposition 3(b) the cycle space contains exactly 2|E|−|V |+1 elements. Algorithm 2 makes one of
2|E|−|V |+1 choices of ψ each with probability 2−|E|+|V |−1, and each distinct choice of ψ leads to a distinct
binary circulation.

To increase the probability of identifying a particular cut beyond 1/2, our algorithms will sample multiple
independent random circulations. For this reason it is convenient to introduce notation that incorporates
multiple circulations into a single object. Let Zb2 denote the set of b-bit binary strings. For φ : E → Zb2, let
φi(e) denote the ith bit of φ(e).

Definition 7. φ : E → Zb2 is a b-bit circulation if for each 1 ≤ i ≤ b, {e | φi(e) = 1} is a binary circulation.

6

Hence, to say that φ is a uniformly random b-bit circulation is the same as saying that {φi}bi=1 are
mutually independent, uniformly random binary circulations. For brevity, we use the phrase random b-bit
circulation to stand for “uniformly random b-bit circulation” in the rest of the paper. Let 0 denote the
all-zero vector and ⊕ denote addition of vectors modulo 2. Using Proposition 2 and Proposition 5 we obtain
the following corollary.

Corollary 8. Let φ be a random b-bit circulation and F ⊆ E. Then

Pr

[

⊕

e∈F

φ(e) = 0

]

=

{

1, if F is an induced edge cut;

2−b, otherwise.

To generate a random b-bit circulation, it suffices to modify Algorithms 1 and 2 slightly so as to operate
independently on each of b positions at once: on Line 1 of Algorithm 2 we set φ(e) to a uniformly independent
b-bit string, and on Line 4 of Algorithm 1 we set φ(e) :=

⊕

f∈δ(v)\e φ(f). We denote the resulting algorithm
by Rand-b-Bit-Circ and illustrate it in Figure 2. Under the standard assumption that the machine word
size is Θ(log V), the running time of Rand-b-Bit-Circ in the sequential model of computing is O(E⌈ b

log V ⌉).

010

100

011

111

v

111
e

010

100

011

111

101 010 111

111 100

010

100

011

111

Figure 2: Constructing a random 3-bit circulation; thick edges are tree edges and thin edges are non-tree
edges. Left: we assign random φ values to the non-tree edges. Middle: we set φ(e) :=

⊕

f∈δ(v)\e φ(f) for a
leaf vertex v. Right: repeating the previous step yields the completed circulation φ.

3 Basic Algorithms

In this section we show how to use random circulations to probabilistically determine the cut edges, cut
pairs, and cut vertices of a graph. These are the Monte Carlo versions of the algorithms.

3.1 Finding All Cut Edges

We provide pseudocode in Algorithm 3 and then prove its correctness. It is based on the easy fact that e is
a cut edge if and only if {e} is an induced edge cut, which we state without proof.

Algorithm 3 Given a connected graph G, compute the cut edges of G.

1: Let b = ⌈log2 V E⌉ and let φ be a random b-bit circulation on G.
2: Output all edges e for which φ(e) = 0

Theorem 2. Algorithm 3 correctly determines the cut edges with probability at least 1 − 1/V and can be
implemented in O(E) sequential time.

Proof. Using the fact above, Corollary 8, and a union bound, the probability of error is at most E/2b ≤ 1/V .
The subroutine Rand-b-Bit-Circ as well as Line 2 of Algorithm 3, each take O(E) sequential time.

7

3.2 Finding All Cut Pairs and Cut Classes

Proposition 9, whose easy proof we omit, leads to our approach for finding cut pairs.

Proposition 9 (Cut pairs are induced). Let e and f be edges that are not cut edges. Then {e, f} is a cut
pair if and only if {e, f} is an induced edge cut.

With Corollary 8 we immediately obtain the following.

Corollary 10. Let e, f be two distinct edges that are not cut edges. Then Pr[φ(e) = φ(f)] = 1 if {e, f} is a
cut pair, and 2−b otherwise.

This yields a cute probabilistic proof of the following basic fact.

Corollary 11 (Transitivity of cut pairs). If {e, f} and {f, g} are cut pairs, then so is {e, g}.
Proof. Note that e, f, g are not cut edges. Let φ be a random 1-bit circulation on G. By Corollary 10,
φ(e) = φ(f) and φ(f) = φ(g). So φ(e) = φ(g) with probability 1. By Corollary 10, {e, g} must be a cut
pair.

Definition 12. A cut class is an inclusion-maximal subset K of E such that |K| > 1 and every pair
{e, f} ⊆ K is a cut pair.

We illustrate a cut class in Figure 3. Note the cut class has a natural cyclic order.

b

b

b b

b

b b

b

b

b

b

b

bb

b

bb

b

Figure 3: A graph is shown with one cut class highlighted using dashed edges. Deleting any two dashed
edges disconnects the graph.

Corollary 11 implies that any two distinct cut classes are disjoint. Hence, even though there may be
many cut pairs, we can describe them all compactly by listing all cut classes of the graph. We now give our
simple linear-time algorithm to find all cut classes, with pseudocode given in Algorithm 4.

Algorithm 4 Given a connected graph G, compute the cut classes of G.

1: Let b = ⌈log2(V E
2)⌉ and let φ be a random b-bit circulation on G

2: for each x ∈ Zb2\{0} such that |{e ∈ E | φ(e) = x}| ≥ 2, output the cut class {e ∈ E | φ(e) = x}

Theorem 3. Algorithm 4 correctly determines the cut pairs with probability at least 1 − 1/V and can be
implemented in O(E) sequential time.

Proof. There are |E| edges and the analysis in Section 3.1 shows that Pr[φ(e) = 0] ≤ 1/2b for each non-cut
edge e. There are at most

(

E
2

)

pairs {e, f} of non-cut edges that are not cut pairs and Corollary 10 shows
that Pr[φ(e) = φ(f)] ≤ 1/2b for each such pair. Hence, by a union bound, the total probability of error is at
most E/2b +

(

E
2

)

/2b ≤ 1/V .
The subroutine Rand-b-Bit-Circ has time complexity O(E). It remains to implement Line 2 of Algo-

rithm 4 in O(E) time. To do this, we sort all edges e according to the key φ(e) using a three-pass radix sort.
I.e., we consider each value in Zb2 as a three-digit number in base 2b/3 = O(E) — see Cormen, Leiserson &
Rivest [6, §9.3] — then the sort takes O(E) time.

8

3.3 Finding All Cut Vertices

The following characterization of cut vertices underlies our approach.

Proposition 13. The cut δ(v) properly contains a nonempty induced edge cut if and only if v is a cut vertex.

Proof. First, suppose v is a cut vertex. Let V1 be the vertex set of one of the connected components of
G\{v}. Then δ(v) properly contains the nonempty induced edge cut δ(V1).

Second, suppose v is not a cut vertex, so there is a spanning tree T ′ of G\{v}. Suppose S ⊂ V has
δ(S) ⊆ δ(v). Without loss of generality (by complementing S if necessary) we assume v ∈ S. Since no edges
of T ′ are in δ(S), S either contains all of V \{v} or none of V \{v}. Thus either S = V in which case δ(S) is
empty, or S = {v}, in which case δ(S) is not a proper subset of δ(v).

Using Proposition 13, the essential idea in our approach to find cut vertices is to detect for each vertex
v whether δ(v) properly contains any nonempty induced edge cuts. As usual we detect induced edge cuts
via Corollary 8, this time rephrasing the detection problem as one of finding linearly dependent rows of a
matrix. Hence we need the following fact, when Z2 is viewed as a field.

Fact 14. In a matrix over Z2, a set C of columns is linearly dependent if and only if some nonempty subset
of C sums to the zero column vector (mod 2).

Our approach works as follows. Note — it does not have a very efficient sequential implementation, but
yields an efficient distributed algorithm. We generate a random b-bit circulation φ for some suitably large b;
denote the ith bit of φ(e) by φi(e). Let d(v) := |δ(v)|, the degree of v. Let ∆ denote the maximum degree.
For each vertex v, let M [v] be a matrix with b rows indexed 1, . . . , b, and d(v) columns indexed by δ(v);

then fill the entries of M [v] according to M
[v]
ie = φi(e). The following two complementary claims validate our

approach.

Claim 15. If v is a cut vertex then rank(M [v]) ≤ d(v) − 2.

