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Diagonal and Toroidal Mesh Networks 
K. Wendy Tang, Member, IEEE, and Sanjay A. Padubidri 

Abstract-Diagonal and toroidal mesh are degree-4, point to 
point interconnection models suitable for connecting communica- 
tion elements in parallel computers, particularly multicomputers. 
The two networks have a similar structure. The toroidal mesh is 
popular and well-studied whereas the diagonal mesh is relatively 
new. In this paper, we show that the diagonal mesh has a 
smaller diameter and a larger bisection width. It also retains 
advantages such as a simple rectangular structure, wirability 
and scalability of the toroidal mesh network. An optimal self- 
routing algorithm is developed for these networks. Using this 
algorithm and the existing routing algorithm for the toroidal 
mesh, we simulated and compare the performance of these two 
networks with N = 35 x 71 = 2485, N = 49 x 99 = 4851, and 
N = 69 x 139 = 9591 nodes under a constant system with a fixed 
number of mesages. Deflection routing is used to resolve conflicts. 
The effects of various deflection criteria are also investigated. We 
show that the diagonal mesh outperforms the toroidal mesh in all 
cases, and thus provides an attractive alternative to the toroidal 
mesh network. 

Index Terms-Massively parallel systems, multicomputers, in- 
terconnection networks, diameter, bisection width, and deflection 
routing algorithm. 

I. INTRODUCTION 

FFICIENT interconnection networks are critical to the E performance of large communication networks with hun- 
dreds and thousands of communicating elements [ l ] ,  [2] .  
Applications can be found in the design of massively parallel 
computers. Attributes of an interconnection network include 
the diameter, bisection width, symmetry, wirability, and scal- 
ability. 

The diameter is the maximum of the shortest distance (hops) 
between any two nodes. An interconnection graph with a small 
diameter implies potentially a small communication delay. The 
bisection width of a network is the minimum number of wires 
that have to be removed to disconnect a network into two 
halves with identical (within one) numbers of processors [3] .  It 
is a critical factor in determining the performance of a network 
because in most scientific problems, the data contained and/or 
computed by one half of the network are needed by the other 
half [3] .  Therefore, it is advantageous to have networks with 
large bisection width so that efficient communication between 
the two halves of the network can be achieved. Furthermore, 
large bisection width also facilitates higher degrees of fault 
tolerance. 

A symmetric network is also called vertex-transitive. Math- 
ematically, this implies that for any two nodes a and b, there 
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is an automorphism of the graph that maps a to b. Informally, 
this means that the network “looks” the same from any 
node. This property is useful for practical implementation of 
interconnection networks because every node in a symmetric 
network is homogeneous and the same routing algorithm 
can be applied to every node. A network is wirable implies 
reasonable and manageable patterns of wiring could be devised 
[4] .  Scalability refers to the increase in wire length with the 
number of nodes. A scalable interconnection model has less 
than quadratic increase of wire length when compared with 
the number of nodes [4] .  

Besides the topological properties of the network, routing 
is an important issue of interconnection networks. The goal 
of routing is to send messages between any two nodes. 
There are two sub-problems: path identiJication and network 
perfomnce.  Path identification determines optimal (shortest) 
paths between any two nodes; network performance is con- 
cerned with how a network handles traffic in the presence of 
contention. 

For path identification, it is desirable to have a distributed, 
self-routing algorithm that can identify shortest paths based 
only on addresses of the source and destination. Such a routing 
algorithm is associated with a particular topology. It provides 
fast, decentralized routing decisions without any storage space 
requirement. For network performance, computer simulations 
and probabilistic modeling are the tools. When two or more 
incoming messages at a node have the same optimal outgoing 
link as identified by the path-determination algorithm, conflicts 
are bound to occur. Priority measures are needed to resolve 
these conflicts; and some messages are either routed non- 
optimally or stored temporarily in buffers. While a path- 
determining algorithm is usually associated with a particular 
topology, the same routing algorithm can be used to evaluate 
performance of different networks. 

Defection routing is a popular algorithm to evaluate net- 
work performance. It is a bufferless, dynamic routing algorithm 
proposed for multicomputer networks and local and metropoli- 
tan area networks [5]-[7].  Basically, messages are sorted 
according to a defection criterion, such as age or path length. 
Those with higher priorities are routed optimally while those 
with lower priorities are defected to non-optimal links. There 
is no buffer and hence no buffer management at a node. This 
algorithm is simple and straightforward to implement. 

Many interconnection topologies with different associated 
routing (path determination) algorithms have been proposed. 
Examples include the toroidal mesh, hypercube, cube- 
connected cycles, Moebius, DeBruijn, and Cayley networks 
[ l l ,  181, [91. Among the many existing topologies, toroidal 
mesh is a popular model. It is a degree-4, symmetric or 
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vertex-transitive, wirable, and scalable network with a simple, 
decentralized self-routing algorithm. Recently, researchers 
have proposed the diagonal mesh as an attractive alternative 
to toroidal mesh networks [IO]-[ 121. Diagonal mesh is similar 
to the toroidal mesh, except that nodes in the network are 
diagonally-connected (Fig. 1). In other words, it is also a 
degree-4, symmetric or vertex-transitive, wiruble and scalable 
network. 

In this paper, we compare the properties and performance 
of toroidal mesh with the diagonal mesh networks. We first 
review the similarities of the two networks and then develop 
an optimal routing algorithm and formulate the diameter of 
diagonal mesh networks. We show that a diagonal mesh 
network has a better diameter than its toroidal counterpart. 
For an N = n x k network (n ,k  are odd integers), the 
toroidal mesh has a diameter Dt = (y + y); whereas 
the diameter for the diagonal mesh is Dd = n - 1 for k = n 
and Dd = max {n ,  y }  for k > n. In other words, Dd = Dt 
for k = n , n  + 2. But when k is strictly greater than n + 2 ,  
the diagonal mesh has a smaller diameter. 

