Cloak and Dagger: Man-In-The-Middle and Other
Insidious Attacks

Abstract

One of the most devastating forms of attack on a computer is when the victim
doesn’t even know an attack occurred. After some background material, various
forms of man in the middle (MITM) attacks, including ARP spoofing, fake SSL
certificates, and bypassing SSL are explored. Next, rootkits and botnets, two key
pieces of crimeware, are introduced and analyzed. Finally, general strategies to
protect against such attacks are suggested.

Keywords: Man-in-the-middle (MITM) Attack, ARP spoofing, rootkits, botnets, Meb-
root, Torpig.

1 Introduction

Information has always been very valuable. Computers are entrusted to maintain and
process massive amounts of information. This makes them valuable targets to attackers.
One of the most devastating forms of attack is when an attacker gains access to the
information without the victim even being aware of it.

This paper explores some of the means by which this surreptitious access to
information can occur. Background material on basics of cryptography, the
Diffie-Hellman key exchange, networking, Transport Layer Security and Secure Sockets
Layer, and drive by downloads is provided in section 2. MITM attacks are defined in
section 3. ARP spoofing, a form of a MITM attack, is explored in section 3.1. Futile
defenses to MITM attacks are examined in section 3.2. A MITM attack on SSL using
fake certificates is givenin section 3.3. Even more forms of MITM attacks are explored
in section 3.4. Defenses are discussed in section 3.5. Finally, a new attack known as man
in the browser is detailed in section 3.6.

MITM attacks are not the only stealthy means by which information security is
breached. Rootkits and botnets, which are capable of doing much more harm, can reside
on victim’s computer while evading detection. Rootkits are defined in section 4. An

Ke Kd

Plain Text l Cipher Text l Plain Text
ain Tex 4@ ipher Tex >Wypt ain Text

Figure 1: Process of encryption and decryption.

example rootkit, Mebroot, is analyzed in section 4.1. Defenses against rootkits are
discussed in section 4.2. Botnets, which are often used in conjunction with rootkits, are
defined in section 5. Attacker’s motivation is examined in section 5.1. The Torpig
botnet, and its recent takeover by security researchers, is investigated in 5.2.

We conclude with some general discussion on how to prevent these attacks in section

2 Background

In this section, we begin with the basics of cryptography, pointing out the difference
between symmetric and asymmetric encryption, followed by a description of the
Diffie-Hellman key exchange protocol. Next, we present an abstract description of the
man-in-the-middle attack. After that, we give some networking details that are
necessary to understand a concrete man-in-the-middle attack on modern local-area
networks. We first begin with a general discussion on cryptography.

2.1 Cryptography

When trying to communicate a message across an untrusted channel, cryptography is a
natural solution. The original message, or plain text, is transformed into cipher text by
encrypting the plain text with an encryption key, K.. The cipher text will appear
meaningless with no apparent relationship to the plain text. This allows the cipher text
to be transferred across the untrusted channel with minimal risk of the plain text being
intercepted. The cipher text can be transformed back into the plain text by decrypting
it with the decryption key K. Collectively, the methods of encryption and decryption
are known as a cipher. This process, illustrated in Figure 1, can be represented
symbolically as

P=D(Ky E(K,,P)).

If the decryption key is the same as the encryption key, or efficiently derived from it,
the cipher is known as a symmetric cipher; otherwise, it is an asymmetric cipher.
Popular symmetric ciphers include the Advanced Encryption Standard (National

2

Institute of Standards and Technology, 2001) and the Triple Data Encryption
Algorithm, commonly known as Triple DES (National Institute of Standards and
Technology, 1999). Symmetric ciphers suffer from the key distribution problem—getting
the communicating parties to agree upon a common key.

In public key cryptography, which use asymmetric ciphers, each communicating
entity maintains one private key and one public key, K, and K, respectively.
Extending the previous notation, public key cryptography is

P = D(Kpriv, E(Kpup, P)).

As the names imply, the public key is made available freely to anyone who wishes to use
it, but the private key is kept secret. If Alice wishes to communicate with Bob, she
encrypts the message with Bob’s public key, which is freely available, and sends the
encrypted message to Bob. Anyone eavesdropping on this communication cannot
decrypt the message unless they have Bob’s private key. Anyone who wants to
communicate with Bob can easily get access to his public key, so public key
cryptography does not suffer from the key distribution problem. However, public key
cryptography does have a different drawback. It is computationally expensive; usually
this entails performing modular arithmetic over large integers that are few hundred
digits long. In practice, a hybrid method is used: public key cryptography is used
initially to exchange a random symmetric key, and this random key is used for the
remainder of the session. Popular asymmetric ciphers include RSA (Rivest, Shamir, &

Adleman, 1978) and El Gamal, 1985.

Cryptography does more than just keep messages confidential. It can be used to
authenticate the sender of a message, and verify it has not been altered (National
Institute of Standards and Technology, 2009). In particular, public key cryptography can
be used for this task. The public and private keys can be applied in the reverse order as

P = D(Kpup, E(Kpiv, P)).

If Bob sends Alice E(Ky;y, P), then Alice can be assured that the message P came from
Bob as only Bob has access to K,,;,. In this case, P is said to be digitally signed by
Bob. See Stinson, 2005, Ferguson & Schneier, 2003, and Menezes, van Oorschot, &
Vanstone, 1997 for more background on cryptography and its applications.

2.2 Diffie-Hellman Key Exchange Protocol

The Diffie-Hellman (DH) protocol allows two parties that have no prior knowledge of
each other to jointly establish a shared secret key over an insecure communication
channel (Diffie & Hellman, 1976). Diffie-Hellman is also known as Diffie-Hellman-Merkle
(Hellman, 2002). In short, DH is based on the fact that

(9")" = (¢")" (mod p),

3

where all computations are performed over a group of integers modulo p for some large
prime p. This is true because multiplication in groups is associative. DH’s cryptographic
strength comes from the fact that it is easy to compute powers modulo a prime, but
hard to reverse the process when large integers are involved. This intractable problem is
known as the discrete log problem.

Alice and Bob can agree on a shared secret by performing the following steps (all
arithmetic is modulo p):

1. Alice and Bob agree on a large prime p, and a generator g.

2. Alice picks a random number a, 0 < a < p, and sends g* to Bob. Alice keeps a
private.

3. Bob picks a random number b, 0 < b < p, and sends ¢° to Alice. Bob keeps b
private.

4. Alice computes (g°).

5. Bob computes (g%)°.

Both Alice and Bob are now in possession of ¢?°, which is their shared secret key. Only
a, b and g = ¢*® mod p are kept private. All other values—p, g, g%, and g*—are public.