Proof. Let V1 be the vertex set of one of the connected components of G\{v}. Note that δ(v) can be
partitioned into two induced edge cuts δ(V1) and δ({v} ∪ V1). By Corollary 8 the set of columns of M [v]

corresponding to δ(V1) adds to zero, and by Fact 14 these columns are linearly dependent. Similarly, the
columns indexed by δ({v} ∪ V1) are linearly dependent. So M [v] has at least 2 columns that are linearly
dependent on the others, and the result follows.

Claim 16. Let v ∈ V and assume that v is not a cut vertex. Let ∅ (D (δ(v). The probability that the
columns of M [v] indexed by D sum to the zero vector (mod 2) is 2−b.

Proof. By Proposition 13, D is not an induced edge cut, and the result follows from Corollary 8.

Next we show that for b = ⌈∆+2 log2 V ⌉, it is very likely that rank(M [v]) < d(v)− 1 iff v is a cut vertex.
Thus our approach, with pseudocode given in Algorithm 5, is correct with high probability.

Algorithm 5 Given a connected graph G, compute the cut vertices of G.

1: Let b = ⌈∆ + 2 log2 V ⌉ and let φ be a random b-bit circulation on G
2: for each vertex v of G, if rank(M [v]) < d(v) − 1 then output v

Theorem 4. Algorithm 5 correctly determines the cut vertices with probability at least 1 − 1/V .

Proof. Claim 15 shows that all cut vertices are output. Consider a vertex v that is not a cut vertex and let
D be a subset of δ(v) of size d(v) − 1. By Claim 16, Fact 14, and a union bound, the probability that the
columns of M [v] corresponding to D are linearly dependent is at most 2d(v)−12−b ≤ 1/V 2; so with probability
at least 1 − V −2, we have rank(M [v]) ≥ |D| = d(v) − 1 and v is not output. By another union bound, the
probability that any vertex is misclassified by Algorithm 5 is at most V/V 2 = 1/V.

9

4 Distributed Implementation

Our algorithms make the following three assumptions: first, the network is synchronous; second, there is a
distinguished leader vertex at the start of computation; third, every node begins with a unique O(log V)-
bit ID. These assumptions are standard in the sense that they are made by the best previous distributed
algorithms [1, 36, 38] for small cuts. Nonetheless, these assumptions can be removed at a cost if desired,
e.g. using the synchronizer of Awerbuch and Peleg [3] at a polylog(V) factor increase in complexity, Peleg’s
[28] O(D)-time leader election algorithm, or by randomly assigning IDs in the range {1, . . . , V 3} (resulting
in additional failure probability at most

(

V
2

)

/V 3 due to ID collisions).
Although only vertices can store data in the distributed model, we maintain data for each edge e (e.g.,

to represent a tree) by having both endpoints of e store the data. At the end of the algorithm, we require
that the correct result is known locally, so each node stores a boolean variable indicating whether it is a
cut node, and similarly for edges. To indicate cut pairs, each edge must know whether it is in any cut
pair, and in addition we must give every cut class a distinct label. Previous work also essentially uses these
representations.

When stating distributed algorithms, the assumptions of a leader, synchrony, unique IDs, and O(log V)-
bit messages are implicit. Our algorithms use a breadth-first search (BFS) tree with a root r as the basis
for communication. One reason that BFS trees are useful is that they can be constructed quickly (e.g., see
Peleg [29, §5.1]), as follows.

Proposition 17. There is a distributed algorithm to construct a BFS tree in O(D) time and O(E) messages.

For a tree T , the level l(v) of v ∈ V is the distance in T between v and r. The height h(T) of tree T
is the maximum vertex level in T . Any BFS tree T has h(T) ≤ D and this is important because several
fundamental algorithms based on passing information up or down the tree take O(h(T)) time. The parent
of u is denoted p(u). The level of tree edge {u, p(u)} is the level of u.

4.1 Random Circulations and Cut Edges

When we construct a random circulation, we require at termination that each v knows φ(e) for each e ∈ δ(v).

Theorem 5. There is a distributed algorithm to sample a random b-bit circulation in O(D) time and O(E)
messages, when b = O(log V).

Proof. We implement Rand-b-Bit-Circ distributively. The size bound ensures that b-bit strings can be
sent in a message. We compute a BFS tree T , using Proposition 17. Then for each non-tree edge {e} in
parallel, the endpoint with the higher ID picks a random b-bit value for φ(e) and sends it to the other
endpoint. In the following h(T) rounds, for i = h(T) down to 1, each level-i vertex computes φ({v, p(v)}) :=
⊕

f∈δ(v)\{v,p(v)} φ(f) and sends this value to p(v). The complexity is O(D+h(T)) = O(D) time and O(E+E)
messages.

Theorem 5 yields our distributed cut edge algorithm.

Theorem 6. There is a distributed algorithm to compute all cut edges with probability at least 1 − 1/V in
O(D) time and using O(E) messages.

Proof. We implement Algorithm 3 distributively, obtaining the required correctness probability by Theorem
2. For k = V E, we use Theorem 5 to compute a random k-circulation in the required complexity bounds.
Then we identify e as a cut edge if φ(e) = 0.

4.2 Pipelining and Cut Vertices

Our cut vertex algorithm requires a circulation on Θ(∆ + logV) bits, and in order to construct such a
circulation efficiently, we use a pipelining technique. Let π be a distributed algorithm in which for each edge
e, the total number of messages sent on e by π is bounded by some universal constant C0. The messages’

10

content may be random but the message-passing schedule must be deterministic. To pipeline s instances
of π means to execute s instances {πi}si=1 of π, each one delayed by a unit time step from the previous.
When multiple instances need to simultaneously send messages along the same edge we concatenate them,
increasing the message sizes by a factor of at most C0. Compared to π, pipelining adds s − 1 to the time
complexity and increases the message complexity by a factor of s.

A straightforward implementation of Algorithm 5 results in our cut vertex algorithm, as follows.

Theorem 7. There is a distributed algorithm to compute all cut vertices with probability at least 1 − 1/V
in O(D + ∆/ logV) time and using O(E(1 + ∆/ logV)) messages.

Proof. We implement Algorithm 5 distributively, obtaining probability 1/V of failure by Theorem 4. Let
b = ⌈∆ + 2 log2 V ⌉. Theorem 5 gives an algorithm π to construct a random O(log V)-bit circulation; note
π sends a constant number of messages along each edge. We pipeline b/ logV instances of π to construct a
random b-bit circulation. Then, each vertex v locally computes the rank of M [v] to determine if it is a cut
vertex.

Since π takes O(D) rounds and sends O(E) messages, and b = O(∆ + logV), the implementation takes
O(D + ∆/ logV) time and O(E(1 + ∆/ logV)) messages.

4.3 Fundamental Cycle-Cast (fc-cast)

We now define a new distributed technique. A non-tree edge is an edge e ∈ E\E(T). For a spanning tree T
and non-tree edge e, the unique cycle in T ∪ {e} is called the fundamental cycle of T and e, and we denote
it by Ce. We call our new technique fundamental cycle-cast, or fc-cast for short, and informally it allows
simultaneous processing on all fundamental cycles. Let each vertex v store some data d[v] of length O(log V)
bits. We assume that d[v] includes the ID, level, and parent ID of v, since this information can be appended
to d[v] while increasing its length by at most O(log V) bits. At the end of the fc-cast, each non-tree edge e
will know d[u] for every vertex u in the fundamental cycle of T and e.

Theorem 8. There is a distributed algorithm Fc-Cast using O(h(T)) time and O(min{E · h(T), V 2})
messages that, for each non-tree edge e, for each v ∈ Ce, sends d[v] to both endpoints of e.

As a subroutine, we need a tree broadcast subroutine adapted from Peleg [29, §3.2].

Proposition 18. There is a distributed algorithm Tree-Broadcast using O(h(T)) time and O(V · h(T))
messages that sends d[v] to u for each v ∈ V and each descendant u of v.