The performance of the two networks in the presence of 
contention are then compared through computer simulations. 
Because of its simplicity, we use deflection routing algorithm 
for performance simulations. We first investigate the effects 
of different deflection criteria. We conclude that the age (the 
period of time a message has been introduced to the system) 
is the most efficient criterion. Under this criterion, an “older” 
message has a higher priority than a “younger” one. Self- 
routing algorithms are used to identify optimal outgoing links 
of each message for both networks. When conflicts occur, the 
“younger” message will be deflected to an non-optimal link. 
We simulate the performance of large diagonal and toroidal 
mesh network in a constant system with a fixed number of 
messages. The average delay and throughput of the system 
are observed. 

This paper is organized as follows: in Section 11, we 
review the properties and routing algorithms of toroidal mesh 
networks. Section I11 discusses the properties of diagonal 
mesh networks. We develop an optimal routing algorithm, 
propose and prove the formulation of the diameter for these 
networks. Network performance in the presence of contention 
is discussed in Section IV. This include a description on the 
deflection routing algorithm, various constraints of the simula- 
tions, a summary of the simulation results, and interpretation of 

TABLE I 
A ROUTING ALGO~UTHM FOR TOROIDAL MESH NETWORKS 

Routing between (zl, yl) and ( 5 2 ,  yz) in a toroidal mesh network 
with N = n x k nodes where n and k are odd integers. 

Step 1: Evaluate z =< z2 - x1 > B ,  y =< y2 - yl >,,, where 

Step 2: Determine optimal directions 

I > 0, take the X direction; y > 0, take the Y direction; 
If { z < 0, take the - X  direction; If { y < 0, take the -Y direction. 

Distance between ( 5 1 ,  y1) and ( 1 2 ,  yz) is + [YJ. 

these results. Finally, in Section V, we compare and conclude 
the performance of toroidal and diagonal mesh networks. 

11. TOROIDAL MESH 
The toroidal mesh is a simple and popular topology. It 

consists of a two-dimensional grid of processing elements with 
wrap-around connections at edges. Consider an N = n x k 
toroidal mesh, where n and k are odd integers. (In general, 
n and k can be any integers. But in this paper, we consider 
the case that n and k are odd integers.) For any node (x,~), 

T } ,  connections 
are defined as 
2 E {-L$ ).”, T } ,  k - 1  y E {-y ,...) n-1 

(x, (Y + l )n ) ,  (x, (31 - l ) n ) ,  (x’ ’) ((x + l )k ,  Y), ((x - l )k ,Y) ,  

where N signifies connections and 

x, if 1x1 5 9 
{ x + k ,  i f x < - y .  

(x)k= x - k ,  i f x > y  

Figure l(a) shows an N = 5 x 5 toroidal mesh in Cartesian 
coordinates. For these networks, a self routing algorithm based 
on labels of the source and destination exists and is summa- 
rized in Table I. This routing algorithm is straightforward and 
its space complexity is of 0(1), independent of the size of the 
network. Besides a distributed routing scheme, other merits 
of a toroidal mesh include a simple, symmetric, rectangular 
structure, wirability and scalability. Note that increases in 
wire length of toroidal mesh is mainly of O ( N ) ,  except for 
wrap-around connections at edges. 

However, drawbacks of the mesh are its large diameter and 
small bisection width. The diameter of an N = n x k toroidal 
mesh is 

n - 1  k - 1  
2 -  

This relatively large diameter implies potentially long com- 
munication delay and thus hampers network performance. 
The bisection width of an n x k (n, k are odd and k 2 n) 
toroidal mesh is Bt = 2n + 2. In the center column (x = 0), 
2 x 2 + ( n  - 2 )  wires connect the two halves because 2 wires 
from each of the 2 boundary nodes and 1 wire from the rest of 
the n - 2 nodes. At the edge (x = or 2 = -?), there 
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are n horizontal wires connecting the two halves. These wires 
are indicated as dotted lines in Figure 1. 

Parallel computers that use the mesh topology include 
ILLIAC IV, Massively Parallel Processors (MPP), Distributed 
Array Processors (DAP), and Wire Routing Machine (WRM) 
[13]. These parallel computers are used to solve many en- 
gineering and scientific problems, Examples include sorting, 
matrix multiplication and inversion, Fourier transformation, 
convolution, signal and image processing, speech recognition, 
and finite element analysis [14]. Besides being used to inter- 
connect processors in a parallel computer, the toroidal mesh 
is also used in local and metropolitan area networks. The 
resultant network is called the Manhattan Street Network [15]. 
Both the directed and undirected cases have been studied [15], 
[161. 

111. DIAGONAL (TOROIDAL) MESH 
Diagonal mesh networks are proposed by Arden [lo]. It is 

similar to the toroidal case except that nodes have diagonal 
instead of horizontal and vertical connections. Preliminary 
simulations for a few specific cases have been studied by 
Arden and Li [ 111. However, routing was accomplished by 
table look-up schemes. In this section, we first review the 
definition of diagonal mesh networks in Section 111-A. A self- 
routing scheme based only on the addresses of source and 
destination nodes is then developed in Section 111-B. Section 
111-C provides the formulation and proof of the diameter of 
diagonal mesh networks. 

