
UCT Enhancements in Chinese Checkers Using
an Endgame Database

Max Roschke and Nathan R. Sturtevant

Department of Computer Science
University of Denver

Denver, CO, USA

max.roschke@gmail.com sturtevant@cs.du.edu

Abstract. The UCT algorithm has gained popularity for use in AI for
games, especially in board games. This paper assess the performance
of UCT-based AIs and the effectiveness of augmenting them with a
lookup table containing evaluations of games states in the game of Chi-
nese Checkers. Our lookup table is only guaranteed to be correct during
the endgame, but serves as an accurate heuristic throughout the game.
Experiments show that using the lookup table only for its endgames is
harmful, while using it for its heuristic values improves the quality of
play. This work is performed on a board with 81 locations and 6 pieces,
which is larger than previous work on lookup tables in Chinese Checkers.
It is a precursor to using the 500GB full-game single-agent data on the
full-size board with 81 locations and 10 pieces.

1 Introduction

The UCT algorithm has recently proven to be a powerful tool for running sim-
ulations. Similar algorithms have been used to write powerful computer players
for Go, a game which had long resisted other tactics. Its strength comes in part
from its reliance on simulations, which approximate paths to the end of the
game. After simulating to the end of the game, states are easily evaluated as a
win or loss, so there is no explicit need for evaluation functions or expert knowl-
edge. Even without these requirements, there are still many modifications that
try to improve upon this model. A recent survey [2] lists over thirty potential
enhancements across multiple domains, each with varying degrees of success.

Herein, we will test the effects of two enhancements to UCT in Chinese
Checkers, each relying on a precomputed lookup table, which contains the dis-
tance of a single player’s pieces to the goal state [15]. Towards the end of the
game, this lookup table is effectively an endgame database and can be used to
determine the winner and loser. It has already been demonstrated that opening
books can improve the play of the UCT algorithm [1,3], so it seems reasonable to
expect that endgame databases can also improve play. By knowing the endgame
states, the playout length may be reduced, allowing for more playouts to run.
Also, standard UCT playout policies may not follow the perfect endgame strate-
gies. Thus, standard UCT may accept playouts where players make mistakes in



the endgame. Using the lookup table to determine the exact value should elim-
inate this possibility, making the simulations more accurate. Thus, we propose
running simulations only until an endgame state is reached, rather than playing
them out to completion.

Even during the mid-game, the lookup table may be used as an evaluation
function. The information is not necessarily accurate, as it ignores the positions
of the opponents pieces, but it may still favor advantageous board positions.
These kinds of lookup tables have been used before in Chinese Checkers and
have been found to produce a viable evaluation function [10, 11, 13]. The evalu-
ation function becomes more accurate as the game progresses, as it eventually
becomes an endgame database. This heuristic will be compared to a more com-
mon evaluation function that uses the average position of the pieces on the
board. UCT will also be combined with the lookup table heuristic, to determine
whether UCT estimations are a viable tactic for Chinese Checkers.

2 Background

2.1 Minimax Algorithm

The Minimax algorithm is a commonly-used technique for exploring the game
tree of a two-player game. It creates a game tree of a certain depth, and then
scores each leaf-state using an evaluation function. The evaluations are propa-
gated up the tree with the player choosing the maximum value at his own nodes,
and the opponent choosing the minimum value at its nodes. This explores all
paths of that depth, and returns the best path for the player.

While simple, this algorithm provides a Nash equilibrium solution, allowing
for a player to maximize his score for the given evaluation function. However,
there are several drawbacks to this approach.

First, it has an exponential runtime. When searching a game with branching
factor b to a depth of d, it has a runtime of O(bd). Using αβ-pruning, this can be
reduced to O(bd/2), but this is still gives a constraint on how deep the tree can
be searched, especially in games with a large branching factor. There are other
methods that attempt to improve on αβ-pruning, but we do not examine those
here. Additionally, this approach does not scale well to multiplayer games. The
maxn algorithm, the multiplayer equivalent, can only be pruned to O(b(n−1)d/n)
for n players [14].