2.3 Networking Basics

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) together are
at the heart of communication protocols used for the Internet. These protocols resulted
from years of research funded by Defense Advanced Research Projects Agency
(DARPA). The TCP/IP suite defines a set of rules that enable computers to
communicate over a network. The rules specify data formatting, addressing, shipping,
routing and delivery to the correct destination.

Computers that are in close proximity and connected into the same Local Area
Network (LAN) communicate with each other using Ethernet. In this protocol, frames
are sent to a destination Media Access Control (MAC) address, a 48-bit address that is
unique to each Network Interface Card (NIC) on the network. The nodes on a LAN are
connected using a hub or a switch. The only difference between them is that a hub is
less intelligent and cheaper than a switch. It simply broadcasts every packet it receives
to every computer on the LAN. For many years, hubs were very common and posed
serious security problems for system administrators. Anyone on the LAN could put their
NIC into “promiscuous” mode and eavesdrop on all data transferred on the LAN.
Switches, on the other hand, send Ethernet frames only where they need to go instead of
broadcasting to everyone. In addition to improved security, switches also increase the
rate at which data can be transferred.

......

Ethernet (LAN)

Figure 2: LAN connected to the Internet via a router. The router is seen by the switch
as another host on the LAN.

\

To connect a LAN to the Internet, one needs a more intelligent device that can route
packets to the Internet. This device is called a router. It is smarter than a switch, in the
sense that it is programmable, and usually includes an interface by which it can be
configured. Routers have the ability to communicate with other routers and determine
the best way to send network traffic from one point to another on the Internet. For
simplicity, let us assume that there is only one router on any given LAN. Then, since all
traffic from the LAN must enter and exit through the router, it provides a useful choke
point. The computers on the LAN can be protected from outside attackers by running a
firewall along with an intrusion detection system at this choke point. This is illustrated
in Figure 2.

A default gateway is the node on the LAN that is chosen by the switch when it
encounters an IP address that does not belong to any node on the LAN. A router
usually assumes the role of a default gateway. In home networks, the functionality of a
switch, router, and wireless access point are often combined into one physical unit.

2.4 TLS/SSL

Transport Layer Security (TLS) is a security protocol from the Internet Engineering
Task Force (IETF) that is based on the Secure Sockets Layer (SSL) 3.0 protocol
developed by Netscape. TLS is the successor to SSL. Both protocols include
cryptographic frameworks which are intended to provide secure communications on the
Internet. SSL is not an industry standard as it was developed by Netscape. TLS is the
widely recognized standard issued by the IETF for securing transmitted data. The

current version of TLS is 1.2 and is described in RFC 5246 (Dierks & Rescorla, 2008).
Version 1.1 of TLS is supported on most commercial browsers, web and email servers
with support for version 1.2 forthcoming. By and large, TLS and SSL are
interchangeable.

The TLS protocol runs above TCP/IP and below higher-level protocols such as
HTTP or SMTP. It uses TCP/IP on behalf of the higher-level protocols, and facilitates
the establishment of an encrypted connection between the client and server.

Both TLS and SSL follow a standard handshake procedure to establish
communication. The handshake prior to an HT'TPS session follows.

1. The client contacts a server that hosts a secured URL.

2. The server responds to the client’s request and sends the server’s digital certificate
(X.509) to the browser.

3. The client now verifies that the certificate is valid and correct. Certificates are
issued by well-known authorities (e.g. Thawte or Verisign).

4. The server could optionally choose to confirm a user’s identity. Using the same
techniques as those used for server authentication, TLS-enabled server software
can check that the client’s certificate is valid and has been issued by a certificate
authority (CA) listed in the server’s list of trusted CAs. This confirmation might
be important if the server is a bank sending confidential financial information to a
customer and wants to check the recipient’s identity. (See the benefits of
performing this optional step in Section 3.5.)

5. Once the certificate is validated, the client generates a random one-time session
key, which will be used to encrypt all communication with the server.

6. The client now encrypts the session key with the server’s public key, which was
transmitted with the digital certificate. Encrypting using the server’s public key
ensures that others cannot eavesdrop on this sensitive exchange.

At this point, a secure session is established because the client and server both know the
session key. Now, both parties can communicate via a secure channel. See Figure 3.

2.5 Drive-by downloads

A drive-by download is a catch-all term for software downloaded to your computer
without your knowledge or intervention (Walker, 2005). Attackers often do this by
exploiting the way Uniform Resource Locators (URLs) are handled by the browser.
That is, a webpage link would be created that contains unusual or excessive set of
characters. When a vulnerable browser attempts to parse this carefully crafted URL,

Client Server

ClientHello ‘
\ ServerHello

Certificate
ServerKeyExchange
ServerHelloDone

Certificate /

ClientKeyExchange

CertificateVerify

[ChangeCipherSpec]

Finished \
[ChangeCipherSpec]
Finished

Application Data

A
Y

Application Data

Figure 3: SSL/TLS protocol handshake and session key establishment. (Adapted from
Dierks & Rescorla, 2008.)

the attacker can gain access to the victim’s computer by running code outside the
browser environment.

Once the attacker can execute code on the victim’s computer, there is little
restriction as to what that code can do. For example, a rootkit could be installed. The
victim could be forced to become a botnet client. Advertising software could be
installed that monitors the victim’s browsing behavior and bombard them with pop-ups.
Keystroke loggers could be installed which could lead to the capture of logins and
passwords to various things such as bank accounts, email accounts, or credit card
numbers.

The best defense against drive-by downloads is to keep the operating system and
web browser up to date with the latest security patches. Since these mostly exploit the
web browser, it is only a matter of time before the security community learns of the
specific attack used and the appropriate software is fixed.

3 Trust, Certificates, and Man in the Middle
(MITM) Attacks

Suppose that Alice wishes to communicate with Bob using public key cryptography.
Mallory, the attacker, can participate actively or passively. In the latter role, she
faithfully proxies the communication between Alice and Bob, while eavesdropping on
their conversation—a breach of confidentiality. In the former role, Mallory can choose to
edit, delete, or inject packets.

If Alice requests Bob’s public key and Mallory is able to intercept it, then Mallory
responds back to Alice with her public key, K,,. Alice is under the impression that she
is talking to Bob and encrypts all her messages with K, which Mallory can decrypt.

Meanwhile, Mallory, pretending to be Alice, sends K,, to Bob, telling him that it is
Alice’s public key and requests his public key. Bob, like Alice, encrypts all his messages
with K, which Mallory can decrypt.