A. Dejinition 

Diagonal mesh networks are similar to the toroidal case 
except that nodes have diagonal instead of horizontal and 
vertical connections. We consider networks with N = n x k 
nodes, where n and k are odd integers. Furthermore, without 
loss of generality, assume k 2 n. Figure l(b) shows an 
N = 5 x 5 diagonal mesh with Cartesian node labels. For any 
node (z,y), z E {-y,..-,v}, y E 
Connections are defined as 

((z + l)k, (y + l ) n ) ,  ((z + l)k, (Y - l ) n ) ,  
(zc,y) - ((. - l)k, (Y + l ) n ) ,  ((. - l ) k ,  (Y - l ) n ) ,  

z, if 1x1 5 n-l; 

{ z + n ,  i f z c - y .  

where - signifies connections and 

(x), = z - n ,  i f z  > +; (2) 

As in the toroidal case, modular wrap-around connections exist 
at edges. For example, node (2,2) connects to nodes (-2, -2), 
(-2,1), (1, -2) and (1 , l ) .  Strictly speaking, the diagonal 
mesh is also toroidal, but for simplicity, we use the name 
diagonal mesh to refer to these networks. In this paper, we 
consider both n and k are odd numbers. If n and k are both 
even integers, the graph will have two disconnected halves, 
the white and shaded nodes in Fig. l(b). 

The bisection width of an n x k (n , k  are odd and k 2 n) 
diagonal mesh is Bd = 4n because 2n wires at the center 
(z = 0) and 2n wires at the edge (z = y or x = -?) 

Y 

J' 
4 

Fig. 2. Node label transformation between coordinates. 

need to be removed to disconnect the graph into two equal 
halves (within one node). In Fig. 1, we identify these wires 
by dotted lines. Recall from Section II that the bisection width 
of a toroidal mesh is Bt = 2n + 2. In other words, an n x k 
diagonal mesh with n, 5 odd and k 2 n always has a larger 
bisection width than its toroidal counterpart. 

B. Routing 

To establish a label-determined, self-routing algorithm, we 
introduce a new coordinate system X'-Y' by transforming the 
original coordinates X - Y  through an anticlockwise rotation 
of 45" and scaling the axes by fi. In essence, this new 
coordinate frame corresponds to the diagonal connections 
of the network. Transformation between coordinates can be 
formulated mathematically. 

In Fig. 2, a coordinate frame X - Y  is rotated anticlockwise 
by an angle 4 to form a new frame X'-Y'. Given a point 
(x,y) in the X - Y  frame, 

2 = L c o s a  
y = L s i n a ,  (3) 

where L and a are the length and angle associated with the 
point (see Fig. 2). The coordinates of this point in the X'-Y' 
frame are: 

2' = Lcos(a - 4) 
= L c o s a c o s 4 +  L s i n a s i n 4  
= x c o s 4 +  ys in4  

y' = L sin(a - 4) 
= L s i n a c o s 4  - L c o s a s i n 4  

= -zsinq5+ ycos4. (4) 

In this case, 4 = 45" and the X, Y axes need to be scaled 
by fi. In other words, the resultant transformation is: 

z' = J Z ( z c 0 s 4 5 ~  + ysin45') 

y' = J Z ( - ~ s i n 4 5 ~  + ycos45') 
= z + y  

= - z + y  
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Y’ X ’  

Fig. 3. An N = 5 x 5 diagonal mesh network in X‘-Y’ coordinates. 

That is, given a p i n t  (x, y) in the Cartesian frame, its node 
label in the new coordinate system is (x’, y’), where 

x’ = x + y, 

y’ = -x + y. (6)  

We call this node label transformation frame trans$onnation 
and is summarized as follows: 

frame 

(7) 
, y) transformation 

The node labels of the 5 x 5 diagonal mesh after this trans- 
formation are shown in Fig. 3. Diagonal mesh networks 
are symmetric or vertex-transitive in graph terminology [17]. 
Because of this symmetry, routing between any two nodes 
( 2 1 ,  y1) and (22, yz) is tantamount to routing between (0,O) 
and ((x2 - x ~ ) k ,  (y2 - yl),), where (x)k is defined in (2). 
Therefore, it suffices to establish a routing algorithm between 
node (0,O) and all other nodes in the graph. In this section, 
we develop an optiml routing algorithm between (0,O) and 
any other node (z’,y’) in the XI-Y’ frame. The algorithm 
is optiml because all directions (*X’, *Y’)  contributing to 
shortest paths from (0,O) to (x’, y’) are identified. We first 
consider 1) routing between (0,O) and even nodes (those with 
even x’, y’ values); and then 2) routing between (0,O) and odd 
nodes (those with odd x’, y’ values). 

When the graph is represented in the new XI-Y’ coordinate 
system, routing between node (0,O) and the “even” nodes is 
similar to the toroidal case. We summarize the algorithm as 
follows: 

Proposition I: A routing algorithm between (0 ,O)  and 
(x’, y’), where x’ and y’ are even. 

x’ > 0, take the X‘  direction, 

y’ > 0, take the Y’ direction, 

If { x’ < 0, take the - X’ direction; 

if {y’ < 0, take the - Y ’  direction, (8) 

and the distance (number of hops) between (0,O) and (x’, 9’) 
is !$I+ \%I. 

Proof: In the XI-Y’ frame, node (0,O) connects to (2,0), 
(-2,0), (0, a), and (0,  -2). Therefore, shortest paths between 
(0 ,O)  and eventnodes (z’,y’) correspond to those between 

0 
As an example, consider routing between (0,O) and (2, -2) 

in the XI-Y’ frame. Since x’ = 2 > 0 and y’ = -2 < 0, 
both X’ and -Y’ directions contribute to optimal paths with 
distance 151 + = 2. 

However, routing between (0,O) and the “odd” nodes (those 
with odd x’,y’ values) are not as simple. Wrap-around con- 
nections need to be considered. Due to modular wrap-around 
connections at edges of the network, a node (x,y)  has four 
other equivalent node labels in the X - Y  frame: 

(0,O) and ($, f) in a toroidal mesh. 

= (Z,Y - n) ,  c3 = (. - IC,?/), 

(9) 
From (7), the node labels of c1, . . . , c4 in the X‘-Y’ frame are: 

I’ Y‘ I’ Y‘ 

2’ Y‘ I’ Y’ 

- 
c; = m-12, -x + y-n), c$ = m-k, -x + y+k), 
c’2 = &+n, -x + y+n),  ci = m+k, -x + y 4). 