Second, the result of the algorithm is only as accurate as the evaluation
function itself. Evaluation functions are often inaccurate, as the middle stages
of the game are ambiguous and difficult to rate. Any error in the evaluation
function will become apparent in the results of the search.

2.2 UCT Algorithm

The UCT algorithm [5] relies on simulations to gather information about the
game tree. It maintains a partial game tree in memory, and traverses it in four
distinct stages: selection, expansion, simulation, and propagation.



First, an action is selected from the tree. At each node in the tree, an action
is selected to maximize its UCB1 score, which is given by:

xi + C

√
ln(T )

Ti

where xi is the average payoff of an action, C is the exploration constant, T is the
number of times the parent of the action has been played, and Ti is the number
of times the action has been taken. The second part of the equation determines
whether states are explored or exploited. The higher this second term, the less
the score of the action depends on its average payoff, and the more it depends
on the number of samples. A high C value encourages more exploration. This
process is repeated until a leaf node of the tree is reached.

The leaf node may be expanded to add a new node to the tree, depending
on the expansion policy of the tree. A common change is to only expand a node
after it has been sampled a certain number of times [4]. This prevents the tree
from growing rapidly, and tends to expand only nodes which have received better
scores.

From this new node, a simulation is run to the end of the game. The sim-
ulation may be guided by a playout policy. In many games a random policy is
acceptable, but in other games it is not. In fact, for some games, random play-
outs are completely unfeasible. For example, in Chinese Checkers, pieces may
move both forwards and backwards, which means that the games may be in-
finite in length. Random playouts then would be too long and unrealisitic to
provide useful data about the game. For this reason, playout strategies are often
imposed, for example, taking only forward moves and ignoring backward moves.
If the playout policy matches usual player strategies, then this covers realistic
play, and the simulations become more useful.

Finally, a win or loss is observed at the terminal game state, and that value
is propagated up the tree. More information may be calculated at this terminal
state to give an evaluation as well. For example, to emphasize shorter games, one
may include the length of the simulation in its score. This value is then added to
the total payout of each node on the path up the tree, updating its UCB1 score.

Many of these simulations are run, and then the best node is chosen from the
tree. What constitutes the best node may be difficult to determine, as it should
take into account both the sample rate and the average payout of that node.

Over time the game tree created by this algorithm approaches the actual
minimax game tree which evaluates states based on wins, losses, or ties. When
given infinite time and space to work with, it will eventually converge to that
value [5]. However, this relies on all possible paths being traversed. Modifications
to the tree, such as changing the playout and expansion policies, that cause some
paths to be omitted from the tree eliminate this guarantee from a theoretical
perspective.



(b)
(a)

Fig. 1. A Chinese Checkers board.

2.3 Chinese Checkers

Chinese checkers is a board game that can be played by two, three, four, or six
players on an isometric board. Each player tries to move his pieces across the
board, from his starting corner to the opposite corner. A player wins once all of
his pieces have crossed the board, and are in the same configuration in which
they started. The board is arranged into a hexagram when there are more than
two players, and is simply a diamond when there are only two players. The piece
counts may also vary; in smaller games, players have six pieces each, and in
larger games, players have ten pieces each.

Pieces may move in two ways. They may move into adjacent empty spaces,
or they may jump over an adjacent piece to a free space immediately opposite its
original position (see Figure 1 (right)). These jumps may be chained arbitrarily,
so a piece may even move most of the way across the board on a single turn.

There is some ambiguity in the end of the game, as one player may leave pieces
behind, preventing the opponent from filling that corner. However, to account
for this case, we define a player to win once they have at least one piece across
the board, and the tiles of that corner are all filled. Thus, if a player leaves pieces
behind and the opponent fills all other spaces in that corner, the opponent wins.
In this version of the game there can be no ties, as one player must reach the
opposing side first. Games may also proceed indefinitely, as there is no restriction
on the direction pieces may move. For simplicity, our experiments will be run on
a nine-by-nine board with 81 possible locations for pieces – the same size as in
the Figure 1, but without the four blue corners – and each player will have only
six pieces.

2.4 Endgame Databases

Endgame databases have proven effective in many other games. They contain
all the necessary information to complete a game given a certain state. Chess
programs make extensive use of these databases to improve play and many re-
sources have been devoted to analyzing and generating these databases (see [16]).