Proof. Let π be a generic distributed algorithm that sends one message from p(v) to v at time l(v); in
particular, π takes O(V) messages, O(h(T)) time, and sends at most one message on each edge. Define

instances {πi}h(t)
i=0 of π so that for every vertex v at level i, and for every descendant u of v, instance πi is

responsible for propagating d[v] to u. Each instance πi sends empty messages for the first i rounds, and
in round t > i, for each v with l(v) = i, propagates d[v] down the level-t tree edges descending from v.
Since there are h(T) + 1 pipelined instances and π takes O(h(T)) time and O(V) messages, the complexity
follows.

Proof of Theorem 8. An fc-cast has two steps. First, we execute Tree-Broadcast, and as a result we may
assume that each vertex has a list of the data of all its ancestors.

In the second step, for each non-tree edge {v, w} in parallel, v sends its list to w and vice-versa. Note that
each non-tree edge e can determine its fundamental cycle with T by comparing its endpoints’ lists. (More
precisely, either endpoint of e can determine such.) Each list has at most 1 + h(T) items, each of which is
O(log V) bits long and can be sent in a single message, so both steps in the fc-cast take O(h(T)) time.

The message complexity of the second step as just described is O(E ·h(T)), but now we give a refinement
that achieves O(min{E · h(T), V 2}) message complexity. The essential idea is for all u, v ∈ V , we want
to avoid sending d[u] to v more than once. Implement the second step of the fc-cast so that each vertex
v sends one d[·] value per round, and in the order d[v] first, then d[p(v)], etc., with the data of the root

11

last. When a vertex u receives d[x] for the second time for some x, u asks the sender to stop sending
its list. Likewise, if u receives d[x] from multiple neighbors at the same time, u asks all but one to stop
sending their lists. Along each edge, at most one redundant message and one stop request can be sent
in each direction. There can only be V 2 non-redundant messages; hence the total number of messages
sent in this step is O(V 2 + E). Considering the tree-broadcast as well, the total message complexity is
O(V · h(T) + min{E · h(T), V 2 + E}) = O(min{E · h(T), V 2}) as claimed.

We can implement fc-cast in O(h(T)) time with message complexity even smaller than min{E ·h(T), V 2}
using a nearest common ancestor labeling scheme of Alstrup et al. [2]. We only sketch the idea since the
precise improved complexity is somewhat awkward to state (seemingly cannot be expressed in terms of
parameters V,E,∆, h(T)) and does not seem universally optimal. If uw is a edge not in T , call w a non-
tree neighbour of u and vice-versa. The general idea behind the optimized implementation is that, while
the implementation in Theorem 8 sends d[v] to each descendant of v and each non-tree neighbour of a
descendant of v, we can actually send d[v] to a smaller subset of these nodes while meeting the definition of
a fundemental cycle-cast.

In more detail, the scheme of Alstrup et al. [2] gives each vertex an O(log V)-bit label such that given
just the labels of any two nodes, we can also compute the label of their nearest common ancestor (with a
deterministic algorithm independent of T). Alstrup et al. do not work in any specific distributed model, but
their scheme is built out of standard primitives like the number of descendants of a given node, and as such
can be implemented in the model we consider in O(h(T)) time and O(E) messages. The first step of our
new implementation is to compute these labels. Then, in unit time and 2|E| messages, we have each node
inform each of its neighbours of its label.

At a high level, the labeling scheme allows the implementation to be optimized as follows. In the first
step we send d[v] down to its descendant u only if there is some fundamental cycle containing both u and
v; in the second step each v asks for d[·] values from its non-tree neighbours in such a way that u receives
each d[·] value at most once, and only asks for d[v] from w if Cuw contains v. Implementing these steps
requires that nodes have some knowledge about the relative position of their neighbours in the tree, which
is accomplished using the labels. There are some slightly complicated details in implementing the first step,
for which a pipelined convergecast (see Proposition 21) suffices.

4.4 Distributed Cut Pair Algorithm

When computing the cut pairs, it helps if we assume that G has no cut edges, i.e. G is 2-edge-connected.
To make this assumption without loss of generality, for our input graph G, we compute the set EC of cut
edges using Theorem 11 and then report the cut pairs of the 2-edge-connected components, which are the
connected components of G\EC (we elaborate in Section 5). It is straightforward to show that the cut pairs
of G are the cut pairs of these components, that each component has no cut edge, and that no component
has diameter greater than G.

It is not obvious how to implement our sequential cut pair algorithm (Algorithm 4) distributively: al-
though the cut classes are properly labeled with high probability by φ, in order for edge e to know whether
it belongs to any cut pair, it needs to determine if any other f has φ(e) = φ(f), and this cannot be done
using local information (i.e., in O(1) rounds). We use fc-cast to overcome this obstacle. The following claims
are used to relate fundamental cycles to cut classes. (The first is fairly intuitive given Figure 3 on page 8.)

Lemma 19. If a cycle C and a cut class K satisfy K ∩ C 6= ∅ then K ⊆ C.

Proof. Suppose that e ∈ K ∩ C but f ∈ K\C. Then by Proposition 9, {e, f} is an induced edge cut. But
then |{e, f} ∩ C| = 1, contradicting Proposition 2 (the orthogonality of the cut space and cycle space).

Claim 20. Let K be a cut class. Then K ⊂ Ce for some e ∈ E\E(T).

Proof. First we claimK contains at most one non-tree edge. Suppose otherwise, for the sake of contradiction,
that K contains two non-tree edges {e, f}. Then {e, f} is a cut pair and so G\{e, f} is not connected.
However, this contradicts the fact that G\{e, f} contains the spanning tree T .

12

The definition of a cut class implies |K| > 1, so K contains at least one tree edge e. Since e is not a cut
edge, G\{e} is connected, and hence there is a non-tree edge f that connects the two connected components
of T \{e}. The fundamental cycle Cf of f and T thus contains e, and by Lemma 19, all of K.

To describe our cut pair algorithm we introduce a variant of a standard technique, the convergecast (e.g.,
see Peleg [29, §4.2]). Informally, it allows each node to independently query its descendants. In this paper
we take the convention that v is always a descendant of itself. Let Desc(v) denote the set of v’s descendants.
For each v ∈ V , and each u ∈ Desc(v), let w[u, v] be a variable of length Θ(logV) stored at u.

Proposition 21. There is a distributed algorithm Converge-Cast using O(h(T)) time and O(V · h(T))
messages so that each v ∈ V determines max{w[u, v] | u ∈ Desc(v)}.

Proof. We assume some familiarity with the basic implementation of convergecast in order to gloss over
some basic details; see [29, §4.2]. We use π to represent a generic distributed algorithm that sends messages
from leaves to the root in level-synchronized fashion. The “standard” convergecast uses π to compute
max{w[u, r] | u ∈ V } at r; in round i, for i from h(T) down to 1, every level-i node passes up the largest

value that it knows about to its parent. A slight modification yields instances {πi}h(t)
i=0 of π so that for every

vertex v at level i, instance πi propagates max{w[u, v] | u ∈ Desc(v)} to v. Since there are h(T)+1 pipelined
instances and π takes O(h(T)) time and O(V) messages, the complexity follows.

Theorem 9. There is a distributed algorithm to compute all cut classes with probability at least 1− 1/V in
O(D) time and using O(min{E · D, V 2}) messages.

Proof. As in Algorithm 4, for b = ⌈log2(V E
2)⌉ we compute a random b-bit circulation φ on G, using Theorem

5. Denote the following assumption by (⋆).

For all edges e, f , φ(e) = φ(f) if and only if {e, f} is a cut pair. (⋆)

By the analysis in the proof of Theorem 3, we may assume that (⋆) holds without violating the required
bound of 1/V on the probability of error.

It remains only for each edge to determine whether it is a member of any cut pair, since then φ labels the
cut classes. For each vertex v 6= r let d[v] := φ({v, p(v)}). We run Fc-Cast, and as a result, the endpoints
of each non-tree edge e can compute the multiset Φe := {φ(f) | f ∈ Ce}. The following claim, which follows
immediately from Claim 20, lets each non-tree edge determine if it is a member of any cut pair.

Claim 22. A non-tree edge e is in a cut pair if and only if φ(e) occurs multiple times in Φe.

To deal with tree edges, for each v ∈ V and each u ∈ Desc(v), define

w[u, v] := |{e ∈ δ(u)\E(T) | {v, p(v)} ∈ Ce and φ({v, p(v)}) occurs multiple times in Φe}|.

and note that w[u, v] can be determined by u after the fc-cast. We run Converge-Cast.