- 
(10) 

Since x’, y’, n and k are odd numbers, ci ,  . . . , c& are all even 
nodes (their X ’ ,  Y’ coordinates are both even), which implies 
the routing algorithm (Proposition 1) established for even 
nodes applies. However, some of the four labels may not 
correspond to shortest paths between (0,O) and (x,y). From 
Proposition 1, the distance between (0,O) and ci, . . . , c& are: 

1 1 
2 d i  = -{Id - 7 ~ 1  + Iy’ - nl}, d i  = ~ { I Z ’  - KI + Iy’+ kl}, 
1 

d’2 = -{Id + n1 + Iy’ + nl}, d i  = + kl + Iy’ - kl}, 
(11) 

where x’ = x + y and y’ = -x + y. This implies that node 
(x, y) can be reached at distances d i ,  d;, d i  or d6 from node 
(0,O). To establish an optimal routing algorithm between (0,O) 
and (IC, y), we need to identify c: (i = 1,. . . ,4) such that the 
corresponding distance 

2 2 

di = dmin = min{d;, da, d$, d i } .  (12) 

In the following propositions and corollaries, we establish a 
simpler expression for d i ,  . . . , d&; and identify d: = dmin for 
different z,y values. 

Proposition 2: Let d i ,  . . . , d& be defined as in (1 l), 

d i  =max{)x1,n-y}, d $ = m a x { l y ) , k - x } = k - x ,  
dh=max{lxl,n+y}, d i = m a x { l y I , k + x } = k + x .  

Proof: From (1 1) and (7), 

2 4  = l x + y - n l + I - x + y - n l  

= Ix - (. - Y)I + lx + (. - Y)I 

1x1 - (n - Y) + 1x1 + (. - y), 
-121 + (n  - y) + 1x1 + (n - y). 

if 1x1 2 7% - Y; 
if 1x1 < n - y; 

if 1x1 2 n - y; 
if 1x1 < n - y. 

= {  
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Hence, dl = max{ 1x1, (n - y)}. Similarly, 

d’, = max{lzl,n+y}; 
d: = max{lyl, k - x}; 
d& = max{ Iyl, k + x}. 

k - x > k/2 2 n/2 > IyI, 

k + x > k/2 2 n/2 > IyI. 

Hence 

d : = k - x  and d & = k + x .  0 

Comllury 1: Let d’, , . . . , d& be defined as in (1 1) and dmin 
as in (12). For 1x1 < n, 

if y > 0, di < da; 
if y = 0, d’, = d;; 
if y < 0, d’, < di. 

y t  

y t  lyl= 1x1 - k+n 

(b) 
Fig. 4. Graphical inequalities. 

Also, Proof: From Proposition 2, 
If y > 0, 

14 > n - IYI d‘, = max(lzl,n - Ivl) 
di  = max(lz1, n + Iyl) = n + IyI because 1x1 < n + min(di, d’,) = 1x1 < k - 1x1 = min(db, di) 

because 1x1 5 - ( k - l )  2 

+ d’, < di  
I f y = o ,  

I f y < o  +dmin = min(di, d’,) 
d’, = d i  = max( 1x1, n) = n 

d’, = max(lxl,n + Iyl) = n + (y( 

because 1x1 < n 

because 1x1 < n 
di  = max(l4,n - 131) (1.1 < n - IYl) and (n - IYI  > k - 1.1) 

+ min(di, d’,) = n - IyI > k - 1x1 = min(d6, di)  + dh < di  
n 
U 

Proposition 3: Let di  , +  
as in (12). For 1x1 < n, 

, d& be defined as in (1 1) and dmin 

Proof: From Proposition 2 and Corollary 1, 

+dmin = min(d’,, d i )  

Hence 

if (1.1 + IYI < n)  (1.1 - IYI > k - n) 

else dmin = min(d’, , da). 
dmin = min(db, d;) 

0 

Proposition 4: 

(1x1 + IyI < n)  & (1x1 - IyI > k - n) + k < 2n 
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Proof: The shaded regions in Fig. 4(a) and (b) show the 
values of x and y satisfying (1x1 + IyI < n)  and (1x1 - IyI > 
k - n), respectively. If x and y satisfy both regions, the shaded 
regions must overlap; Le., 

k - n < n  

Proposition 2, for 1x1 = n, the corresponding distance between 
c l , , . . . , c i  and (0,O) are dl , , - . . ,d&,  where 

n + y  i f y 2 0 .  
n i f y < O ’  
k + n  i f x = n  
k - n  i f x = - n .  

{ d‘, = n i f y > O .  
n - y  i f y < O ’  
k - n  i f x = n  k + n  i f x = - n  ; d i  = 

{ di = 

di  = 

That is, 

+ k < 2n. 

From Propositions 3 and 4, we have two useful corollaries: 
Corollary 2: Let dl,, . . . , d i  be as defined in (1 1) and dmin 

as in (12). 

If (k > an) & (1x1 < n),  
dmin = min(di, d!J 

if y 2 0; ={:: i f y s o ;  

= m=(lxl,n - IYl). 

Corollary 3: Let dl,, . . , d i  be as defined in (1 1) and dmin 
as in (12): 

If (n 5 k < 2n) & (1x1 < n) ,  
dmin = min(di, di)  

={4: i f x 2 O ;  
if x 5 0; 

= k - 1x1. 

These two corollaries are direct consequences of Proposi- 
tions 3 and 4; and the proofs are omitted. They are particularly 
useful for routing between (0,O) and odd (x’,y’) where 
1x1 < n. To determine optimal directions between (0,O) and 
(2, y), where 1x1 2 n, we present another proposition. 

Proposition 5: If 1x1 2 n, the shortest distance between 
(0,O) and (x, y) is dmin = 1x1. Also, optimal directions from 
(0,O) are X’ and -Y’ if x 2 n; or -XI and Y’ if x 5 -n. 