To date, all five-piece endgames have been calculated, giving the computer an
immense amount of knowledge and sparing much computational time. These
playouts can be especially complex, as many of them must take the fifty-move
rule into account. While many databases do not specifically acknowledge the
fifty-move rule in their returned solutions, the evaluation still gives the com-
puter a glimpse of the probabilities of winning, losing, and drawing without
doing any explicit calculation.

Endgame databases were also heavily used in the Checkers AI Chinook [12].
Move databases were extended to include all ending positions containing ten
pieces or less, considerably increasing the accuracy of play.

Endgame databases have also been used before in Chinese Checkers and have
been shown to improve the quality of play [10]. This has also been shown to aid
UCT playouts as well [7–9], although their experiments were performed with
smaller lookup tables than we will be using here.

3 Lookup Table

The lookup table is a simple table containing entries for all of the positions for a
single player on the board [15]. Our experiments are run on a nine-by-nine board
with each player having six pieces. This board has 81 positions, and is the board
seen in Figure 1 without the four blue corners. On this smaller board, there is
an entry for each of the

(
81
6

)
= 324, 540, 216 positions. Each entry contains the

minimum number of moves it would take that player to move all his pieces to
the home area. This kind of database has been used before [7–9], although it
was done on a seven-by-seven board, which contains much fewer positions.

Since this table only takes into account one player’s pieces, it is not accurate
when the players’ pieces may interact. Opponent pieces may block the shortest
path making the table value too low, or jumps offered by opponent pieces may
offer a quicker path, making the table value too high. Table values are completely
accurate once the pieces are separated. When there is no interference, the correct
path is known, and players may complete the game with perfect play guided by
lookups alone, so the lookup table may function as an endgame database.

While the lookup table is quite large, most of its entries are unused during
the course of a normal game, so only a fraction of it needs to be loaded into
memory. The entries are sorted by the furthest piece from the home area. All
of the remaining pieces must be distributed after this starting piece, so there
are

(
80−n

5

)
positions for starting position n in general. As this back piece moves

across the board, the number of potential configurations drops substantially (see
Table 1). In most cases, this piece is not going to stay in the home area for long,
as the pieces move quickest when kept in a group. This means that earlier, larger
sections of the table can be omitted from memory, greatly reducing the memory
requirements of the lookup table.

This is not a problem with the smaller data set, as the six-piece data can
easily fit into memory. The ten-piece data set is much larger however, and cannot



Table 1. Lookup Table Size versus Starting Position

Six Pieces Ten Pieces

Start Position # of Positions % of Positions # of Positions % of Positions

1 324,540,216 100.000 1,878,392,407,320 100.000
5 237,093,780 73.055 1,096,993,404,430 58.401

10 156,238,908 48.142 536,211,932,256 28.546
15 99,795,696 30.750 247,994,680,648 13.202
20 61,474,519 18.942 107,518,933,731 5.724
25 36,288,252 11.181 43,183,019,880 2.299
30 20,358,520 6.273 15,820,024,220 0.842
35 10,737,573 3.309 5,178,066,751 0.276
40 5,245,786 1.616 1,471,442,973 0.078

easily be fit into memory. We have not run experiments on this larger data set
yet, but some omission of data will be necessary to make its usage realistic.

4 Proposed Experiments

The experiments will be carried out on a nine-by-nine two player board. Each
player will each have six pieces. This smaller board will lessen complexity and
enable more trials to be run, but it is larger than boards used in previous exper-
iments [7], so it will offer more information about the effects of board size on the
table’s effectiveness. Using this board configuration, we shall test two varieties
of player. There will be two players using the αβ-pruning approach, and there
will be three variations of the UCT algorithm. Each AI will be given a limit of
100,000 node expansions per move, allowing them equal access to resources.

4.1 αβ-Players

Each αβ player will search to a depth of five ply using only non-backward moves.
Backward moves are used much less often than other moves, and, in practice,
led to a player that tried to block the opponent instead of moving his own pieces
across the board. Removing the backwards moves also reduces the branching
factor, leading to quicker play. These settings reached a balance of depth and
speed, usually having the player respond in less than one second.