Claim 23. Tree edge {v, p(v)} is in a cut pair if and only if ∃u ∈ Desc(v) such that w[u, v] > 0.

Proof. If {v, p(v)} lies in a cut pair then by Claim 20 there is a fundamental cycle Ce containing that cut
pair. It is easy to see that one endpoint u of e is a descendant of v and has w[u, v] > 0.

By Proposition 21, after the convergecast, each tree edge can use Claim 23 to determine if it is a member
of any cut pair. Adding up the complexity associated with constructing a BFS tree and a random circulation,
the fc-cast, and the converge-cast, we obtain O(D+D+D+D) time and O(E+E+min{ED, V 2}+VD) =
O(min{ED, V 2}) messages, as claimed.

13

5 Computing {2, 3}-Edge-Connected Components

Let EC denote the set of all cut edges, and ECP denote the set of all edges in any cut pair.

Definition 24. The 2-edge-connected components are the connected components of G\EC . The 3-edge-
connected components are the connected components of G\(ECP ∪ EC).

In the sequential model, connected components of a graph can be computed in linear time. Hence we
immediately see that our linear-time sequential cut edge and cut pair algorithms yield linear-time algorithms
for 2- and 3-edge-connected components.

In the distributed model, we first discuss 2-edge-connected components. Let T denote a spanning tree
and r its root. The desired representation is for each vertex v to store a label τ(v) so that τ(u) = τ(v) iff
u, v are in the same 2-edge-connected component. Observe that EC ⊂ E(T), since if e 6∈ T , then G\e ⊃ T
is connected. Furthermore, the following holds.

Claim 25. If u, v are in the same 2-edge-connected component, there are no cut edges on the unique u-v
path in T .

Proof. Suppose such a cut edge e = {u′, v′} exists, where u′ is the end of e closer to u along the u-v path
in T . Then in G\{e}, the remainder of the tree path connects u to u′ and v to v′. Since u, v are in the
same 2-edge-connected component, u and v are connected in G\{e}. Thus u′ and v′ are connected in G\{e},
contradicting the fact that e = {u′, v′} is a cut edge of G.

Corollary 26. T \EC is a spanning forest of the 2-edge-connected components.

In particular, for each 2-edge-connected component H , there is a subtree TH of T \EC spanning H . The
idea is to label the vertices of H by the ID of the root of TH .

Theorem 10. There is a distributed algorithm to compute all 2-edge-connected components with probability
at least 1 − 1/V in O(D) time and using O(E) messages.

Proof. Note for a vertex v, where H denotes its 2-edge-connected component, v is the root of TH if and only
if either v is the root r of T , or {v, p(v)} is a cut edge. Otherwise, v and p(v) are in the same 2-edge-connected
component.

First we compute the cut edges, using Theorem 6. Vertex r sets τ(r) equal to its ID. In the following
h(T) rounds, for i = 1 to h(T), for all level-i tree edges {v, p(v)} in parallel, vertex p(v) sends τ(p(v)) to v.
Upon receiving this message, v sets τ(v) := ID(v) if {v, p(v)} is a cut edge, and τ(v) := τ(p(v)) otherwise.

The labeling takes O(h(T)) time and |V | − 1 messages, and the result follows.

Now we discuss 3-edge-connected components. In the distributed model, we can represent a subgraph
(V, F) of (V,E) by using a local boolean variable for each edge. For this representation, Thurimella [36]
gave a distributed connected components algorithm in O(D+

√
V log∗ V) time, using an MST subroutine in

which the weight of edge e is 1 for e 6∈ F and 0 for e ∈ F . Hence we have the following corollary to our cut
pair algorithm, Theorem 6.

Corollary 27. There is a distributed algorithm to compute all 3-edge-connected components with probability
at least 1 − 1/V in O(D +

√
V log∗ V) time and using O(E(D +

√
V log∗ V)) messages.

6 Las Vegas Distributed Implementation

In this section we describe how to turn our Monte Carlo distributed algorithms into Las Vegas algorithms,
by giving a verifier for each one. Given the output of the Monte Carlo algorithm, the verifier determines
whether the output is correct or not; we re-run the Monte Carlo algorithm until the output is verified correct.
For each of our verifiers, the time complexity is no more than the time complexity of the corresponding Monte
Carlo algorithm; this fact and the fact that our algorithms work with high probability together imply that

14

the resulting Las Vegas algorithms have the same asymptotic complexity as the Monte Carlo ones. See [27,
§1.2] for more details.

Here is a high-level description of the three verifiers. The cut edge verifier works by labeling vertices
according to their 2-edge-connected component; the cut vertex verifier works by labeling edges according to
their blocks ; the cut pair verifier works by exploiting relations between cut classes and fundamental cycles.
All three of the verifiers rely on the fact that our Monte Carlo algorithms have one-sided error.

6.1 Verifier for Cut Edges

Recall that Algorithm 3 always outputs all cut edges, but may erroneously output some non-cut edges.
Observe that a non-tree edge cannot be a cut edge; so we may assume the Monte Carlo algorithm outputs a
set E′

C such that E(T) ⊇ E′
C ⊇ EC , by having the verifier reject any output containing a non-tree edge. Here

is the key idea: we compute the connected components of T \E′
C. We only need to show how to determine

if E′
C\EC is nonempty; this can be done using the following proposition and its converse, which follows.

Proposition 28. If E′
C\EC is nonempty, there is a non-tree edge joining vertices in different connected

components of T \E′
C.

Proof. Let e be any element of E′
C\EC . Since e is not a cut edge, there is another edge f ∈ E connecting the

two connected components of T \e. The endpoints of f lie in different connected components of T \E′
C .

Proposition 29. If E′
C\EC is empty, then the connected components of T \E′

C are the 2-edge-connected
components, and every non-tree edge has its endpoints in the same connected component of T \E′

C.

Proof. Corollary 26 guarantees that the connected components of T \E′
C are the 2-edge-connected compo-

nents of G. Since each non-tree edge lies in at least one cycle (e.g. its fundamental cycle with T) its endpoints
lie in the same 2-edge-connected component.

Theorem 11. There is a Las Vegas distributed algorithm to compute all cut edges in O(D) time and using
O(E) messages, in expectation.

Proof. We run the O(D)-time, O(E)-message Monte Carlo cut edge algorithm from Theorem 6, and as
remarked earlier, we know its output E′

C satisfies E′
C ⊇ EC . Then we run the following verifier, terminating

if it accepts, and restarting from scratch (i.e., re-running the Monte Carlo algorithm) as long as it rejects.
If E′

C contains a non-tree edge, we reject. Otherwise (if E′
C ⊂ E(T)) we compute the connected compo-

nents of E(T)\E′
C using an implementation like that in the proof of Theorem 10, which takes O(V) messages

and O(D) time. If any non-tree edge has both endpoints in different components we reject, otherwise the
verifier accepts; this can be checked in unit time and O(E) messages. It follows from Propositions 28 and 29
that the verifier accepts if and only if E′

C = EC . Since the probability of acceptance is Ω(1), the expected
time complexity is O(D + D + 1) and the expected message complexity is O(E + V + E).

6.2 Verifier for Cut Pairs

As in Section 4.4 we assume without loss of generality in this section that G is 2-edge-connected.
Consider the output of our Monte Carlo cut pair algorithm, Algorithm 4. The sense in which its output

is one-sided is that every cut class is a subset of one of its output classes; the verifier must ensure that no
cut class is “too big.” To explain our approach, we define a notion of “wanting.” Recall Φe, the multiset
{φ(f) | f ∈ Ce} defined in Section 4.4; if the value x appears more than once in Φe, say that e wants the set
{f ∈ Ce | φ(f) = x}. With high probability, the wanted sets are precisely the cut classes. First, our verifier
checks that whenever an edge lies in two wanted sets, those sets are the same; second, we use the following
proposition to verify that no wanted set is “too big.”

Proposition 30. Let T be any spanning tree and e, f be edges that are not cut edges. If {e, f} is not a cut
pair, then some fundamental cycle of T contains exactly one of e and f.

15

Proof. We prove the contrapositive; hence we assume that the characteristic vector of {e, f} has even dot
product with every fundamental cycle. By Proposition 3(c) the fundamental cycles form a basis of the cycle
space; so {e, f} is orthogonal to the cycle space, and by Proposition 3(a), lies in the cut space. Thus {e, f}
is an induced edge cut, and so (by Proposition 9) a cut pair.

