Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 1: Course Intro

Prof. Nathan Sturtevant

Lecture Overview

- What is AI?
- Al History
- Views/goals of Al
- Course Overview

Artificial Intelligence

- · As humans we have intelligence
 - But what is intelligence?
 - · What does it mean to build artificial intelligence?

A history of Al

- Darthmouth conference (1956)
 - 10 attendees spend two months discussing AI
 - John McCarthy, Marvin Minsky, Claude Shannon, Arthur Samuel, Allen Newell, Herbert Simon
 - From MIT, CMU, Stanford and IBM
- Newell and Simon had already developed a logical reasoning program

A history of AI (1952-1969)

- It seems like AI can do anything:
 - · General Problem Solver; imitates human thinking
 - Newell and Simon
 - Checkers program by Samuel learns to play
 - LISP invented by John McCarthy
 - Minsky & students work on small problems requiring intelligence
 - · Early work on learning and perceptrons

Reality (1966-1973)

- Program previously only run on very small problems
- Complexity theory develops proving "hard" problems
- · Perceptrons shown to have learning limitations
- Al research nearly killed in the UK

Knowledge-based systems (1969-1979)

- Knowledge from experts distilled into rules
 - · First systems enhanced by human expertise
 - MYCIN system diagnosed blood infections at the level of experts (450 rules)
- Many specialized representations and reasoning languages

Commercial Success (1980 - present)

- Many commercial companies started using AI techniques internally
 - A DEC program helped configure new orders
 - Saved ~\$40 million a year

The scientific method (1986-present)

- · Neural networks come back into favor
- Add-hoc methods start to drop away
- New work borrows ideas from mathematics and statistics providing a stronger foundation

Intelligent agents & large data sets

- Architectures such as SOAR use many agents for simulating behavior
- The internet provided a rich application domain
- · Internet also provides very large data sets
 - Plurality of examples allows simple learning algorithms

State of Art

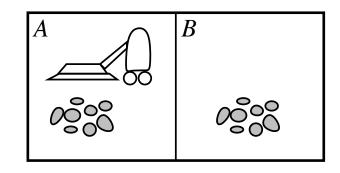
- Robotic cars: DARPA grand challenge
- · Speech recognition: commonly used for phone systems
- · Autonomous planning: performed on spacecraft
- Game playing: Deep Blue & Watson
- Spam Fighting: Learning algorithms classify spam
- · Logistics: 1991 Persian Gulf planned automatically
 - · DARPA states this paid off all investments in AI
- Machine Translation: Reasonable automatic translation

"Your automated surgery should go just fine, but if you feel them taking out anything but your gallbladder, pull that cord immediately."

Homework:

Russell and Norvig Chapter 1, questions 1.11; 1.12; 1.13 *Due before lecture Wednesday*

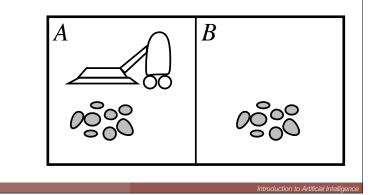
Intelligent Agents


- Definitions:
 - Environment
 - Sensors
 - Actuators
- An *agent* perceives the environment via sensors and acts on environment through actuators
 - A percept describes an agents inputs

Agents

- Agent \rightarrow f(percepts)
 - If percepts are finite, we can measure the agent behavior exactly and write it into a table
 - Internally an agent will have some program to implement its own behavior
 - This could just be a table
 - But, could be something more complex

Example: Vacuum World


- Percepts:
- Actions:

13

Example: Vacuum World

- · Percepts: Location, contents
- Actions: Left, right, suck, no-op

Rational Agents

- · How can you measure the rationality of an agent?
 - · What are the consequences of behavior?
 - Evaluate state of the environment
- Different measures result in different performance
 - Maximize dirt cleaned up
 - Maximize average cleanliness

Rationality

- Depends on:
 - The performance measure
 - The agent's prior knowledge of the environment
 - The actions that the agent can perform
 - The agent's percept/sensor sequence to date
- For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Example: Vacuum world

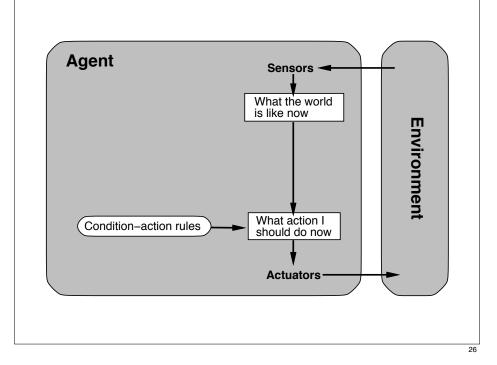
- Performance:
 - 1 point per each clean square per time step
- Environment:
 - Environment known; dirt not
- Actions:
 - Left, right, suck
- Sensors:
 - 100% Reliable