Both Bob and Alice are under the impression that they are talking to each other,
but all communication passes through Mallory and is completely controlled by Mallory.
The attack mounted by Mallory is known as a man in the middle attack.

This problem arose because the public keys are sent directly by their owners. One
solution is to exchange public keys through a trusted third party. This is accomplished
by using digital certificates that contain the public key for an entity and an assurance
from a trusted third party that the public key belongs to that entity. The trusted third
party that issues digital certificates is called a Certification Authority (CA). As these
certificates are digitally signed by CAs, the certificates provide protection against
impersonation. Authenticity of certificates is easily verified since a CA’s public key is
“universally” available. For example they are embedded in browsers. When a certificate
is for an individual entity (resp. CA), the certificate is a personal (resp. root) certificate.

Digital certificates contain at least the following information about the entity being
certified:

e the public key of the certificate holder

e the common name of the certificate holder

the common name of the CA that is issuing the certificate

the date certificate was issued on

the expiration date of the certificate

the serial number of the certificate

Certificate Viewer:"www.paypal.com™

This certificate has been verified for the following uses:
551 Server Certificate

Issued To
Common Mame (CN) ui paypal com

Organization (0) PayPal, Inc.

Grganizational Unit (OU) Information Systems

Seial Number 63:4D:CE:1C:61:9F FB6E:26: 1E:05:AD: SB:A%:55:56
Issued By

Common Mame (CN) YeriSign Class 3 Extended Validation S5L 5GC CA
Organization (0) YeriSign, Inc.

Organizational Unit (OU) YeriSign Trust Network

walidity

Issued On 57142008

Expires On 5/212008

Fingerprints
SHAL Fingerprink 4125176 TED2:COIACDE DE:F6 5 3:DA:795E:01:C5:17:83:75:2D
MDS Fingerprint: 22187178193, 7D:BA:56:86:849: B0 F9: 40:74: 700 07:00

Close

Figure 4: Digital certificate received from PayPal web server as viewed from a browser.

For obvious reasons, digital certificates do not contain the private key of the owner
because it must be kept secret by the owner. See an example certificate in Figure 4.

A Public Key Infrastructure (PKI) is a system to facilitate the use of public key
cryptography. Unfortunately there is some potential semantic confusion with the term
(Anderson, 2008). It can mean either a key infrastructure that is public, or an
infrastructure for public keys. Accordingly, there is no one standard that defines the
component of a PKI. Typically, PKI refers to the former interpretations. In that case
CAs and Registration Authorities (RA) normally provide the following;:

issue digital certificates

validate digital certificates

revoke digital certificates

distribute public keys

The X.509 protocol suite is an International Telecommunication Union standard for
a Public Key Infrastructure (Cooper et al., 2008). RAs verify the information provided
at the time when digital certificates are requested. If the information is verified
successfully by the RA, the CA can issue a digital certificate to the requester.

ARP Broadcast:
Request: MAC ID
for IP 192.168.0.73

Response: E

192.168.0.73 H

00-99-77-37-6f-3¢ E
A B D
192.168.0.64 192.168.0.70 192.168.0.73 192.168.0.79
00-a1-f0-7e-e4-33 00-10-a5-07-5d-1e 00-99-77-37-6f-3c 00-03-a5-1d-6f-1e

Figure 5: ARP request broadcast and response. Here host A is requesting a MAC (phys-
ical) address that corresponds to IP# 192.168.0.73 (host C).

3.1 MITM Attack on a Switched LAN using ARP Spoofing

How does Mallory intercept and relay communication between Alice and Bob on modern
computer networks? Aren’t they built on secure technology? The answer is no,
unfortunately. The problem is that Ethernet, upon which virtually all modern LANs are
based, was designed without any sort of authentication mechanism. An attack known as
ARP spoofing takes advantage of this weakness and can intercept communications on a
LAN running the Ethernet protocol (Wagner, 2001). This attack works against most
networks that are in use at the time of this writing.

Recall our discussion from Section 2.3 on how two computers communicate on a
LAN using Ethernet frames. The attack works as follows. To connect to a LAN, each
host must be equipped with a Network Interface Card (NIC). Each NIC is assigned a
unique Media Access Control (MAC) address by the manufacturer. Communication on
Ethernet takes place by sending frames to destination MAC addresses. If a MAC
address is unknown, the source node broadcasts an Address Resolution Protocol (ARP)
request. This request specifies an IP address and asks the host with this IP address to
reply back with its physical address. In other words, ARP finds a MAC address given an
IP address.

Every node on the LAN receives every ARP request, but only the host with the
matching IP address replies back with its physical address; the rest simply ignore it.
The response is sent back using an ARP Reply that contains the requested IP number
and the corresponding MAC address. When the source node receives this information, it
stores it in a table of IP and MAC address pairs. This table is known as the ARP cache
and the mappings are considered valid for a fixed amount time, after which they expire
and are removed. Every node on the LAN maintains such a cache. Note that the source

10

node enters the IP-MAC address pair contained in the ARP Reply into its cache
without any validation or further checks. Put differently, there is total trust between the
nodes on a LAN. To make the matters worse ARP is a stateless protocol, that is an ARP
Reply is not matched to see if there are outstanding ARP Requests. Therefore, any
malicious node can takeover a LAN and route all traffic through itself by simply
manipulating cache entries at various hosts. The only requirement is that the malicious
node is a host on that LAN. One easy way is to accomplish this is by connecting to an
insecure wireless access point. Many corporations, hospitals, and retail outlets still use
easily breakable WEP encryption (Tews, Weinmann, & Pyshkin, 2007). This weakness
exists within the TCP/IP stack. Hence, it is a multi-platform vulnerability.

By injecting merely two ARP reply packets into a LAN, any malicious node M can
control all traffic going back and forth between any two nodes on that LAN. For
example, between an unsuspecting victim node A and the default gateway G. First, M
sends G a spoofed ARP Reply (IP 4, MAC,,) claiming that it was assigned IP 4 (which
really belongs to A) but gives its own MAC address, MAC,,;. The gateway would blindly
replace its current correct entry with the spoofed one. At the same time M would send a
similar spoofed ARP Reply, (IP¢, MAC,,), to A, replacing the correct ARP cache entry
for the gateway computer at A with the spoofed one. From this point on, any traffic
from A bound for the default gateway would instead go to the attacking computer M.
Similarly, all traffic from G destined to A is routed instead to M. Neither A nor G would
be aware of the intermediary that is relaying the traffic in the middle. See Figure 6.