There will be two potential evaluation functions. The first uses the lookup
table as a heuristic. The evaluation of a state will be the difference of the two
players’ values in the table. This will lead a player to block good opponent moves,
while trying to move across the board as quickly as possible. The other function
will be the difference in average position of the two players. Each player will
check how many rows away from the home area their pieces are. This gives an
approximation of how close the group is to winning. Again, using the difference
should lead players to try and block each other, while moving quickly across the
board, if possible.



Table 2. UCT Parameters

Tree Policy Three variations: Nodes in a tree may contain all
moves, all non-backward moves, or all forward moves.

Expansion Policy Nodes will only added to the tree once they have been
visited a minimum number of times.

Playout Policy Only forward moves are expanded for all playouts
to reduce their length and approximate a reasonable
strategy.

Random Move % Some percentage of moves during the playouts are ran-
dom, while the remaining moves are the farthest move
– that which advances a piece the furthest number of
rows.

Weight of Playout Length A small addition to the score which favors shorter wins
or longer losses.

C Constant The exploration versus exploitation value of the tree.

Evaluation Three variations: a win or loss value is returned once a
simulation is completed, a win or loss value is returned
once a simulation has reached a known endgame state,
or an evaluation is returned once a simulation has run
a set length.

The lookup table may have an advantage over the simpler function, as it takes
into account jumps and other factors that contribute to a piece’s distance from
the home area. Whether or not this information is truly more useful remains to
be seen. These players will serve as a baseline, as their results do not depend
on simulations. Without random simulations, they are guaranteed to give one
solution for a given game state, so its results are less varied.

4.2 UCT Players

Basic UCT These players will be constructed with the standard UCT approach
without any external knowledge. These players run simulations all the way to
the end of the game, and then return a corresponding win or loss value. There
are five variables which were tuned for this type of UCT player.

First, the expansion policy was varied. Nodes could only be placed into the
tree after a certain number of samples had been run. There were three additional
policies on the type of node that could be added to the tree. One policy added
all nodes, another added only non-backward nodes, and the last added only
forward moves. Experimentally, expanding only forward nodes gave the best
results. Nodes were also not added to the tree until they had been sampled a
minimum number of times.



Second, the playout policy was varied. All of these players only chose for-
ward moves. However, there is much variation in the forward moves, so another
variable was added. A set percentage of the time, the farthest move – one which
took a piece the most rows toward its home state – was taken, while the remain-
der of moves was selected randomly. This attempts to model quick movement
strategies, while allowing enough variation to give many sample points.

Third, the return value was augmented with the length of the simulation.
Wins and losses accounted for most of the payout, but a small amount was
varied based on the simulation length. Quick wins received a better evaluation
than long wins, and long losses received a better evaluation than short losses.
This steered the playouts to a better options, as quicker wins and longer losses
are easier to exploit.

Finally, the C constant was tuned. This takes into account all of the other
modifications and found the right amount of exploration versus exploitation for
that combination of variables.

Tuning was done using a hill-climbing approach. Three players were created,
each with a different category of playout policy, and the other four variables were
tuned using the following procedure. All variables initially received a default
value. A variable was selected and varied over a range of values near its current
value. Six players, identical except for that variable, were created and all assume
new values within that range. These six new players were pitted against the
original (an equal number of times as first and second player), and the AI with
the most victories was chosen as the new AI. The original remained if none of
the new players defeated it more than fifty percent of the time. A single pass of
tuning did this for each variable. Three passes were run on each policy, shrinking
the range each time. The variables depend on each other, and each player was
only tuned against variations of itself, so these tunings are in no way guaranteed
to be optimal.

These tuned players gained the following configurations (some tuned param-
eters are omitted):

Name Playout Policy Random Move % Expand Threshold

base0 Forward 17 18
base1 Non-backward 14 18
base2 All 22 20

Heuristic UCT Player This version of the UCT player runs simulations to
a fixed depth, and then evaluates them using the difference in distance, just
like the αβ lookup player. It was tuned using the same variables as the general
UCT player – playout policy, random move percentage, expand threshold, and C
constant– as well as two more: weight of the difference function and the playout
depth. The difference function weight is just the linear weight of the difference
function, and the playout depth is the number of moves playouts are run before



the difference function is applied. All numeric constants were tuned with the
same process used for the general UCT player.