In order to apply Proposition 30, we count the size of all wanted sets, since then each non-tree edge can
determine if its fundamental cycle is “missing” some members. Our strategy uses a modified Converge-

Cast (Proposition 21) where we interpret max as lexicographic comparison of data. We need to give each
edge a distinct O(log V)-bit name, e.g. by concatenating the IDs of its endpoints. When e wants S, it sends
the ordered pair (e, |S|) towards all of S. (Concretely, for each tree edge {v, p(v)} in S, this data is sent to v.)
If two pairs (e, k) and (e′, k′) such that k 6= k′ are sent to the same location, the verifier rejects. Otherwise,
each tree edge takes the label (e, k) where e is the lexicographically-maximal edge that wants it. We run
another fc-cast with the new labels; then each non-tree edge f checks, for each distinct label (e, k) occurring
in Cf , that there are exactly k edges in Cf with label (e, k). The complexity of the verifier is dominated by
the fc-cast, and we thereby obtain the following theorem.

Theorem 12. There is a Las Vegas distributed algorithm to compute all cut classes in O(D) time and using
O(min{E · D, V 2}) messages, in expectation.

6.3 Verifier for Cut Vertices and Blocks

For edges e, f in E(G), define e ∼ f if either e = f, or e 6= f and there is a cycle that contains both e and
f. It is well-known that ∼ is an equivalence relation on E; its equivalence classes are called the blocks of G.
The overall strategy is to try to label the edges according to the blocks, and then check via a generating
relation that our labeling is correct.

The strategy for this verifier is more involved than for the other two, and a high-level description is
as follows. Given two equivalence relations R and R′ on the same set, we say that R refines R′ if every
equivalence class of R is a subset of some equivalence class of R′. Note that R refines R′ and R′ refines R if
and only if R = R′. We use the notion of local blocks :

Definition 31. The local blocks at v, denoted ∼v, is an equivalence relation on δ(v) obtained by restricting
∼ to δ(v) : namely we write e ∼v f iff e, f ∈ δ(v) and e ∼ f .

An analogue of Claim 16 will show that with high probability, the linear dependencies amongst columns
of M [v] correspond to the local blocks at v. We hence compute equivalence relations ∼′

v on δ(v), for each v,
with the following properties:

• ∼′
v always refines ∼v

• we can collect the local relations ∼′
v into a global equivalence relation ∼′ on E

• ∼′ always refines ∼
• with high probability, ∼′

v=∼v for all v

• if ∼′
v=∼v for all v, then ∼′=∼

Finally, we need to check whether ∼′=∼. To perform this check, we adapt an approach from work of Tarjan
& Vishkin [35] and Thurimella [36], exemplified in the following proposition.

Proposition 32. In O(D) time and O(E) messages we can compute a relation ∼0 on E so that (1) whenever
e ∼0 f , e and f meet at a vertex, and (2) the symmetric reflexive transitive closure of ∼0 is ∼.

Some logical manipulation shows that

∀v : (∀u,w adjacent to v : {u, v} ∼0 {v, w} ⇒ {u, v} ∼′ {v, w}) ⇐⇒ ∼ refines ∼′

and as a result, local checks complete the verification. We now give the details.

16

6.3.1 Computing ∼′
v

What do the local blocks look like? It is not hard to see that the local blocks at v correspond to the connected
components of G\v, in the sense that {u, v} ∼v {w, v} if and only if u and w are connected in G\v. It is also
straightforward to see that F ⊂ δ(v) is an induced edge cut if and only if F is a disjoint union of equivalence
classes of ∼v. We take b = ⌈∆+2 log2 V ⌉ and just as in Claim 16, with probability 1−O(1/V 2), the following
“good” case holds: the minimal sets of linearly dependent columns of M [v] correspond to the parts of ∼v.
(Notice that C is a minimal set of linearly dependent columns iff C’s sum is the zero vector and no subset
of C adds to the zero vector.) This leads to a simple idea, but we need to use some finesse in order that the
∼′
v we compute from M [v] always refines ∼v.

Our starting point is to compute an arbitrary partition π of the columns of M [v] into minimal zero-sum
sets (such a partition exists because the sum of all columns is zero). It is possible that such a partition
does not refine ∼′

v; so we need to check an additional property of π, namely that each pair of parts of π
has mutually orthogonal span. (If this property does not hold, the verifier rejects and we re-start the Monte
Carlo algorithm.) This property ensures that the only zero-sum sets of columns are unions of parts of π,
which in turn shows that ∼v refines π. (Moreover, this property holds in the “good” case.) So we obtain ∼′

v

from π by replacing each column by its index in δ(v).

6.3.2 Computing ∼′ from ∼′
v

For the rest of the section we consider the spanning tree T upon which our algorithms operate as fixed;
hence when we say “fundamental cycle of e” we mean with respect to T . We assume T is rooted at the
leader vertex r and we let p(v) denote the parent of v in T. In collecting the local relations into a global
relation, it is instructive to consider the interaction between T and the blocks of the graph; Figure 4 gives
an illustration. It is not hard to argue that the intersection of T with any given block B is a subtree of T ;
we define the root r(B) of the block to be the root of this subtree. For example, in Figure 4, r and u are
each the root of two blocks, and w is the root of one block. In general, the blocks for which v is the root
correspond to the equivalence classes of ∼v not containing {v, p(v)} (if v = r, all equivalence classes of ∼v).

r

u

w

Figure 4: The interaction between a spanning tree and the blocks of a graph. Thick lines are tree edges,
thin lines are non-tree edges, and the dashed regions indicate the five blocks of the graph.

For computational purposes, assign each equivalence class X of ∼v a number iv(X), using the numbers
1, 2, . . . for each v. Then assign each block B the label (r(B), ir(B)(X)) where the equivalence class X is the
intersection of δ(r(B)) with B. At a high level, to compute ∼ from ∼v, within in each block, we broadcast
its label starting from the block’s root. Now given ∼′

v instead of ∼v, we can mimic this strategy so as to
compute a global relation ∼′. We give pseudocode in Algorithm 6; the phrase “v sets directed label (v, u)
to ℓ” means that v stores ℓ as the label of {v, u} and notifies u of this fact with a message.

Any pair of ∼′-wise related edges are connected by a path of edges related pairwise by local ∼′
v relations;

since ∼′
v refines ∼v which is a restriction of ∼, we see that ∼′ refines ∼. When ∼′

v=∼v for all v, the preceding

17

Algorithm 6 Given local relations ∼′
v, compute a global relation ∼′ .

1: at each vertex v, number the equivalence classes of ∼′
v by 1, 2, . . .

2: at each vertex v, for each equivalence class X of ∼′
v not containing {v, p(v)}, for each {v, u} ∈ X , set

directed label (v, u) to (v, iv(X))
3: when vertex w sets directed label (w, v) to ℓ, if the label of (v, w) exists and is not equal to ℓ then FAIL,

else if directed label (v, w) is unassigned, for each {v, u} ∼′
v {v, w}, set directed label (v, u) to ℓ

4: take the edge labels to identify the equivalence classes of ∼′

discussion implies that ∼′=∼. The message complexity of Algorithm 6 is O(E). When ∼′
v=∼v for all v, the

time complexity is D rounds; if more rounds than this elapse we restart the Las Vegas algorithm.

6.3.3 The Generating Relation ∼0

In order to define ∼0 we need a few preliminaries. Let pre(v) denote a preordering of T starting from the
root, and for each vertex v, let desc(v) denote the number of descendants of v. Thus the set of descendants
of v is the set of vertices with preorder labels in {pre(v), . . . , pre(v)+desc(v)−1}. The subtree-neighbourhood
of v is defined to be v’s descendants, in addition to every other vertex that is adjacent to a descendant of v
via a non-tree edge. For each vertex v let the values low(v) and high(v) denote the minimum and maximum
preorder label in the subtree-neighbourhood of v. Tarjan [34] introduced these low and high functions; they
have been used in several biconnectivity algorithms [35, 36].