On a LAN with n nodes, that consists of (n — 2) nodes, 1 router, and 1 attacker, by
inserting 2(n — 2) spoofed ARP Replies, the attacker can take full control of the traffic
destined to the Internet from that LAN. This process of inserting false entries into an
ARP cache is also referred to ARP poisoning. It is worth noting that cache entries are
purged after a timeout period. Therefore, to keep control of the network, the attacker
must periodically poison each host for the duration of the hijacked session.

In addition to compromising the confidentiality and the integrity of the data as it
passes through the local network, MITM attacks can also adversely affect availability.
Either by simply slowing down, or completely dropping the network communication by
associating a nonexistent MAC address to the IP address of the victim’s default gateway.

3.2 Futile Defenses against MITM

It has become fashionable at many financial institutions in the United States to present
the online user with a set of “secret” questions, in addition to their login credentials.
After a successful login, the session might proceed along the following lines:

To protect the security of your account, please answer the following
questions:

11

Router

vvvvvv

Default Gateway
192.168.0.1
00-10-a5-07-5d-1e

Switch

Ethernet (LAN)

<

192.168.0.73
00-99-77-37-6f-3¢

192.168.0.64
00-a1-f0-7e-e4-33

192.168.0.79
00-03-a5-1d-6f-1e

ARP Cache (at every node)
192.168.0.1 00-10-a5-07-5d-1e
192.168.0.64 00-al-f0-7e-e4-33
192.168.0.73 00-99-77-37-6f-3c
192.168.0.79 00-03-a5-1d-6f-1e

Figure 6: ARP cache values before and after poisoning by node C to insert itself between
B and the Default Gateway (Router). The second column shows after ARP poisoning.

The two spoofed entries are emphasized.

12

After C inserts itself between B
and the Default Gateway

At the default gateway

192.168.0.1 00-10-a5-07-5d-1e
192.168.0.64 00-al-fO-7e-e4-33
192.168.0.73 00-99-77-37-6f-3c
192.168.0.79 00-99-77-37-6f-3c

At B

192.168.0.1

192.168.0.64
192.168.0.73
192.168.0.79

00-99-77-37-6f-3c
00-a1-f0-Te-e4-33
00-99-77-37-61-3¢
00-03-a5-1d-6f-1e

Note: Your answers are NOT case sensitive.

What is the name of the school where you went to kindergarten?

Or questions such as

What is the last name of your favorite actor?

What is your favorite color?

Sometimes this “extra” security comes in the form of storing your favorite picture
which is transmitted during the beginning of an encrypted session.

These additional measures are totally ineffective against MITM attacks. In the next
section, an attack by Marlinspike is presented that defeats them.

3.3 MITM Attack on SSL Using Bogus Certificates

A certificate chain is a list of certificates used to authenticate an entity. Certificate
chaining is a process by which root certificate authorities delegate the certificate issuing
authority to intermediate CAs for efficiency and scalability reasons. This mechanism is
part of the trusted computing paradigm. When certificate chains are involved in
verification, to check authenticity of a certificate for an entity, the certificate chain is
used to reach the root CA certificate. The root CA certificate is self-signed. However,
the signatures of the intermediate CAs must be verified.

Chains can be longer than three. Most browsers verify certificate chains as follows:

1. Verify that the name on the certificate matches the name of the entity the client
wishes to connect.

2. Check the certificate’s expiration date.

3. Check the signature. If the signing certificate is in the list of root CAs in the
client, stop, otherwise, move up the chain one link and repeat.

Assume an attacker is in possession of the domain attacker.com and a certificate is
issued to it by CA,. Consider the following certificate chain:

Root CA — CA; — CAy — attacker.com — victim.com

Anyone connecting to victim. com, first checks its name and expiration, and then
verifies its signature by applying the public key of attacker.com. Assuming that this is
successful, the process is repeated with attacker.com, CA,, and CA;, until Root CA is
reached. In this example, all signatures and dates pass the validity test, and the Root

13

Client

> Cert Chain

verifying chain 1. Check dates
2. Check CA, Signature
3. Continue 1. Check dates
2. Check CA; Signature
3. Continue
Y
CA, cert - CA,; cert
(untrusted) " 1. Check dates (untrusted)
2. Check Root Signature

3. Stop; Root CA is trusted

Y
Root cert
(trusted)

Figure 7: Certificate chain verification process by a client program. (Adapted from Figure
1 of IBM, 2009.)

CA would be reached successfully. Since the Root CA is always trusted, the whole chain
is considered to be intact. Unfortunately there is a problem; attacker. com should not
have the authority to issue certificates to other domains. This restriction is imposed in
the Basic Constraints Extension of the X.509 specification (Cooper et al., 2008). It
identifies whether the subject of the certificate is a CA and length of a certificate chain,
including itself. The intent in the Standard is to prevent non-CAs from issuing
certificates. For non-CAs, this field should be

CA:FALSE

indicating that the entity to which this certificate was issued is not a CA. Unfortunately
many CAs did not explicitly set this field and most browsers simply ignored it. The
implication of this careless practice is that any valid certificate could create a certificate
for any other domain.

In 2002, Marlinspike released a software tool, sslsniff, that took advantage of this
weakness. This tool has the capability to dynamically generate certificates for domains
that are being accessed on the fly. The new certificate becomes part of a certificate
chain that is signed by any certificate provided to sslsniff.

14

ssl with good

server cert
/ - 0) >
Iient W ﬂ \‘Q
= _
\r,c\l1 sslsniff server
ssl with bogus A\ ss| with good
server cert server cert

tacker

Figure 8: MITM attack on secure web sessions using bogus certificates

Using sslsniff, one can perform MITM attack on an HTTPS session as follows. First,
an HTTPS request from victimClient trying to connect to victimServer is intercepted
using standard techniques such as ARP poisoning. The attacker then sends a bogus
certificate in the name of victimServer. Unsuspecting, victimClient authenticates the
certificate chain and sends a symmetric key, encrypted using the public key supplied by
the attacker. The attacker decrypts the symmetric key, which is used as a session key.
Simultaneously, the attacker opens an HTTPS session with victimServer and proxies the
traffic between victimClient and victimServer, relaying the set “secret” questions and
answers back and forth. All the data that is in transmitted between the client and the
server is available to the attacker in the clear including sensitive information such as
credit card numbers.

This weakness in the Basic Constraints field of X.509 has since been addressed by
the CAs and the newer generation of popular browsers.

3.4 MITM Attack Using Other Means

Even though one may not be able to carry out MITM attacks using bogus certificates
against newer web technology without raising too many red flags, there are a variety of
other techniques that one can employ to launch an MITM attack and breach the
confidentiality of secure web transactions. The techniques presented here are browser
independent and are effective against web sites of some leading financial institutions.