Since this is the same evaluation function as the lookup-based αβ player,
this method will approximate the game tree value at that depth. This AI will
evaluate the effectiveness of estimating that tree’s value.

The technique of stopping a UCT simulation early has been used before in
the game of Amazons [6]. Their AI also did the best after a certain number of
random moves had been played – the same tactic that we shall use here.

The tuned players gained the following configurations:

Name Playout Policy Random % Expand Threshold Playout Depth

heur0 Forward 43 32 13
heur1 Non-backward 55 20 13
heur2 All 32 27 14

Endgame UCT Player This UCT Player runs simulations until the players
are separated. Separation is determined using the centerline of the board as a
divider. Once the player and their opponent’s pieces are on opposite sides of the
centerline, the pieces are considered separated. This is not entirely accurate, as
it is still possible for a piece to jump to the centerline and then interact with
opposing pieces. However, the likelihood of this is small, and it is even less likely
that this would benefit or hinder either player.

Once separated, the winner is declared based on each player’s distance from
his respective goal. All other variables remained the same as the general UCT
player.

Name Moves in Tree Random % Expand Threshold

end0 Forward 17 18
end1 Non-backward 6 2
end2 All 21 23

5 Experiment Results and Analysis

5.1 Depth-Based Trials

Table 3 shows the results of the best players in each category. While three ver-
sions were created in each category, these were the strongest. The player on the
left played as first player, while the player on top played as second player. The
percentage shown is the winning percentage of the first player. All results are
out of 100 trials, except for the αβ results, which are not listed, as there is no
randomness in their algorithms, hence, no variation. The UCT algorithms were



Table 3. Results for the Best Players Using 100 trials

Player One Wins (First Player Left, Second Player Top)

αβ αβ-Lookup base0 heur0 end0

αβ – – 54.0% 18.0% 67.0%

αβ-Lookup – – 75.0% 36.0% 88.0%

base0 83.0% 65.0% 56.0% 5.0 % 62.0%

heur0 96.0% 87.0% 96.0% 67.0% 97.0%

end0 72.0% 27.0% 43.0% 5.0 % 49.0%

given 100,000 node expansions per move. The best tree expansion policy turned
out to use only forward moves. In practice, when the players were allowed to
use all moves, they tended to play overly defensively, and attempted to block
the opponent more than they tried to cross the board. This became especially
true when they started to lose, as the evaluation function gave better results for
blocking the opponent’s advances.

There appears to be a slight bias towards the first player. The general trials
showed advantages of approximately 5% more wins for the first player.

The general UCT player tends to do better than the average-based αβ player,
taking an average amount of second player wins (after accounting for the first
player advantage), and winning many more first player rounds. It fails to beat
the αβ player that uses the lookup table, however, indicating that the lookup
table serves as a decent evaluation function throughout the game.

Further, the lookup table heuristic appears much more accurate than the
average distance metric based on the relative performances of the αβ players.
The αβ player using the lookup table won an additional 18% of the rounds as
first player than the αβ player without that data. It was also able to better
defend itself as second player, winning at least 9% more of the overall rounds.

Of the two enhancements to UCT, using the lookup table as a heuristic
appears much more effective than using it solely to calculate endgames. While
the additional of heuristic values resulted in a stronger player, the addition of
endgames lowered the quality of play.

5.2 Sample Based Trials

For this experiment (see Table 4), players were only allowed to complete a certain
number of playouts before they made a move. This would remove the benefits
of shorter playouts of the heuristic player and the endgame player, as there are
a limited number of playouts regardless of depth.