Note that z E {-y,  - . e ,  y }  and y E {-y, - ” ,  y}. Hence, IyI < n and 1x1 = n + k > 2n. According 
to the frame transformation (7), node (z, y) is represented as 
(x’, y’) in the XI-Y’ frame, where x’ = x+ y and y’ = -x+ y. 
Since 1x1 = n is odd, if y is also odd, IC’, y’ are both even and 
Proposition 1 can be applied for routing. In this case, 

dmin = 1/2( lz+y(+l -x+yl )  = 1x1 = n,  

Furthermore. 

Proof: Case I :  1x1 = n. 

because IyI < n. 

x = n  
+ x’= n +  y > 0 and y‘ = y - n < 0 

According to Proposition 1, both X’ and -Y’ are optimal 
directions. Similarly, 

x = - n  
+ x‘ = -n + y < 0 and y‘ = y + n  > 0, 

both -XI and Y’ are optimal directions. 
If 1x1 = n and y is even, x’ = x + y and y’ = -x + y are 

odd. We consider the alternate node labels of (2, y), c1, . . . , c4 
as defined in (9). These alternate node labels are represented 
as cl,, . . . , d, in the XI-Y’ frame according to (10). Using 

min{di, dk} = n, min{di, di} = k - n. 

Also, 

k > 2n 
+ k - n > n  
+dmin = min(di, d’,) 

dl, = n i f y > O  

{ di  = n i f y < O  
= d l , = d ‘ , = n  i f y = O  

If y > 0, 

c i = ( x + y - n , - x + y - n )  
( y I y - 2 n ) = ( > O , < 0 ) ,  i f x = n ;  = {  (y - 2n, y) = (< 0, > 0), if x = -n. 

If y = 0, x = n, 

ci = (0, -2n) = (0, < 0), 
c’, = (2n,0) = (> 0,o). 

If y = 0, x = -n, 

ci = (-2n,o) = (< o , ~ ) ,  
c: = (0, an) = (0, > 0). 

If y < 0, 

c i = ( x + y + n , - x + y + n )  
(2n - Iyl, y) = (> 0, < O),  if = n; = {  (y,2n - lyl) = (< 0, > 0), if z = -n. 

Hence, all nodes at 1x1 = n are at distance n from (0,O) with 
X’ and -Y’ as optimal directions if x = n; or -XI and Y’ 
as optimal directions if x = -n. 

Case 2: 1x1 > n. 
We observe that the smallest path between (0,O) and (2, y) 

where 1x1 = n + i for some i > 0 must go through an 
intermediate node at x = n or x = -n, depending if x > n 
or x < -n. In both cases, (x ,y)  is i hops from a node at 
1x1 = n. Furthermore, from case 1, we proved that all nodes at 
1x1 = n are n hops from (0,O). Hence, all nodes at 1x1 = n + i ,  
i 2 0, are n + i hops from (0,O) with X ’  and -Y’ as optimal 
directions if x 2 n; or -X’  and Y’ as optimal directions if 
x 5 -n. 0 

To summarize, Proposition 1 determines optimal directions 
from (0,O) to even (x’, y’); Corollaries 2 and 3 provide routing 
between (0 ,O)  and odd (x’, y’) with 1x1 < n; and Proposition 
5 identifies optimal paths between (0,O) and any node (x, y) 
with 1x1 2 n. Based on these propositions and corollaries, 
we summarized routing algorithms for diagonal mesh network 
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TABLE II 
A ROUTING ALGORITHM FOR n x k DIAGONAL MESH, n 5 k 5 2n - 1 

Routing between (zl, yl) and (z2, yz) in a diagonal mesh network 
with N = n x k nodes and n 5 k 5 2n - 1 (n,k are odd). 

Step 1: Evaluate z =< 52 - 21 >I., y =< yz - y1 >,,, where 

Step 2: Calculate I‘ = z + y; 
Step 3: If z’, y’ are odd, 

y‘ = -z + y. 

if 121 + lyl < n and 11) - IyI  > E - n 
I’ = z’ - E ,  
z’ = z‘ + k, 
z’ = z‘ - 11, 

z‘ = 5‘ + 11, 

y’ = y’ + k ,  
y‘ = y‘ - k, 
y‘ = y’ - n, 
y‘ = y‘ + n, 

if z > 0; 
if z < 0; 

if y 2 0; 
if y 5 0. else ( 

Note that when y = 0, there are two z’, y‘ values to be applied in  Step 4. 
Step 4: Determine optimal directions 

z‘ > 0, take the X’ direction; 
z’ < 0, take the -X’ direction; y < 0 take the -Y‘ direction. 

If { y: > 0: take the Y’ direction; 

Distance between (51. VI)  and (zz, yz) is I f 1  + I f \ .  

TABLE III 
A ROLITING ALGORITHM FOR n x k DIAGONAL MESH, k 2 2n + 1 

Routing hetween (x lr  yl) and (z2, y2) i n  a diagonal mesh network 
with N = n x k nodes and k 2 211 + 1 (n ,  k are odd). 
Evaluate z =< zZ - rl > I ;  y =< y2 - y1 >,,, where 

z + n  ifz<-?+. 

Case I: 
If z 2 11,  both X’ and -Y’ are optimal. 

If z 5 -n, both -X’ and Y’ are optimal. 
Distance between (zl, YI) and (zz, yz) is 121 

Case 11: If 1x1 < 1 1 ,  

1. Calculate z’ = z + y; 

2. If z’, y‘ are odd, 

y’ = -z + y. 

I‘ = z’ - n, if y 2 0; 
x‘ = 2’ + 11, I/’ = y’ + 11, if y 5 0. 

I/’ = y‘ - n, 

Note that when y = 0, there are two z’, y‘ values to be applied i n  Step 3. 
3. Determine optimal directions 

z‘ > 0 take the X‘ direction; y’ > 0, take the Y’ direction; 
If [ z’ < 0: take the -X’ direction; If { y‘ < 0, take the -Y’ direction. 