Since it now appears as if HI'TPS has been secured, what is the best way to hijack a
web session? Marlinspike, 2009 provides an answer to this question by asking the

15

following questions related to human-computer interaction (HCI):

1. How do people start an HTTPS session?
2. How are people assured that they are using a secured session?

3. How are people warned that there maybe a problem with the security of the
session?

Most often, the answer to question 1 is either

1. User clicking on a button that posts to HT'TPS, or

2. Through rerouting from the web server (HTTP response code 302). When the user
types victimServer.com, the browser resolves it to
http://www.victimServer.com. For example, the exchange might look like

GET /index.html HTTP/1.1
Host: www.victimServer.com

When victimServer receives the above request, it reroutes the client as

HTTP/1.1 302 Found
Location: https://www.victimServer.com/index.html

That is, no one really types https:// before starting an online transaction. In other
words, access to HT'TPS is via HT'TP. The strategy of the attacker becomes, attack
HTTP if HT'TPS is secure.

Questions 2 and 3 can be best understood by studying how browsers have evolved
over the years. Seven years ago, when sslsniff was released, excessive positive feedback
was given by the browser that a user was using a secure connection. There were many
lock icons, the address bar or uniform resource locator (URL) bar changed color, and a
number of other indicators were deployed to give a “warm-and-fuzzy” feeling to the user
that the page was secure. A favicon, short for favorites icon, is a 16x16 pixel square icon
associated with a particular website that is displayed in the URL bar. A popular favicon
in the older browsers during secure sessions was a small padlock. See Figure 9.

Another example of positive feedback is as follows. When a bogus certificate is
detected by the browser, a dialog similar to the one shown in Figure 10 is presented to
the user. Notice that by default, the certificate chain would be accepted for the session.
According Marlinspike (2009), users typically click through these warning dialogs when
they don’t completely understand the meaning of the warning.

The trend in the newer browsers is to scale back the positive feedback while
emphasizing the negative. For instance, instead of encouraging the user to simply click

16

File Edit Wiew History Bookmarks Tools Help

ﬁ 5 https://login. S| x| b ©

lock favicon padlock

A

& - o

Figure 9: Positive feedback to the user by changing URL bar color and lock icons

Website Certified by an Unknown Authority

Unable ta werify the identity of as a trusted site,
& Possible reasons For this error:
- Your browser does nok recognize the Certificate Authority that issued the site's certificate.
- The site's certificate is incomplete due to a server misconfiguration,
- You are connected ko a site pretending to be possibly to obtain vour
confidential information.

Please notify the site's webmaster about this problem.
Before accepting this certificate, you should examine this site's certificate carefully, Are you

wiling to ko accept this certificate for the purpose of identifying the \Web site Shailesh
Hurnbad?

E..Examine Certificate.

() Accept this certificate permanently
(%) Accept this certificate temporarily for this session

) Do nat accept this certificate and do nat connect ta this Web site

QK] [Cancel] [Help

Figure 10: Warning dialogs that are routinely ignored by most online users.

through the dialog as shown in Figure 10, more ominous looking dialogs like the ones
shown in Figure 11 are generated when an invalid certificate is found in the certificate
chain. In addition, newer browsers control the proliferation of lock icons, use plain colors
for the URL bar, and employ normal favicons.

This shift in HCI with respect to online security has been referred by Marlinspike as
going from giving the user positive feedback to negative feedback. His recent attack is
based on the observation that any attack that triggers negative feedback is bound to
fail, but the absence positive feedback during the attack is not so bad.

The attack proceeds as follows:

1. Intercept all web (HTTP) traffic and replace

(a) by
(b) Location: href=https://... by Location: href=http://...

And keep a map of all replacements.

2. If there is an HTTP request from the client for a resource for which there was

17

% Secure Connection Failed

— =
vaj localhost:8843 uses an invalid security certificate. 0) There is a problem with this website's security certificate.
The certificate is not trusted because the issuer certificate is not N N 3 ”
trusted. The security certificate presented by this website was issued for a different website's address.
(Error code: sec_error_untrusted_issuer) Security certificate problems may indicate an attempt to fool you or intercept any data you

send to the server.

= This could be a problem with the server's configuration, or it could be
someone trying to impersonate the server.
= If you have connected to this server successfully in the past, the error may @ Click here to dlose this webpage.
be temporary, and you can try again later. .)
& Continue to this website (not recommended)
Or you can add an exception.

© More information

Figure 11: Negative Feedback

ssl with good
server cert

Client - ﬁ N
N sslstrip h" server
Unencrypted '\‘\.\
(http) A ssl with good
server cert
Attacker

Figure 12: Hijacking secure online transactions

We recommend that you close this webpage and do not continue to this website.

replacement in the previous step, issue an HTTPS connection to the server for the

same resource, and

Relay response the server using HT'TP to the client.

The key difference between this MITM attack and the attack described in Section 3.3 is
that in the previous attack, the attacker uses HT'TPS to connect to both the client and
the server. By comparison, in this new MITM attack, the attacker only communicates
with the server in encrypted mode. From the point of view of the server, this would

appear like a normal secure online transaction. Compare Figures 8 and 12.

On the client side, there are no tell-tale signs of a breach since the attack suppresses

nasty dialogs from popping up. This accomplishes the goal of not triggering any
negative feedback. To complete the attack, Marlinspike adds some positive feedback.
This is done by adding a lock favicon in the URL bar. That is, whenever a favicon

18

request is noticed for a URL that is in the map, a lock favicon is returned. The only
difference a security savvy user would notice is the absence of a lock icon in the status
bar and http instead of https in the address bar.

Cached pages can pose a problem as they do not give the attacker a chance to
replace https with http. The details on how to deal with this and other technical
problems arising from sessions, cookies, and others can be found in Marlinspike, 2009.

The results from this experiment are remarkable. The security of over a hundred
email accounts, a few credit card numbers, and a few hundred secure logins was
breached in a matter of a single 2/-hour period. Another surprising aspect of this test
was that not a single user attempting to initiate a secure transaction aborted it because
the user became suspicious.

Marlinspike also showed how to extend the homograph attack (attack that attempts
to deceive remote users about what server they are communicating with, by taking
advantage of the fact that many different characters have nearly indistinguishable
glyphs) to mount MITM against SSL. We omit the details of this attack and the
technical problems posed by cached pages. The interested reader is referred to
Marlinspike (2009).

3.5 Possible Defenses against MITM

We conclude this section by presenting some effective measures an online user can take
to defend against MITM attacks. First and foremost is to educate oneself to look for
signs of a breach. It is also important to understand the meaning of different warning
dialogs presented by the browser.