Versus the plain UCT player, the heuristic player’s performance suffered. As
second player, it lost several times the games that it did in the node expansion
experiment. It also did slightly worse as the first player. However, these results



Table 4. Trials with Limited Number of Playouts (200 trials)

Player One Win Rates

Number of Playouts per Turn

p1 p2 1,000 2,000 4,000 8,000 16,000

base0 heur0 13.0% 12.5% 12.5% 17.0% 11.5%

heur0 base0 88.5% 92.5% 94.5% 90.5% 94.0%

base0 end3 63.0% 61.5% 74.0% 70.0% 80.5%

end3 base0 49.5% 46.0% 40.5% 37.0% 27.5%

heur0 end3 97.0% 97.5% 100.0% 98.5% 99.5%

end3 heur0 6.5 % 4.0 % 3.0 % 1.5% 1.5%

do not seem to vary consistently with the number of playouts. Increasing the
number of playouts allowed per turn did not give an advantage to either player.

The plain UCT Player benefitted from more playouts when put against the
endgame player. As the number of playouts per turn increased, so did the wins
of the plain UCT player as both first and second player.

The heuristic player also did better against the endgame player when allowed
more playouts per turn. As first player, the heuristic model won almost all of
the time, and as second player it won almost all matches when allowed at least
4,000 playouts per turn.

Overall, both the heuristic and the endgame players suffered some perfor-
mance penalties. The basic UCT player improved its performance as both the
first and second player compared to the two models that shortened playouts.
However, the heuristic model remained as the clear winner between these three
strategies.

5.3 Time Based Trials

Next, we considered giving an equal amount of time to each player. This would
show more of the strengths and weaknesses of each approach. The plain UCT
player has no cost for lookups, and never needs to check if a state is in memory,
but also then must play each playout game to completion. The heuristic player
only plays to a static depth before looking up the end state in memory, which
should take little time overall. The endgame player must play out a game until
each player is in a state that is in memory. This likely will take the longest
time, as it has to check its states most often. This will then vary the number of
playouts each player can run in a turn, giving an advantage to the faster players.

The heuristic player remained strong versus the plain UCT player under time
trials, while the endgame player did not. The heuristic player won most of its



Table 5. Trials with Limited Time per Turn

Player One Win Rates

Time per Turn

p1 p2 1 sec 2 sec 4 sec 8 sec

base0 heur0 10.6% 8.0% 7.0% 9.0%

heur0 base0 95.0% 93.5% 97.0% 97.0%

base0 end3 55.6% 62.5% 56.5% 59.0%

end3 base0 51.9% 49.0% 57.5% 54.0%

heur0 end3 98.8% 99.0% 96.0% 94.0%

end3 heur0 8.1% 4.0% 1.5% 3.0%

1 second results from 160 trials
2 and 4 second results from 200 trials
8 second results from 100 trials.

matches, only once having its win rate drop below 90%. This did not seem to
vary on the overall time, as the rates remained close as time increased per turn.

The endgame player was able to match the strength of the plain UCT player
almost evenly. Each player usually won between 50 and 60 percent of matches
when playing as first player. This matches previous indications of a first player
bias, so these players seem evenly matched when given equal amounts of time
to think.

The endgame player did not play well versus the heuristic player and lost
most of the matches it played. This seemed to vary little with time. Although
it did the best during the 1 second trials as first player, this could be due to
the granularity of the timer used. It also seemed to fare better as the time was
increased as second player, as it was able to win six percent of its matches with
more time.

When given equal amounts of time, the plain UCT was able to perform 1.5
times as many node expansions as the heuristic player, and twice as many as the
endgame player. When playing each other, the endgame and heuristic players
expanded roughly the same number of nodes.

6 Conclusions and Further Work

There are several conclusions to be drawn from these results. First, it would
seem that the lookup table serves as a good heuristic throughout the game. Not
only was the αβ search able to challenge the UCT players effectively, but the
UCT player using this heuristic was able to win more than 85% of its first player
games, and more than 60% of its second player games. This leads to the second
point, that using the UCT algorithm to approximate the game tree at a certain



depth gives useful results. Since both the UCT algorithm and this αβ were using
the same heuristic, it would seem that the approximation of the heuristic at a
depth of fourteen proved more useful than the exact value of that heuristic at
depth five.

While the endgame databases caused performance to suffer here, it should
not be taken as a general trend. It outperformed the average-based αβ player,
but fell short of defeating the lookup-based αβ player. This is only based on
100,000 node expansions, however, which is less than one second of calculation
per move. Additionally, the tuning procedure was not guaranteed to be optimal.
Given more resources, the performance of the endgame player will likely improve.