Agent Type	Performance Measure	Environment	Actuators	Sensors	
Robot soccer player	Winning game, goals for/against	Field, ball, own team, other team, own body	Devices (e.g., legs) for locomotion and kicking	Camera, touch sensors, accelerometers, orientation sensors, wheel/joint encoders	
Internet book-shopping agent	Obtain re- quested/interesting books, minimize expenditure	Internet	Follow link, enter/submit data in fields, display to user	Web pages, user requests	
Autonomous Mars rover	Terrain explored and reported, samples gathered and analyzed	Launch vehicle, lander, Mars	Wheels/legs, sample collection device, analysis devices, radio transmitter	Camera, touch sensors, accelerometers, orientation sensors, , wheel/joint encoders, radio receiver	
Mathematician's theorem-proving assistant					

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Robot soccer	Partially	Stochastic	Sequential	Dynamic	Continuous	Multi
Internet book-shopping	Partially	Deterministic*	Sequential	Static*	Discrete	Single
Autonomous Mars rover	Partially	Stochastic	Sequential	Dynamic	Continuous	Single
Mathematician's assistant	Fully	Deterministic	Sequential	Semi	Discrete	Multi

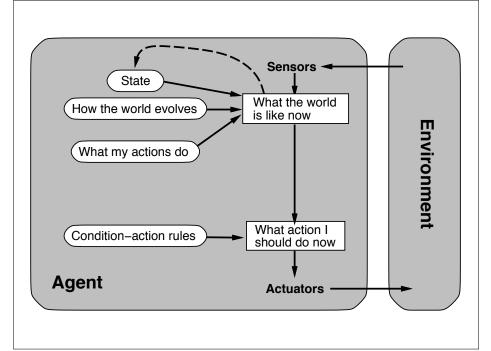
Environment types

- Fully observable vs. partially observable
- Single agent vs. multiagent
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Known vs. unknown

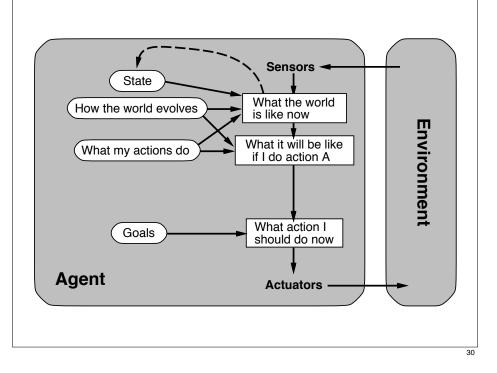

Agents as programs

- · Agents take current percepts as input
 - Return an action to perform
 - Agent must remember full sequence of actions if necessary (Markov)
- Building full table of actions is not practical
 - Four basic agent types

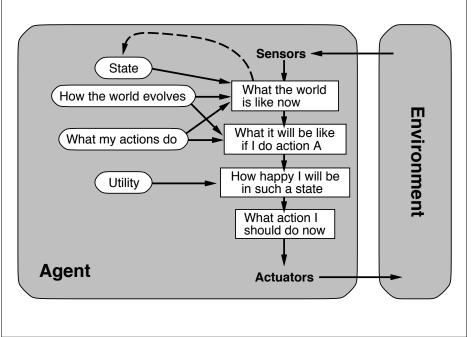
21


Simple reflex agents

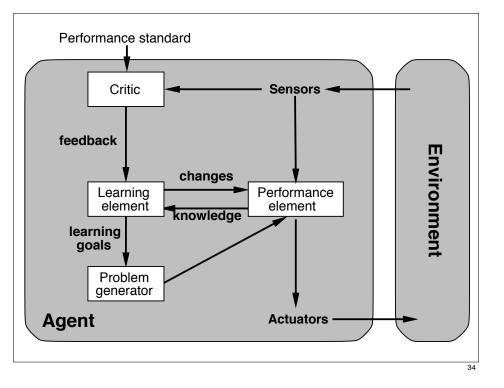
- Reflex agent only uses current percept
 - 4 possibilities vs 4^T including history
- · Behavior is composed of if-then rules
 - if [status == dirty] then return suck
- Only works if environment is fully observable
 - Not if we need to correlate two percepts in time to know something


Model-based reflex agents

- Agent maintains internal state which reflects beliefs
 about the world
 - · Requires model of environment & actions
- Upon receiving percept, agent updates state model
- · Acts reflexively according to state model


Goal-based agents

- · Reflexive agents have rules for a single task
 - What if the task changes?
- · Use model of the environment to predict the future
 - Find action sequence which converts the current state to the goal state
 - Partially encompasses search and planning


Utility-based agent

- Goals alone produce solutions but don't measure solution quality
- · Utility is a generic measure of quality
- Not required for rational behavior
 - · But rational behavior can be described with utilities
- Most search/planning also uses utilities

Learning

- · Each approach can be enhanced with learning
 - "Critic" can provide feedback
 - Utilities can be the basis of rewards used for feedback
- Learning may change rules or their expected utilities

Environment/Agent Representation

- World can be atomic (opaque)
 - Black box operated on by actions
- World can be factored
 - · Represented by variables and values
- World can be structured
 - Represented by the ideas of objects and their relationships

Summary

- Al is a field which is interested in rational agents
- Rational agents attempt to maximize their payoff
- Agents act in external environments
- Different agent architectures
- Different environment representations