If a web server offers its services only over HT'TPS (on TCP port 443) and routinely
redirects all HT'TP (port 80) requests to the secure port 443, then sessions can still be
hijacked. As long as HTTPS depends on HTTP, it is vulnerable because HTTP is not
secure. Why not just turn off port 807 Unfortunately this would cause many Server
Not Found errors for the users and it would not be good for business. One work around
is to have the user type in https://... in the address bar. Alternately, the user could
bookmark the secure site and issue an HTTPS request by selecting the bookmark. It is
tempting to think that if browsers always try to connect over port 443 first, and only
connect only to port 80 as a last resort, we can avoid the MITM attacks mentioned here.
Unfortunately, the attacker can simply drop the requests to connect to port 443 and
make the browsers think that the web server does not offer HT'TPS. While this defense
might not help in all cases, by including into browsers a select set of sites for which
service over HT'TPS is known to exist, one can reduce the risk of MITM attacks. The
only long term solution is to secure everything, that is run only HTTPS.

Another measure that could improve security, that is not currently popular, is the
verification of client certificates. By having servers verify the identity of the client, one

19

can achieve better security. But, this requires significant changes to the existing PKI
and is not immediately applicable.

3.6 Man in the Browser

Structurally similar to a MITM attack, a man in the browser attack is a form of a
trojan that can do the following: (Philipp Giihring, 2006)

e Modify the appearance of a website before the user sees it.
e Modify the data entered by the user before it is sent to the server.

e Modify the responses of the server so that they are what the user expects.

All of the above can be done without the user having any visible effect for the user to
detect.

These trojans are installed by some means, such as a drive-by download, or the user
running untrustworthy programs. They then attack the browsers installed on the system
by changing their configuration so the trojan is loaded when the browser starts.
Browsers have this capability, known as Browser Helper Objects or Extensions
depending on the browser, to allow third parties to extend and improve the browser.
The trojan exploits this by creating an extension that watches the user’s behavior.
When a target site is visited, the trojan commences an attack. Anything entered by the
user or sent by a server is vulnerable to capture. This could include login credentials,
financial information, or even identity credentials sufficient for identify theft.

Philipp Giihring, 2006, provides several means to prevent this type of attack.
Unfortunately all of the proposed solutions have serious drawbacks. The best option is
to prevent the trojan installation in the first place instead of modifying the browser.
This is further discussed in section 6.

4 Rootkits

A rootkit is a set of programs that allows a consistent, undetectable presence on a
computer (Hoglund & Butler, 2006). They key part of the definition is “undetectable.”
Rootkits are used to hide specific files, folders, processes, and network connections from
the end user. They are not inherently “bad.” For example, corporations could use a
rootkit to monitor and enforce computer use regulations, or law enforcement could use a
rootkit to collect evidence. However, as with most tools, they can also be put to
nefarious purposes. For instance, an attacker could use a rootkit to hide their intrusion
into a computer. This makes it much more difficult to determine if a computer has been
compromised.

20

It is also important to understand what rootkits are not. A rootkit is not an exploit.
They are often used together, and occasionally a rootkit will use an exploit to operate,
but they are not an essential piece. Rootkits are not viruses. Viruses self-propagate
which makes it more likely to be discovered. However, viruses do often use techniques of
rootkits to slow down their detection.

Modern operating systems are object oriented. To perform a task, typically
functions from several objects are invoked, creating a long call chain. To maintain their
stealth, rootkits exploit this behavior. They interject themselves into the chain and
change the answers as they pass by. This principle of modification, known as hooking, is
at the core of most rootkits.

Binary, a readily executable program, can come in several different formats such as
the Common Object File Format(COFF), the Executable and Linking Format (ELF),
a.out, and the Portable Executable (PE). The format used is generally dictated by the
operating system and in the case of Microsoft Windows, PE and COFF formats are used
(Microsoft Corporation, 2008). All of these formats are well documented. This allows an
attacker to patch a program so that its does what the attacker wants. This is the most
common form of modification that a rootkit uses.

Source code modification is another form of modification used by rootkits. An
attacker can insert malicious code directly into a program that they author. This could
take the form of an overt backdoor, or a subtle bug that the only attacker knows how to
exploit.

Finally, a rootkit could use an entirely different means of modification. Operating
systems are very complex leaving a multitude of places for rootkits to hide.

Despite the large varieties of potential techniques that a rootkit could use, they can
still be categorized. One means of bifurcating these techniques is to classify them as
either kernel-mode or user-mode. In some contexts, particularly for Microsoft Windows,
these are also often known as Ring 0 and Ring 3, respectively. Roughly speaking,
kernel-mode code has free reign over a computer’s memory and hardware, whereas
user-mode code has restrictions placed upon it. It is more difficult to write kernel-mode
code because the variances between computers are fully exposed. Modern rootkits will
often be composed of pieces that run in kernel-mode and in user-mode.

4.1 Mebroot

During the boot process of a computer, the first physical sector of the hard drive, known
as the Master Boot Record (MBR), is read and executed. It is responsible for starting
the operating system. In the days when DOS was the prevalent operating system, MBR
viruses were common (F-Secure Corporation, 2008).

At the Black Hat USA 2005 security conference, researchers Derek Soeder and Ryan

21

Permeh of eEye Digital Security presented a tool called BootRoot (eEye Digital
Security, 2005). This tool is a proof-of-concept of the exploit they found in the Windows
NT family of operating systems whereby a user-mode program could alter the MBR.

When attempting to detect a rootkit, one very helpful thing is the order of
execution. If a detection program runs prior to the rootkit, it is much easier to detect
the rootkit because the detection program can detect that something has changed. In
the converse, any modifications that a rootkit would employ are already completed prior
to the detection program starting. Since the MBR is the first thing executed when a
computer boots, a rootkit installed into the MBR gives a clear advantage.

Mebroot is a rootkit that installs itself into the MBR. It has been extensively
analyzed by GMER Team, 2008, and Kleissner, 2008. It infects a machine with the
following operations:

e Write a new kernel-mode driver to the last sectors of the hard drive.

e Copy sector 0 (MBR) of the hard drive to sector 62, and then overwrite sector 0
with a new MBR loader.

e Write new kernel loader to sector 61 of the hard drive.

The system is then forced to restart, which loads the rootkit.

Much of the MBR loader code is copied from BootRoot (GMER Team, 2008). It
loads a kernel driver which patches two functions of disk.sys. In particular, it prevents
the kernel from overwriting the MBR, and when the MBR is read, the contents of sector
62, the original MBR, are returned. Finally the kernel-mode driver is loaded. This
kernel-mode driver includes a networking layer and can bypass local software firewalls.
It contacts a server to ensure that it is running the latest version of the rootkit.