Distance between (zl, yl) and (zz, yz) is + I f l .  

with N = n x k nodes in Tables I1 and 111. Table I1 corresponds 
to n 5 IC < 2n and Table 111 to k 2 2n. These routing 
algorithms identify all optimal directions and shortest path 
length between any two nodes for the two cases. 

C. Diameter Analysis 

Besides facilitating the development of routing algorithms, 
the propositions and corollaries described in Section 111-B also 
allow formulation of the diameter of a diagonal mesh. We 
present such formulation in the following proposition: 

Proposition 6: For an N = n x k diagonal mesh network, 
assume n,k are odd, k 2 n and Dd is the diameter. 

D~ = { y)l if k > n; 
if k = n. 

Pro08 Let d be the shortest distance between node (0,O) 
and node (z,y), where z,y are not both zero. 

Case I: 5 > n. 
Consider 1x1 < n. 
If both z, y are even or odd, Le., z’ = z+y and y’ = -z+y 
are even, the routing algorithm (Proposition 1) for even 
x’, y’ applies. In this case, according to Proposition 1, 

If z is even and y is odd, or vice versa, z’, y’ are odd. From 
Proposition 3, 

- 1x1, if (1.1 + IYI < n)  
and (1.1 - IYI > - n);  

max(lzl,n - Ivl), if (1.1 + IYI 2 n) 
or (1.1 - IYI  I k - n)  

d = {  

From Figure 4(b), the smallest 1x1 such that the following 
condition: 

(1.1 - 14 > k - n) 

holds is 1x1 = k - n + 1. In this case, d = n - 1. Also, 

1x1 < n * m=(lzl,n - Iyl) I n. 

Hence, 

n - 1, if (1.1 + 191 < n)  and (1x1 - IyI > k - n);  

and d = n i f ( z ( I k - n , y = O .  (14) 

Consider 1x1 2 n. From Proposition 5, 

and 
k - 1  k - 1  

2 2 
d=-  when 1x1 = -. 

From (14) and (15), 

Dd = max (n ,  T), k - 1  if IC > n. 

Case II: k = n. 
In this case, z,y E {-?,...,+} , i.e., 1x1 + IyI is 
always < n. 
If z,y are both even or odd, IC’, y’ are even, 

n - 1  
2 

d = 1x1 or IyI I -. 

If z is even and g is odd, or vice versa, according to 

yl = 1. 
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x =  -2 -I 0 I 2 

2 
D d = n - l ,  i f k = n .  0 

Based on (1) and (13), we have the following relationship 
between Dt and Dd: 
Proposition 7: For an N = n x k network, assume n,  k are 

Dt = Dd = n - 1 
Dt = Dd = n 
Dt - Dd = $ ( k  - n - 2) > 0 
Dt - Dd = 

odd, k 2 n. 

for k = n.  
for k = n + 2. 
for n + 2 < k 5 2n - 1; 
for k 2 2n + 1. > 0 

The proof of this proposition is a straightforward comparison 
of (13) and (l), and therefore is omitted. 

D. Examples 

In this section, we use three examples to verify the diameters 
of diagonal mesh networks. Figures 5 and 6 show the distance 
of all nodes from the center node (0,O) of N = 5 x 5, 
N = 3 x 5 and N = 3 x 9 diagonal mesh networks. In other 
words, the number at the center of each node shows how many 

I 

y =  0 

-I 

-2 

5 X 5 Diagonal Mesh 

(a) 

X 

I 

y =  0 

-1 

3 X 5 Diagonal Mesh 

hops the particular node is away from the center node (0,O). 
From these figures, 

(b) 

Node distance of 5 x 5 and 3 x 5 diagonal mesh networks. Fig. 5 .  

4, when k = n = 5; 
Dd = 3,  when n = 3 , k  = 5; { 4, when n = 3, k = 9. 

According to (13), the diameters are: 

n - 1 = 4 ,  i f k = n = 5 ;  
n = 3, if n = 3 , k  = 5; 
( y  = 4, i f n  = 3 , k  = 9. 

Using (l), the diameters for toroidal mesh networks are: 

4, when k = n = 5; 
Dt = 3, when n = 3 , k  = 5; { 5, when n = 3, k = 9. 

Hence, Propositions 6 and 7 are true. 
In summary, the diagonal mesh network has a smaZZer 

diameter (when k > n + 2) and a larger bisection width than 
the toroidal mesh. It is also obvious that a diagonal mesh 
network retains all advantages such as a simple rectangular 
structure, wirability and scalability of the toroidal mesh. Based 
on these results and observations, we concluded that the diag- 
onal mesh is potentially an attractive alternative to the toroidal 
mesh network. In the next section we further investigate and 
compare the performance of these two networks under a 
constant system with a fixed number of messages. 

Iv .  NETWORK PERFORMANCE 

In this section, we compare performance of diagonal and 
toroidal mesh networks using deflection routing algorithm. We 
first discuss deflection routing and various deflection criteria 
in Section IV-A, simulation results are presented in Section 
IV-B. 

Fig. 6. Node distance of N = 3 x 9 diagonal mesh network. 

A. Dejection Routing 
Deflection routing was first proposed in 1964 [ 181 under the 

name hot potato routing for communication networks. Since 
then, it has been used in both computer and communication 
networks [ 5 ] ,  [6], [19]-[21] under the name dynamic routing 
and dejection routing. Popular examples include the Connec- 
tion Machine [19], a massively parallel computer, and the 
Manhattan Street Network [6], a metropolitan area network. 

Basically, messages are sorted according to a deflection 
criterion. Those with higher priorities are routed optimally 
while those with lower priorities are dejected to non-optimal 
links when conflicts for optimal links occur. The idea is for 
nodes to get rid of all incoming messages at each cycle. 
There is no buffer and hence no buffer management at a 
node. This routing algorithm is simple and straightforward to 
implement. We use this algorithm to evaluate performance of 
large diagonal and toroidal mesh networks. 