Definition 33. The relation {w, v} ∼1 {v, p(v)} holds if and only if {w, v} 6∈ T and either pre(w) < pre(v)
or pre(w) ≥ pre(v) + desc(v) (i.e., if w is not a descendant of v). The relation {v, p(v)} ∼2 {p(v), p(p(v))}
holds if and only if either low(v) < pre(p(v)) or high(v) ≥ pre(p(v)) + desc(p(v)) (i.e., if the subtree-
neighbourhood of v is not contained in the descendants of p(v)). Define ∼0 to be the union of ∼1 and
∼2.

We illustrate these relations in Figure 5. Earlier work [35, 36] uses a different generating relation for ∼;
ours is simpler and also has the crucial property that every two edges related by ∼0 have a common vertex.

p(v)

v w

∼1

p(p(v))

p(v)

v

∼2

Figure 5: Schematic illustrations of the relations ∼1 (left) and ∼2 (right). Thick edges are tree edges, thin
edges are non-tree edges, and triangles depict sets of descendants. Dotted arrows indicate pairs of edges
related by ∼i.

From now on, given a relation R, let R∗ denote the equivalence relation obtained by taking the reflexive
symmetric transitive closure of R. We now prove the most important property of ∼0.

Proof of ∼∗
0=∼ (Proposition 32). First, we argue that ∼0 refines ∼; for this it suffices to show that when

e ∼i f for i ∈ {1, 2}, e and f lie in the same block. If {w, v} ∼1 {v, p(v)}, the fundamental cycle of {v, w}
contains {v, p(v)}, so {v, w} ∼ {v, p(v)} as needed. If {v, p(v)} ∼2 {p(v), p(p(v))} then there is edge from a
descendant of v to a non-descendant of p(v); the fundamental cycle of this edge contains both {v, p(v)} and
{p(v), p(p(v))}, as needed.

Second, we must show that ∼ refines ∼∗
0. Define e ∼FC f if e and f lie on a common fundamental cycle.

In [35, Theorem 1], Tarjan & Vishkin show that ∼∗
FC=∼ . So it suffices to show that when e ∼FC f , e ∼∗

0 f

18

holds. In other words, we need to show that each fundamental cycle lies in a single equivalence class of ∼∗
0.

We provide a pictorial argument of this fact in Figure 6.

e

∼2

∼2

∼1 e

e

∼2

∼2

∼2

∼1

∼1

Figure 6: The fundamental cycle Ce in the proof of Proposition 32. Edges of T are thick lines and e is
labeled. The left diagram shows the case that one of e’s endpoints is a T -descendant of the other, while the
right diagram shows the case that e’s endpoints are unrelated. Dotted arrows indicate pairs of edges related
by ∼i.

We now recap the distributed implementation of our cut vertex verifier.

Theorem 13. There is a Las Vegas distributed algorithm to compute all cut vertices in O(D + ∆/ logV)
time and using O(E(1 + ∆/ logV)) messages, in expectation.

Proof. We compute a random b-bit circulation for b = ⌈∆+2 log2 V ⌉ and use the resulting values to compute
local relations ∼′

v. (As mentioned in Section 6.3.2 the verifier may reject at this stage.) We then combine
this information into a global labeling ∼′ of edges (and again, the verifier may reject at this stage).

There is a straightforward distributed protocol to compute pre(v), desc(v), low(v) and high(v) at each v
in O(h(T)) = O(D) time and using O(E) messages; see e.g. [30, 36]. After this, each vertex sends these four
values to all of its neighbours, with communication taking place along all edges in parallel; this takes O(1)
time and O(E) messages.

At this point, for each pair e, f of edges that are related by ∼0, their common endpoint v checks that
e ∼′ f holds. If there is a violation at any vertex, the verifier rejects, and if not, the verifier accepts. The
labels ∼′ give the blocks; vertex v is a cut vertex iff at least two blocks meet at v.

Computing φ dominates the time and message complexity; each other step takes O(D) time and O(E)
messages. Noting that the verifier accepts each time with probability at least 1−1/V , Theorem 13 follows.

7 Lower Bounds on Distributed Time

In this section we give precise assumptions under which our distributed cut edge and cut pair algorithms
achieve universal optimality. Let r denote the unique leader vertex in the graph. A vertex is quiescent in
a given round if it does not send any messages or modify its local memory in that round. We adopt the
following terminology from Peleg [29, §3.4 & Ch. 24].

Definition 34. A distributed algorithm has termination detection if r has a local boolean variable done,
initialized to false, so that done is set to true exactly once, in the last round of the algorithm. A distributed
algorithm has a single initiator if, except for r, every vertex is quiescent until it receives a message.

The state of a vertex means the contents of its memory. We omit the straightforward inductive proof of
the following standard proposition.

Proposition 35. Let two graphs both contain a vertex v and have the same graph topology and node IDs
in the distance-d neighbourhood of v. If the same deterministic distributed algorithm is run on both graphs,
the state of v is the same in both instances for the first d − 1 rounds. For a randomized algorithm, the
distribution over states of v is the same.

19

For a graph G, a vertex v ∈ V (G) and an integer ℓ ≥ 3, we now define graphs Gc and Gp that implicitly
depend on ℓ and v. Specifically, let Gc denote the graph obtained from G by attaching a ℓ-edge cycle to G
at v, and let Gp denote the graph obtained from G by attaching a (ℓ− 1)-edge path to G at v, as shown in
Figure 7. Give corresponding vertices vi in the two graphs the same ID.

G
...v

v1
v2

v3

vℓ−1
vℓ−2

vℓ−3

r G
...v

v1
v2

v3

vℓ−1
vℓ−2

vℓ−3

r

Figure 7: Left: the graph Gc. Right: the graph Gp.

Theorem 14. Any deterministic distributed algorithm for finding all cut edges that has termination detection
takes at least D/2 rounds on every graph.

Proof. Consider for the sake of contradiction a graph G upon which the algorithm terminates in t < D/2
rounds. Let v be any vertex of distance at least D/2 away from r, and let ℓ = 2t + 2. By Proposition 35,
the algorithm also sets done := true at r on Gp and Gc in t rounds, so the algorithms terminate then.

Now consider vℓ/2; using Proposition 35 again, we see that its state is the same at termination in both
instances. Since the edges incident to vℓ/2 are cut edges in Gp but not in Gc, they must have been incorrectly
classified at vℓ/2 in at least one instance.

If we assume that the algorithm has a single initiator instead of assuming termination detection, a similar
argument works. We use the following lemma, whose easy inductive proof is omitted.

Lemma 36. In an algorithm with a single initiator, every vertex at distance t from r is quiescent for the
first t rounds.

Theorem 15. Any deterministic distributed algorithm for finding all cut edges that has a single initiator
takes at least D/2 rounds on every graph.

Proof. Suppose the algorithm terminates in t < D/2 rounds on a graph G. Let v be any vertex of distance
at least D/2 away from r. Then by Proposition 35 the algorithm also terminates in t rounds on G3,v

c and
G3,v
p . By Lemma 36 vertex v1 is quiescent during the entire execution of the algorithm on these new graphs;

hence the incident edges cannot be correctly classified in both instances.

For randomized algorithms we have the following lower bound.

Theorem 16. Any randomized distributed algorithm with error probability less than 1/4 for finding all cut
edges takes at least D/4 rounds in expectation, if it has a single initiator or termination confirmation.

Proof. We use the same setup as in the proofs of Theorems 14 and 15. Markov’s inequality shows that when
running the algorithm on G, the time of termination t satisfies Pr[t ≤ D/2] ≥ 1/2. The distribution on the
state of the crucial vertex — vℓ/2 for termination confirmation, v1 for single initiator — is the same on both
Gc and Gp at time D/2. So of the ≥ 1/2 probability mass of termination before D/2, either 1/4 incorrectly
classifies edges of Gc as cut edges or edges of Gp as not cut edges.

The same lower bounds hold for finding 2-edge-connected components and cut pairs, since the new edges
of Gc are in cut pairs, while the new edges of Gp are not. It is straightforward to verify that our distributed
algorithms can be implemented so as to have a single initiator and termination detection; then their universal
optimality follows.

20

If we do not require a single initiator or termination detection, and if we change our input model to allow
additional parameters of G to be initially known at each node, neighbourhood cover techniques of Elkin [9]
can be synthesized with our techniques to yield even faster algorithms for certain graph classes. Elkin used
these techniques to obtain distributed MST algorithms faster than O(D) on some graphs.