What makes Mebroot particularly stealthy is how it is stored on the hard drive.
Typically, a rootkit would patch file reading functions to disguise the existence of its
files. This patching is potentially a means for the rootkit to be detected. Mebroot writes
itself directly to the sectors of the hard drive, bypassing the normal filesystem of the
hard drive. This makes the files invisible without having to patch anything.

4.2 Defenses against Rootkits

There are two main ways to defend against rootkits: prevention and detection. As facile
as it seems, preventing a rootkit from installing itself in the first place is the best way to
prevent rootkits from infecting a machine. Often rootkits are only a part of an attack on
a computer. They often come along with botnet clients, and other malicious software.
General prevention strategies are discussed further in section 6.

22

Rootkit detection is very similar to virus detection. There are two main approaches:
look for known rootkits, or look for suspicious behavior.

To look for a known rootkit, first one needs to know what a specific rootkit “looks
like.” This is referred to as its signature. The signature could be detected in multiple
ways. A file containing the whole rootkit, or a portion thereof, can be scanned before it
is protected by the rootkit. The memory of the computer can be similarly searched for
fragments of a rootkit. The downside to the approach of looking for known signatures is
it requires the rootkit to be known.

Detecting suspicious behavior is more difficult to do. There is the potential for both
false negatives and false positives. Many forms of binary patching can be detected by
looking for code that is out of place. Detection software can also patch itself into the
functions that a rootkit would use to hide itself. The downside to this approach is it
requires the rootkit to use a known method of attack, and the detection software checks
for all known methods of attack. If the detection software misses a single method, a
rootkit could pass by unnoticed.

Recall that one of the behaviors that a rootkit exploits is the idiosyncratic methods
by which programs work. Rootkits interject themselves into these methods to disguise
their presence. This is also a weakness. Detection software can use two different
approaches to answer the same question. If the answers differ, then there is likely a
rootkit of some form involved. Rootkits defend against this by patching multiple
functions that could be used to detect their presence. This creates a cat and mouse style
struggle between rootkits and detection software.

These techniques and more are discussed further by Hoglund & Butler, 2006.

5 Botnets

A botnet is a group of individual computers, bots, under the control of a bot herder, also
known as a bot master. As a practical matter, all of the bots, also known as zombies, are
under complete control of the bot herder. A computer becomes a part of a botnet by
installing a botnet client. They can be installed by techniques such as
drive-by-downloads, a remote exploit on the user’s system, or tricking the user into
installing them.

After a botnet client is installed, the infected computer will contact a command and
control (c&c) server. This c&c server is how the herder controls the bots. They can
issue commands to tell the bots to do things such as:

e send spam

e be part of a denial of service attack

23

e scan a network for more computers to infect

e send all the keystrokes from the local computers including things like passwords,
bank accounts, and credit card numbers

e install additional malware on the computer

A bot can even be set up to work as a c&c server for a portion of the botnet. This
makes it even harder for the bot herder to be found.

According to research by Symantec’s MessageLabs, 83.2% of all spam sent in June
2009 was directly sent by botnets. Some smaller botnets direct their bots to use
webmail providers to send spam, which is not accounted for in the 83.2%, making it an
underestimation (MessageLabs, 2009).

5.1 Attacker’s Motivation

As with much computer crime, a primary motivator is profit. There are many ways a
bot herder can directly monetize their botnet. A spammer could rent out the botnet.
Online businesses can be extorted under threat of a denial of service attack. The
captured keystrokes on the individual bots can contain things like credit card numbers,
or bank account information which can be sold on the black market. Software can be
installed on the bots netting the herder a commission. The possibilities are limited only
by the imagination of the herder.

However, there are also non-profit related reasons why an attacker would want a
botnet. Suppose that a herder wishes to break into a system. A botnet can help them in
a couple ways. One obvious goal the herder will have is to minimize any evidence that
ties them to the break in. If the attack is routed through the bots, the herder can force
all forensic trails to end at the bots. Further, the attack can be spread across multiple
bots which makes it harder for the victim to detect that they are under attack. It is a
hard enough problem to detect the precursors of an attack from a single source since
often the indicators individually are benign. When the precursors come from multiple
sources, the problem is even harder.

Another non-profit motive is to defeat various forms of rate-limiting. Rate-limiting is
used to slow down an attacker breaking into a system. For example, when logging onto
a computer, the system may force a small delay between password entry attempts.
There can also be a lock out whereby after several incorrect passwords, the system
prevents access for some duration of time, or even permanently. With these artificial
limits, the victim system can prevent the attacker from simply using a program to try
many potential passwords at a very fast rate.

Often rate-limiting is implemented on a per computer basis. That is, each bot has
their own separate allotted rate. Collectively, a botnet would have a very high rate

24

Data Type Quantity

Mailbox account 54,090
Email 1,258,862
Form data 11,966,532
HTTP account 411,039
FTP account 12,307
POP account 415,206
SMTP account 100,472

Windows password 1,235,122

Figure 13: Data types captured from the Torpig botnet. (Adapted from Stone-Gross et
al., 2009)

which allows the herder to perform the attacks the rate-limiting is designed to stop.

5.2 Torpig

The Torpig botnet, also known as Sinowal, was taken over for a period of ten days by
researchers from the University of California, Santa Barbara (Stone-Gross et al., 2009).
The botnet client operated by generating an expected location for the c&c server. The
researchers exploited this by analyzing the algorithm and predicting where it will be
next and placing their own c&c server there. Due to ethical considerations, the
researchers made their c&c server totally passive. It never instructed the bots to do
anything, and simply recorded all the data is was sent by the bots. Torpig utilizes the
Mebroot rootkit to hide its existence on the infected computers.

Over the course of ten days, they recorded over 70GB of data. Their best estimate is
that 180 thousand distinct infections contacted their c&c server. The botnet client was
configured to send lots of data to the c&c, summarized in Figure 13

Torpig uses a man in the browser attack, described in section 3.6, on many financial
institutions. It also scours the saved password cache of browsers, and records what
passwords are entered by a victim. Derived from this captured data, the researchers
found 8,310 accounts at 410 financial institutions. Using a heuristic validation, the
researchers found 1,660 distinct credit cards. For 2008, Symantec estimated that credit
cards can sell on the black market for $0.10 USD to $25 USD and bank accounts $10
USD to $1,000 USD (Symantec Corporation, 2009). Using these estimates, the
researchers estimated that the Torpig controllers could have brought in between $83
thousand USD to $8.3 million USD from the captured financial data alone. The
potential income for the Torpig controllers is much larger from the other means of
monetization discussed in the previous section.