Since both diagonal and toroidal mesh are bidirectional, 
degree-4 networks, there are 4 input and 4 output links at 
each node. We assume the network operates in a synchronous 
manner. At the beginning of each cycle, nodes receive incom- 
ing messages and at the end of a cycle, messages are routed 
to output links. At cycle 0, there are Nmsg = 1, . . . , 4  at 
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Fig. 7. Average delay for diagonal mesh with different deflection criteria. 

each node. When Nmsg = 1 the system is lightly loaded and 
when Nmsg = 4 the system is at its full capacity because 
every node has only 4 bidirectional links. A pseudo-random 
number generator with uniform message distribution is used 
to generate the destination of each message. In the beginning 
of each subsequent cycle, the router at a node i checks the 
destination of all incoming messages. If the destination of a 
particular message is node i, then the message has reached its 
destination and is removed from the system. Instead, a new 
message is generated at node i to replace the deleted message. 
In other words, the total number of messages in the system 
remains constant, N * Nmsg. Subsequently, all incoming and 
new messages are sorted according to a deflection criterion. 
These messages are routed to output links according to their 
priorities. The optimal routing (path-determining) algorithms 
summarized in Tables 1-111 are used to determine the optimal 
out-going links for each message. 

For simplicity, we assume a two-phase scheduling algo- 
rithm. In the first phase, the router goes through all messages 
in the input links according to their priorities. If a message 
has only one optimal output link which is not occupied by a 
message with a higher priority, the message is assigned to the 
optimal link. If a message has more than one optimal output 
link, the router chooses an available optimal link arbitrarily. 
In the case that there are no unoccupied optimal link, the 
message is left in the input links until all messages have been 
through the first phase. In the second phase, all messages left 
in the input links are routed arbitrarily to available output 
links. This two-phase scheme is simple to implement but is 
only sub-optimal because a message m l  may have more than 
one optimal link and one of which, say 1, may be the sole 
option for another message m2 at a lower priority. This two- 
phase scheme may assign m l  to 1 and introduce unnecessary 
deflection for m2. A more sophisticated scheduling scheme 
can be developed to improve the performance but at a higher 
time complexity. 

For deflection routing, proper choice of a deflection criterion 
is important to network performance. Inappropriate deflection 
criteria may cause livelock situation, in which a message is 
trapped in the system indefinitely. We have investigated six 
deflection criteria. 

1) random: messages are routed in an arbitrary order; 
2) age: an “older” message has a higher priority; 
3) shortest: a “shorter” message has a higher priority; 

Ave 
delay(hops) 

Toroidal Mesh 
N = 35 x 71 = 2485, N1ns.q = 4 

I I t I 1 1  

0 so 100 150 200 
Cycles 

Fig. 8. Average delay for toroidal mesh with different deflection criteria. 

longest: a “longer” message has a higher priority; 
age + shortest: an “older” message has a higher priority 
but for messages with the same “age”, a “shorter” 
message has a higher priority; and 
age + longest: an “older” message has a higher priority 
but for messages with the same “age”, a “longer” 
message has a higher priority. 

An “older” message refers to one that has been introduced into 
the system earlier; a “shorter”P1onger” message is one that 
is a shorterAonger distance (number of hops) from its final 
destination. The “age” of a message is the number of cycles 
that a message has been in the system. In the next section, we 
present our simulation results for these ciiteria. 

B. Simulation Results 

For each network with a constant number of messages 
( N  x Nmsg), we observe the average delay, maximum de- 
lay and throughput of the system for a number of cycles. 
Average/maximum delay is the average/maximum path length 
(hops) in the system; and throughput is the average number of 
messages reached destination per cycle. 

We first investigate effects of the six different deflection 
criteria by comparing results from toroidal and diagonal mesh 
networks with N = 35 x 71 = 2485 nodes. We then compare 
the performance of the two networks using the same deflection 
criterion and N = 35 x 71 = 2485, N = 49 x 99 = 4851 
and N = 69 x 139 = 9591 nodes. From (1) and (13), the 
diameters for these networks are: 

Dt = 52, for N = 35 X 71 
Dt = 63, Dd 49 for N = 49 X 99 

Dd = 35 

Dt = 103, Dd = 69 for N = 69 x 139 (16) 

Dejection Criteria: Figures 7-10 show the effects of the 
six deflection criteria listed in Section IV-A for networks with 
N = 2485 nodes and Nmsg = 4. Since Nmsg = 4, the 
network is heavily loaded and a proper choice of the deflection 
criterion is critical. 

For average delay, the criterion “longest” has an unbounded 
delay. This phenomenon is a result of the non-optimal two- 
phase scheduling scheme and the topological properties of 
diagonal mesh network. Our study indicates that, for diagonal 
mesh networks, most messages have two optimal outgoing 
links but those that are at a distance Dd (the diameter) from 
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Fig. 10. Maximum delay for toroidal mesh with different deflection criteria. 

its destination have an average of 2.5 number of links. This 
property and the fact that two-phase scheduling is sub-optimal 
imply that more unnecessary deflections are introduced when 
longer messages have higher priorities and thus resulting in 
the unbounded average delay. 

For the same reason, the criterion “shortest” demonstrates 
the smallest average delay. The is because by giving a shorter 
message (with fewer optimal options) a higher priority, un- 
necessary deflections are minimized. However, the maximum 
delay (Fig. 9) for “shortest” is among the highest. This is 
because a message’s age is not considered and a long message 
may be trapped in the system. On the contrary, when a 
message’s age is part of the deflection criterion, the maximum 
delay saturates after a certain number of cycles (Fig. 9). 
Therefore, livelock problem or high maximum delay can be 
avoided only if age is part of the deflection criterion. 