8 Parallel Cut Pairs on the EREW PRAM

In this section we give a parallel cut pair algorithm of time complexity O(log V) for the EREW PRAM.
Computing the OR of n bits has a lower bound of Ω(log n) time in this model; from this an easy combinatorial
reduction yields an Ω(log V) time lower bound for finding all cut pairs of a graph, so our algorithm is time-
optimal. As in Section 4.4 we assume without loss of generality in this section that G is 2-edge-connected.

We will require several common subroutines. In O(V + E) work and space and O(log V) time we can
compute a spanning forest (Halperin and Zwick [14]). An ear decomposition can be computed in the same
complexity using the approaches in [25, 26] and plugging in the result of [14] for the spanning forest subrou-
tine. Expression evaluation of an n-node tree can be accomplished in O(n) work and space and O(log n) time
(e.g. see the book of JáJá [19, Ch. 3]). We let T (n), S(n),W (n) denote the time, space, work complexity to
sort n numbers of length O(log n) bits; we give references to the best known algorithms for this problem in
Section 1.2. First, we give our Monte Carlo cut pair algorithm.

Theorem 17. There is a parallel algorithm to compute all cut pairs with probability at least 1 − 1/V in
O(log V + T (E)) time, O(E + S(E)) space, and O(E +W (E)) work.

Proof. We implement Algorithm 4 distributively. First, we claim we can implement the subroutine Rand-b-
Bit-Circ distributively to generate a random O(log V)-bit circulation in logarithmic time and linear work;
the completion steps (Algorithm 1) are accomplished via a call to expression evaluation in which we compute
the expression φ(e) :=

⊕

f∈δ(v)\e φ(f) for each tree edge e = {v, p(v)}. We implement Line 2 of Algorithm
4 via a sort.

8.1 Las Vegas Cut Pair Algorithm

The verifier for our parallel cut pair algorithm works by attempting to construct the 2-cactus of G which
acts as a certificate for all of the cut pairs. Our terminology is derived from a more general sort of cactus
originally due to Dinits, Karzanov & Lomonosov [8] that acts as a certificate for all minimum edge cuts.
Say that u ≡ v in G if the edge-connectivity between u and v is at least 3; it is easy to show (e.g. using the
max-flow min-cut theorem) that ≡ is an equivalence relation. For any equivalence relation R on V , let G/R
denote the multigraph with loops obtained by contracting all equivalence classes of R.

Definition 37. The 2-cactus Ca(G) of G is G/≡.

i

e

a

j
k

h

f g
d

b c

i

j

k

h

b, e, f

a c, g d

Figure 8: A graph (left) and its 2-cactus (right).

An example of a 2-cactus is given in Figure 8.

Proposition 38. (a) For any equivalence relation R on V , every cut pair of G/R is a cut pair of G. (b)
Every cut pair of G is a cut pair of Ca(G).

21

Proof. In part (a), let δ(X) be a cut pair of G/R. Let ∪X be the union of the equivalence classes in X .
Then the edge sets δ(∪X) in G and δ(X) in Gc are the same.

In part (b), let δ(S) be a cut pair of G. Note that s 6≡ t holds for each s ∈ S, t 6∈ S. Let [S] be the set of
all ≡-equivalence classes in S; the cut pair δ(S) becomes cut pair δ([S]) in G/≡ which is Ca(G).

Now we recall the earlier convention (from Section 2.1) of using φ to denote a (random) b-bit binary
circulation, wherein for each i the sets {e | φi(e) = 1} are independent binary circulations selected uniformly
at random. Recall also Corollary 10 which (together with the assumption that G is 2-edge-connected) says
that φ(e) = φ(f) always holds when {e, f} is a cut pair, and holds with probability 1/2b otherwise. Define
an illusory cut pair to be a pair of edges {e, f} that has φ(e) = φ(f) but is not a cut pair. Our strategy
will be to define another relation ≡′ so that ≡ and ≡′ will agree when there are no illusory cut pairs; we will
then use Proposition 38 to verify that there are no illusory cut pairs.

8.1.1 Pinching Ears

The relation ≡′ must provide an alternate way of constructing Ca(G), when there are no illusory cut pairs.
To this end we examine the properties of Ca(G) in more detail. We take the convention that a parallel pair
of edges or a self-loop is a simple cycle.

An ear decomposition of G is a sequence of graphs G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gk = G such that G1 is just
a vertex and each Gi is obtained from Gi−1 by attaching a simple cycle (a closed ear) or path with both
endpoints in Gi−1 (an open ear). It is well-known that a graph is 2-edge-connected if and only if it admits
an ear decomposition. The edges Ei := E(Gi)\E(Gi−1) are the ith ear of G.

We omit the straightforward proof of Proposition 39.

Proposition 39. Every pair of nodes in Ca(G) has edge-connectivity equal to 2.

Call a graph cactuslike if every pair of nodes has edge-connectivity equal to 2.

Proposition 40. The following are equivalent for any graph: (1) it is cactuslike, (2) in some ear decompo-
sition, all its ears are closed, (3) in every ear decomposition, all its ears are closed.

Proof. Trivially, (3) implies (2). It is easy to see that (2) implies (1) by induction on the ears. To see that (1)
implies (3), suppose that there is an open ear Ei with endpoints u, v. But then there are three edge-disjoint
paths between u and v, two in Gi−1 as well as Ei.

We obtain the following corollary using induction on the ears.

Corollary 41. In a cactuslike graph, for any ear decomposition, the cut classes are the same as the nons-
ingleton ears.

Next we start looking at ear decompositions of G, which will be useful algorithmically.

Lemma 42. Every cut class of G lies within a single ear of any ear decomposition of G.

Proof. Suppose otherwise, that there is a cut pair {e, f} with e ∈ Ei and f ∈ Gi−1. Since Gi−1 is 2-edge-
connected, Gi−1\f is connected. But Gi\{e, f} is obtained by attaching 2 paths to Gi−1, and so is connected.
By induction on the remaining ears we see that each Gj\{e, f} for j ≥ i is connected; in particular for j = k
this means G\{e, f} is connected, a contradiction.

Consider now the image E′
i of any ear Ei under contraction by ≡. Lemma 42 implies E′

i is a union of
cut classes. The cut classes of Ca(G) and G agree (Proposition 38), and by Corollary 41 every cut class of
Ca(G) is a simple cycle. Furthermore, there is a natural cyclic order on each cut class in Ei (e.g. see Figure
3 on page 8) and it is not hard to see that the corresponding cycle of formed by Ei in Ca(G) has the same
cyclic order. Hence we can obtain E′

i from Ei by “pinching” all of the cut classes in Ei to become cycles.
We now make this precise.

22

Let a given ear have vertices and edges v0, e1, v1, e2, v2, . . . , ek, vk in that order, where v1 = vk iff the ear
is closed. To pinch a subset U = {ei(1), ei(2), . . . , ei(t)} of edges with i(1) < i(2) < · · · < i(t) means that we
contract the pairs (vi(1), vi(2)−1), (vi(2), vi(3)−1), . . . , (vi(t−1), vi(t)−1) and (vi(t), vi(1)−1). After pinching, the
set U becomes a simple cycle in the same order as before. Then E′

i is the image of Ei under pinching all cut
classes in the ear, as we illustrate in Figure 9. This leads to our verification approach.

Definition 43. For the ith ear, define the equivalence relation ≡i to be the transitive closure of all pairs
that are contracted together when pinching the cut classes in the ear.

(We think of the pinching of the various cut classes as happening simultaneously, or in other words
if PK denotes the pairs contracted when pinching a set K, then ≡i is the transitive closure of {∪KPK |
K a cut class in Ei}.) So making our earlier statement more precise, (Ei/≡i) = E′

i. The next claim follows
by induction on the ears of the ear decomposition.

Claim 44. G/(∪i ≡i)∗ = Ca(G).

As a result, (∪i ≡i)∗ is identical to ≡.

1

1
3

3
3

2

5

1

6
8

7
8

5

4

6

1
1

1

3
3

3

8

8

6

6
5 5

2 4

7

Figure 9: Left: an ear decomposition of the graph from Figure 8; edges are labelled by their cut class. Right:
the pinched ears after contracting by ≡i.