25

6 Best practices to secure information resources

Both physical security and computer security are fundamentally about the allocation of
finite resources to maximize risk mitigation. Even if there were infinite resources,
impenetrable security can not exist. The problem is that an attacker needs to find only
one weakness to exploit. Preventing all attacks requires one to reinforce every potential
weakness. To further complicate this, a reasonable maxim of security is that the more
complicated the system, the harder it is to secure.

Since perfect security is untenable, it is best to focus on elements that can be
controlled. User education and applying security patches are the best active tactics.
User education is the first and best line of defense. Many of the attacks described in this
paper rely upon the user overlooking small details. Understanding what a valid SSL
certificate looks like, and checking validity can prevent many forms of MITM attacks.
As was shown with man in the browser attacks and the potential of rootkits a vigilant
user is not always enough. Keeping software up to date and security patches applied can
help with other forms of attacks. Drive by downloads, man in the browser, and botnets
are often installed by exploiting a bug in the victims computer. Security patches will
lessen the number of known vulnerable exploits on a computer.

Additional items that can help include virus scanners, malware scanners, rootkit
scanners, and firewalls. Each one of these items has its own limitations, such as only
finding known malicious software or detecting known behavior. But each provide an
additional layer of defense. The more layers, the harder it is for an attacker to succeed.
This principle of adding many layers is known as defense in depth.

Suppose that an attacker does succeed in planting malicious software onto a
computer. What can be done? In general, it takes an expert to reliably, fully remove
malicious software. This can often require rebuilding the computer. At this point
backups are invaluable. Frequently the hard drive cannot be trusted because some forms
of malicious software infect every potential file on a hard drive. Backups also need to be
tested. A non-working backup is as good as no backup at all.

If an attacker succeeds only in simple MITM attack, such as ARP spoofing or a fake
SSL certificate, the only harm is the loss of information. This of course could be a very
costly loss, but it does not necessitate the reduilding of a victimized computer.

26

References

Anderson, R. (2008). Security Engineering (Second ed.). Indianapolis, IN, USA: John
Wiley & Sons Inc.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk, W. (2008, May).
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile (No. 5280). RFC 5280 (Proposed Standard). IETF.

Dierks, T., & Rescorla, E. (2008, August). The Transport Layer Security (TLS) Protocol
Version 1.2 (No. 5246). RFC 5246 (Proposed Standard). IETF.

Diffie, W., & Hellman, M. E. (1976). New Directions in Cryptography. IEEE
Transactions on Information Theory, IT-22(6), 644-654.

eEye Digital Security. (2005). BootRoot. Retrieved July 10, 2009 from
http://research.eeye.com/html/tools/RT20060801-7 .html.

El Gamal, T. (1985). A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of crypto 84 on advances in cryptology (pp.
10-18). New York, New York, USA: Springer-Verlag New York, Inc.

F-Secure Corporation. (2008). MBR Rootkit, A New Breed of Malware. Retrieved July
10, 2009 from http://www.f-secure.com/weblog/archives/00001393.html.

Ferguson, N., & Schneier, B. (2003). Practical cryptography. New York, New York,
USA: John Wiley & Sons Inc.

GMER Team. (2008). Stealth MBR rootkit. Retrieved July 10, 2009 from
http://www2.gmer.net/mbr/.

Hellman, M. E. (2002). An overview of public key cryptography. IEEE Communications
Magazine, May 2002 (50th Anniversary Commemorative Issue), 42—49.

Hoglund, G., & Butler, J. (2006). Rootkits: Subverting the Windows Kernel.
Addison-Wesley.

IBM. (2009). Certificate chain verification. Retrieved July 10, 2009, from
http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index. jsp?
topic=/com.ibm.ztpf-ztpfdf.doc_put.cur/gtps5/sbvctch.html.

Kleissner, P. (2008). Analysis of sinowal. Retrieved July 10, 2009 from
http://webl7.webbpro.de/index.php?page=analysis-of-sinowal.

Marlinspike, M. (2009, February 16-19). New Techniques for Defeating SSL/TLS.
Presented at Black Hat DC Briefings 20009.

Menezes, A., van Oorschot, P., & Vanstone, S. (1997). Handbook of Applied
Cryptography. New York, New York, USA: CRC Press LLC.

MessageLabs. (2009). MessageLabs Intelligence: Q2/June 2009. Retrieved July 10, 2009
from http:
//www.messagelabs.com/mlireport/MLIReport_2009.06_June_FINAL.pdf.

Microsoft Corporation. (2008). Microsoft Portable Executable and Common Object File
Format Specification. Retrieved July 10, 2009 from
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF .mspx.

National Institute of Standards and Technology. (1999, October 25). FIPS PUB /6-3:

27

Data Encryption Standard (DES). Retrieved July 10, 2009 from
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

National Institute of Standards and Technology. (2001, November 26). FIPS PUB 197:
Advanced Encryption Standard (AES). Retrieved July 10, 2009 from
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

National Institute of Standards and Technology. (2009, June). FIPS PUB 186-3:
Digital Signature Standard (DSS). Retrieved July 10, 2009 from
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.

Philipp Giihring. (2006). Concepts against Man-in-the-Browser Attacks. Retrieved July
10, 2009 from
http://www2.futureware.at/svn/sourcerer/CAcert/SecureClient.pdf.

Rivest, R. L., Shamir, A.; & Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. 21(2), 120-126.

Stinson, D. (2005). Cryptography: Theory and Practice (Third ed.). New York, New
York, USA: CRC Press LLC.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R., et
al. (2009). Your botnet is my botnet: Analysis of a botnet takeover (UCSB
Technical Report). UCSB. Retrieved July 10, 2009 from
http://www.cs.ucsb.edu/%7Eseclab/projects/torpig/torpig.pdf.

Symantec Corporation. (2009). Symantec Global Internet Security Threat Report:
Volume XIV Trends for 2008.

Tews, E., Weinmann, R.-P.; & Pyshkin, A. (2007, April). Breaking 104 bit wep in less
than 60 seconds. Cryptology ePrint Archive, Report 2007/120.

Wagner, R. (2001). Address resolution protocol spoofing and man-in-the-middle attacks.
Retrieved July 10, 2009 from
http://www.sans.org/rr/whitepapers/threats/474.php. SANS Institute.

Walker, M. H. (2005). Drive-by downloads: Stealthy downloads and Internet Explorer’s
new defense against them. Retrived July 10, 2009 from
http://www.microsoft.com/windows/ie/community/columns/driveby.mspx.

28