For average delay (Fig. 7), the curve corresponding to age 
+ longest follows that of longest initially when all messages 
have the same age; and later traces that of age when messages 
began to have different ages. Furthermore, the maximum 
delay among age, age+shortest and age + longest are almost 
indifferentiable. In fact, for clarity, Fig. 10 combines all 
the age related criteria into one curve. The effects of these 
criteria for larger networks (N = 4851,9591) have also been 
investigated and again, their differences are diminutive. We 
therefore concluded that age alone is a simple and efficient 
criterion for diagonal mesh networks of these sizes. 

Figures 8 and 10 show the average and maximum delay 
for a toroidal mesh with N = 35 x 71 = 2485 nodes and 
Nmsg = 4. Again, when the age of a message is not part 

N = 35 x 71 = 2485 
I I I I I I 
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Fig. 11. Average delay for diagonal and toroidal mesh networks. 
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Fig. 12. Average delay for diagonal and toroidal mesh networks. 

of the deflection criterion, maximum delay is much higher. 
Also, the average delay for age, age + shortest and age + 
longest is close after the system saturates. We therefore also 
concluded that age alone is a sufficient criterion for toroidal 
mesh networks of these sizes. 

It is worth noting that the curve for criterian “longest” does 
not experience the unbounded increase as in the diagonal case. 
This is because, unlike the diagonal mesh, the majority of 
messages have 2 optimal links regardless of their distance 
from destinations. In other words, by giving a longer message 
a higher priority will not introduce additional unnecessary 
deflections to a shorter message. 

Per$ormance Comparisons: Figures 11-13 show the av- 
erage delay for diagonal and toroidal mesh networks with 
N = 2485,4851,9591 nodes and Nmsg = 1,4  using age 
as the deflection criterion. Note that Nmsg = 1 corresponds 
to a network with very light load whereas Nmsg = 4 implies 
the network is fully loaded. 

We observed that the average delay saturates after certain 
number of cycles. This result is consistent with our constant 
system model. Under this model, there is a fixed number of 
messages, N x Nmsg, in the system and their destinations are 
uniformly distributed. Intuitively, there should be a character- 
istic average associated with each network and network load. 
This average path length should be bigger for larger networks 
and network loads. These arguments are confirmed by our 
simulations. Furthermore, the diagonal mesh network always 
has a smaller average path length at saturation. Such difference 
between the two networks also increases with the network size 
and network load. We have also investiaged the maximum 
delay for these networks. We found that they depicted similar 
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Fig. 14. Throughput for diagonal and toroidal mesh networks. Fig. 16. Throughput for diagonal and toroidal mesh networks. 

behavior as the average delay except that the magnitude of the 
saturated maximum delay is about twice that of the average 
delay. 

Figures 14-16 show the throughput for diagonal and 
toroidal mesh networks with N = 2485,4851,9591 nodes 
and Nmsg = 1 ,4  using age as the deflection criterion. Again, 
due to the constant number of messages, the throughput of 
the system saturates after a certain number of cycles. This 
saturation occurs later for larger networks and networks with 
heavier loads. Similar to the average delay, the diagonal mesh 
network always have a higher (better) throughput and this 
difference in performance increases with network size and 
network load. 

V. CONCLUSION 
The toroidal mesh is a popular and well-studied network. 

It is a symmetric, wirable and scalable network with an op- 
timal self-routing algorithm. However, its drawbacks include 
a relatively large diameter and a small bisection width. For 
an N = n x IC toroidal mesh with n , k  odd and k 2 n, 
the diameter and bisection width are Dt = (9 + y )  
and Bt = 2n + 2. These drawbacks imply potentially long 
communication delay and thus hamper network performance. 

The diagonal mesh is similar to the popular toroidal mesh, 
except that the nodes are diagonally connected. In other words, 
it is also a degree-4, point to point interconnection model 
suitable for connecting communication elements in parallel 
computers, particularly multicomputers. Furthermore, it retains 
advantages such as symmetry, wirability, and scalability of the 
toroidal mesh. 

In this paper, we developed an optimal, self-routing algo- 
rithm, and proposed and proved an analytic formula for the 
diameter of diagonal mesh networks. We showed that for 
an N = n x k diagonal mesh with n,lc odd and k 2 n, 
the diameter is: Dd = n - 1 for k = n and Dd = 
max(n, y )  for k > n. In other words, Dd = Dt for 
k = n,n + 2. But when k is strictly greater than n + 
2, the diagonal mesh has a smaller diameter and thus a 
potentially smaller communication delay. We also showed that 
the bisection bandwidth of the corresponding diagonal mesh 
network is Bd = 4n, an improvement over the toroidal mesh. 
These topological properties show that the diagonal mesh 
network has a potentially better performance than the toroidal 
mesh. This result is further strengthened by our computer 
simulations. 

We have simulated and compared the performance of diag- 
onal and toroidal mesh networks in the presence of contention. 
For both diagonal and toroidal mesh, we considered networks 
with N = 35 x 71 = 2485, N = 49 x 99 = 4851, and 
N = 69 x 139 = 9591 nodes. We assume communication 
is achieved in a synchronous manner, in which every node 
receives incoming or new messages at the beginning of a 
cycle and routes messages to output links at the end of a 
cycle. At cycle 0, every node has Nmsg = (1,. . . ,4} to 
be routed. When a message reaches its destination i, a new 
message is generated at i to replace the deleted message. In 
other words, the network is a constant system with a fixed 
number of messages N x Nmsg. 

To evaluate the performance of the network, we use the 
dejection routing, a dynamic and bufferless routing algo- 
rithm popular for both computer and communication networks. 
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There is a deflection criterion that determines the priority 
of messages. men conflicts for the optimal outgoing 
links Occur messages, those with lower priorities are 
dejected to non-optimal out-going links. There is no buffer 
and hence no buffer management at a node. H ~ ~ ~ ~ ~ ~ ,  a 
proper deflection Criterion is Critical to the performance Of 

the network. 
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