8.1.2 Detecting Errors

In the algorithm we are designing, we don’t know the cut pairs; rather, we have computed φ and know that
with high probability, φ labels edges by their cut class. We compute the following instead.

Definition 45. For the ith ear, define the equivalence relation ≡′
i to be the transitive closure of all pairs

that are contracted together when pinching each of the sets {e ∈ Ei | φ(e) = k} for all k ∈ {φ(e) | e ∈ Ei}
(i.e., each group of edges with the same φ value).

Note first that if there are no illusory cut pairs, then ≡′
i is the same as ≡i. Define the equivalence relation

≡′ to be equal to (∪i ≡′
i)

∗. Our algorithm computes H := G/≡′ and tries to verify all cut pairs. First, if H
is not cactuslike, by Claim 44, we can reject since there is an illusory cut pair. Second, if H is cactuslike, we
check that every pair {e, f} with φ(e) = φ(f) is a cut pair of H . By Proposition 38 this detects any illusory
cut pairs. This completes the verifier, and we obtain the following theorem.

Theorem 18. There is a Las Vegas parallel algorithm to compute all cut pairs in O(log V + T (E)) time,
O(E + S(E)) space, and O(E +W (E)) work, in expectation.

Proof. To compute ≡′
i on each ear, we radix sort the edges on that ear lexicographically according to the

pair (φ(e), pos(e)) where pos(e) is the position along the ear.
To compute ≡′ from the relations ≡′

i we build an auxilliary graph on vertex set V and draw an edge
for each pair of vertices that is related by some ≡′

i; then the equivalence classes of ≡′ are the connected
components of this auxilliary graph. In other words, this can be done using the connected components

23

routine of Halperin & Zwick [13]. From this, computing the multigraph H takes constant time and linear
work.

To check if H is cactuslike, we compute an ear decomposition and see if all ears are closed. Finally,
using Corollary 41, we can check that every pair {e, f} with φ(e) = φ(f) is a cut pair of H in the required
complexity bound.

9 Future Work

At the most basic level, it would be interesting to push further and find efficient algorithms for higher types
of connectivity, such as finding all 3-edge-cuts in O(E) sequential time or O(D) distributed time. The state
of the art for this problem in the sequential model is O(V 2) time [11, 21]. It would also be interesting
to reduce the complexity of our parallel cut pairs algorithm to linear work and logarithmic time; it seems
plausible that another approach would avoid radix sort.

It is possible to deterministically compute the cut edges in the distributed model using O(D) time and
O(E) messages, as was shown in the thesis of Pritchard [30]. (The approach is based on the observation
that {v, p(v)} is a cut edge if and only if low(v) ≥ v and high(v) < v + desc(v).) However, we do not know
of any deterministic analogues of our distributed cut pair or cut vertex algorithms.

It would be interesting to know if our distributed cut vertex algorithm could be synthesized with the cut
vertex algorithm of Thurimella [36] to yield further improvement. Alternatively, a lower bound showing that
no O(D)-time algorithm is possible for finding cut vertices would be very interesting.

Acknowledgement

We would like to thank Santosh Vempala for helpful ideas on using randomness to compute small cuts [32].

References

[1] M. Ahuja and Y. Zhu. An efficient distributed algorithm for finding articulation points, bridges, and
biconnected components in asynchronous networks. In Proc. 9th FSTTCS, pages 99–108, 1989.

[2] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: a survey and a new
distributed algorithm. In Proc. 14th SPAA, pages 258–264, 2002.

[3] B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead. In Proc. 31st
FOCS, pages 514–522, 1990.

[4] A. Bondy and U. Murty. Graph Theory with Applications. North-Holland, 1976.

[5] E. J.-H. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE Trans. Softw.
Eng., SE-8:391–401, 1982.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[7] R. Diestel. Graph theory. Springer-Verlag, New York, 3rd edition, 2006.

[8] Y. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the structure of the system of minimum edge
cuts in a graph. In A. A. Fridman, editor, Studies in Discrete Optimization, pages 290–306. Nauka,
1976.

[9] M. Elkin. A faster distributed protocol for constructing a minimum spanning tree. J. Comput. Syst.
Sci., 72(8):1282–1308, 2006. Preliminary version appeared in Proc. 15th SODA, pages 359–368, 2004.

[10] D. S. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components by local replace-
ment. SIAM J. Comput., 22:587–616, 1993.

24

[11] Z. Galil and G. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT News, 22:57–61,
1991.

[12] J. A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for minimum-weight
spanning trees. SIAM J. Comput., 27(1):302–316, 1998. Preliminary version appeared in Proc. 34th
FOCS, pages 659–668, 1993.

[13] S. Halperin and U. Zwick. An optimal randomised logarithmic time connectivity algorithm for the
EREW PRAM. J. Comput. Syst. Sci., 53(3):395–416, 1996. Preliminary version appeared in Proc. 6th
SPAA, pages 1–10, 1994.

[14] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for finding spanning forests.
J. Algorithms, 39(1):1–46, 2001. Preliminary version appeared in Proc. 7th SODA, pages 438–447, 1996.

[15] Y. Han and X. Shen. Parallel integer sorting is more efficient than parallel comparison sorting on
exclusive write prams. SIAM J. Comput., 31(6):1852–1878, 2002. Preliminary version appeared in
Proc. 10th SODA, pages 419–428, 1999.

[16] W. Hohberg. How to find biconnected components in distributed networks. J. Parallel Distrib. Comput.,
9(4):374–386, 1990.

[17] J. Hopcroft and R. Tarjan. Dividing a graph into triconnected components. SIAM J. Comp., 2(3):135–
158, 1973.

[18] S. T. Huang. A new distributed algorithm for the biconnectivity problem. In Proc. 1989 International
Conf. Parallel Processing, pages 106–113, 1989.

[19] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[20] E. Jennings and L. Motyckova. Distributed computation and incremental maintainance of 3-edge-
connected components. In Proc. 3rd SIROCCO, pages 224–240, 1996.

[21] A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-connectivity. J. Comput. Syst.
Sci., 42(3):288–306, 1991. Preliminary version appeared in Proc. 28th FOCS, pages 252–259, 1987.

[22] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient parallel algorithms for graph problems. Algorithmica,
5(1):43–64, 1990. Preliminary version appeared in Proc. 15th ICPP, pages 869–876, 1986.

[23] S. Kutten and D. Peleg. Fast distributed construction of small k-dominating sets and applications. J.
Algorithms, 28:40–66, 1998. Preliminary version appeared in Proc. 14th PODC, pages 238–249, 1995.

[24] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed MST for constant diameter graphs. Distributed
Computing, 18(6):453–460, 2006. Preliminary version appeared in Proc. 20th PODC, pages 63–71, 2001.

[25] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and st-numbering in
graphs. Theoretical Comput. Sci., 47:277–298, 1986.

[26] G. L. Miller and V. Ramachandran. A new graph triconnectivity algorithm and its parallelization.
Combinatorica, 12:53–76, 1992. Preliminary version appeared in Proc. 19th STOC, pp. 254–263, 1987.

[27] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 2000.

[28] D. Peleg. Time-optimal leader election in general networks. J. Parallel Distrib. Comput., 8(1):96–99,
1990.

[29] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[30] D. Pritchard. Robust network computation. Master’s thesis, MIT, 2005.

25

[31] D. Pritchard. Fast distributed computation of cuts via random circulations. In Proc. 35th ICALP, Part
I, pages 145–160, 2008.

[32] D. Pritchard and S. Vempala. Symmetric network computation. In Proc. 18th SPAA, pages 261–270,
2006.

[33] R. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.

[34] R. E. Tarjan. A note on finding the bridges of a graph. Inform. Process. Lett., 2:160–161, 1974.

[35] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Comput., 14(4):862–
874, 1985. Preliminary version appeared in Proc. 25th FOCS, pages 12–20, 1984.

[36] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and biconnected components.
J. Algorithms, 23(1):160–179, 1997. Preliminary version appeared in Proc. 14th PODC, pages 28–37,
1995.

[37] Y. H. Tsin. A simple 3-edge-connected component algorithm. Theory Comput. Systems, 40(2):125–142,
2005.

[38] Y. H. Tsin. An efficient distributed algorithm for 3-edge-connectivity. Int. J. Found. Comput. Sci.,
17(3):677–702, 2006.

26