In general, the heuristic player was shown to give the best results in both
time-dependent and time-independent trials. It would seem that the lookup table
provides useful, general information about the state of the game. In terms of the
larger lookup table, however, this may not be true. In this case, with a lookup
table that can completely fit into memory, it is feasible to lookup any state
of the board. This strategy requires that option, for it always plays a fixed
number of moves ahead. This is less easily accomplished with a larger table, so
the performance of this player will likely suffer the most from increases to the
lookup table’s size.

More work can be done on expanding these results. These results can be
scaled up by giving the players more time to make each move. This will give the
algorithms more time to converge to a good move, and it will show the cost of
each approach. Time trials show that the plain UCT player is much faster than
either the heuristic player or the endgame player, and this advantage will only
become greater as the size of the lookup table increases. These trials still contain
reasonably small tables (approximately 350 Mb at largest). Once the tables can
no longer fit into memory, these lookups will be even longer.

The lookup table size will also be scaled up. We have the ten-piece data set,
which presents its own challenges. While these players were able to freely query
the lookup table for any state, players querying the ten-piece data set will need
to confront the massive size of that data set. The effects of loading only portions
of the database will be examined, as well as the effects on time. A larger lookup
table means that the queries will likely take longer, further reducing the number
of trials these players will be able to run.

References

1. Pierre Audouard, Guillaume Chaslot, Jean-Baptiste Hoock, Julien Perez, Arpad
Rimmel, and Olivier Teytaud. Grid coevolution for adaptive simulations: Appli-
cation to the building of opening books in the game of go. In Applications of
Evolutionary Computing, pages 323–332. Springer, 2009.

2. Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE
Trans. Comput. Intellig. and AI in Games, 4(1):1–43, 2012.



3. Guillaume MJ-B Chaslot, Jean-Baptiste Hoock, Julien Perez, Arpad Rimmel,
Olivier Teytaud, and Mark HM Winands. Meta monte-carlo tree search for au-
tomatic opening book generation. In Proc. 21st Int. Joint Conf. Artif. Intell.,
Pasadena, California, pages 7–12, 2009.

4. Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In Computers and games, pages 72–83. Springer, 2007.

5. Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Jo-
hannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, ECML, volume
4212 of Lecture Notes in Computer Science, pages 282–293. Springer, 2006.

6. Richard J Lorentz. Amazons discover monte-carlo. In Computers and games, pages
13–24. Springer, 2008.

7. J Pim AM Nijssen and Mark HM Winands. An overview of search techniques in
multi-player games.

8. J Pim AM Nijssen and Mark HM Winands. Enhancements for multi-player monte-
carlo tree search. In Computers and Games, pages 238–249. Springer, 2011.

9. J Pim AM Nijssen and Mark HM Winands. Playout search for monte-carlo tree
search in multi-player games. In Advances in Computer Games, pages 72–83.
Springer, 2012.

10. Mehdi Samadi, Jonathan Schaeffer, Fatemeh Torabi Asr, Majid Samar, and Zohreh
Azimifar. Using abstraction in two-player games. In ECAI, pages 545–549, 2008.

11. Maarten P. D. Schadd and Mark H. M. Winands. Best reply search for multiplayer
games. IEEE Trans. Comput. Intellig. and AI in Games, pages 57–66, 2011.

12. Jonathan Schaeffer, Yngvi Björnsson, Neil Burch, Robert Lake, Paul Lu, and Steve
Sutphen. Building the checkers 10-piece endgame databases. Advances in Com-
puter Games, 10:193–210, 2003.

13. Nathan R. Sturtevant. A comparison of algorithms for multi-player games. In
Computers and Games, pages 108–122, 2002.

14. Nathan R. Sturtevant. Last-branch and speculative pruning algorithms for maxn.
In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 669–678. Morgan Kauf-
mann, 2003.

15. N.R. Sturtevant and M.J. Rutherford. Minimizing writes in parallel external mem-
ory search. International Joint Conference on Artificial Intelligence (IJCAI), 2013.

16. Ken Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3):131–
139, 1986.


