Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 13: Supervised Learning

Prof. Nathan Sturtevant

Today Learning Decision Trees

Learning

- Any aspect of an agent can (potentially) be improved through learning
- Depends on:
 - What component to be improved
 - Prior knowledge of the agent
 - Representation used for data & the component
 - · What feedback is available for learning

Types of learning

- Unsupervised learning
 - · Learning about data by looking at its features
 - No specific feedback from users
 - Usually entails clustering data

Types of learning

- Reinforcement learning
 - · Agents with sensors experience the world
 - As they act they receive positive and negative rewards
 - The agent then learns value of (sensor) states

Types of learning

- Supervised learning
 - Agent is given example input and correct output
 - Goal is to build general model that will produce correct ouput on novel input

Types of learning

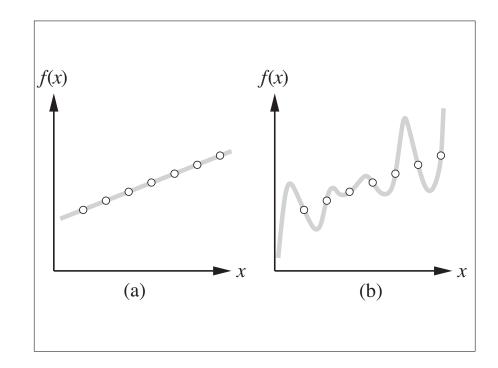
- Semi-supervised learning
 - Some labeled examples in data set
 - Some mislabeled examples
 - Learn generalized model

Supervised learning

- Given a training set of N example input & outputs
 - $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)$
 - $\ensuremath{\cdot}$ Where each y_i comes from an unknown function
 - $y_i = f(x_i)$
 - Discover a function h such that $h(x_i)\approx f(x_i)$
- Think of *h* as a hypothesis, and we are searching for the "best" hypothesis

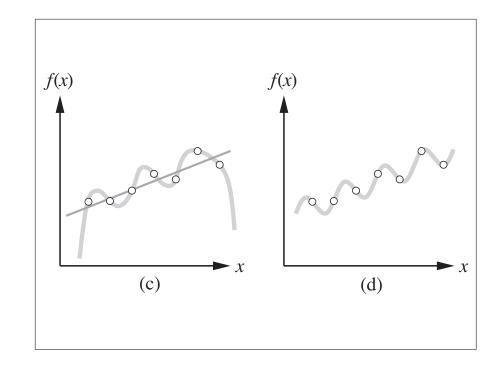
Supervised learning

- All available data is usually broken into:
 - Training set: exclusively used for study & training
 - · Test set: exclusively used for testing
- Ensures that the learning generalizes from training data to test data
 - Want to avoid overfitting data



Ockham's razor

- Given multiple possible hypotheses that explain the data, choose the simplest one
 - 1st degree polynomial is probably better than a 3rd degree polynomial
- Decision isn't always clear

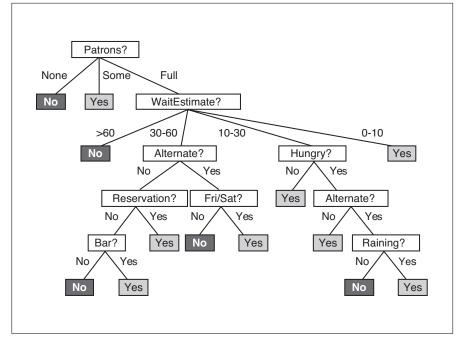


Decision Trees

- A decision tree is a simple classifier
- Training input:
 - Data points with a set of attributes
- Classifier output:
 - · Can be boolean or have multiple outputs
 - Each leaf stores an "answer"

Example

- · Should we wait for a table at a restaurant?
- Possible attributes:
 - Alternate restaurant nearby?
 - Is there a bar to wait in?
 - Is it Friday or Saturday?
 - How hungry are we?
 - How busy is the restaurant?
 - · How many people in the restaurant?



Representation

- The states which reach each outcome can be represented by written as the disjunction (or) of each possible path of decisions
- What about a decision tree for N boolean inputs:
 - Are more than N/2 inputs true?

General Approach

- · Greedy approaches work well
 - Choose the category that divides into the best subproblems

Example

Example	Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

Recursive splitting

- Choosing and assigning to a node in the decision tree to an attribute produces a smaller decision tree problem
 - When all examples have the same outcome; done.
 - · If examples are split, choose another attribute
 - · If there are no examples, set default value
 - If there are no attributes left, there are conflicting examples (use the best classification)

Measuring the best splitting

- The choice for splitting is defined in terms of entropy
 - Entropy measures uncertainty
 - A fair coin has 1-bit of entropy
 - A 4-sided die has 2 bits of entropy
- Entropy of a random variable V with values v_k and probabilities $\mathsf{P}(v_k)$ is:

$$-\sum_{k} P(v_k) log_2 P(v_k)$$

Entropy examples

- $-\sum_{i} P(v_k) log_2 P(v_k)$
- Entropy of a fair coin:
 - $-(0.5 \log_2(0.5) + 0.5 \log_2(0.5)) = 1$
- Entropy of a coin which is heads 99% of the time:
 - $-(0.99 \log_2(0.99) + 0.01 \log_2(0.01)) \approx 0.08$

Entropy & Decision tree learning

- Let B(q) be the entropy of a boolean variable with probability q of being true
- Assume the training set has p positive and n negative examples
 - H(Goal) = B(p / p+n)
 - This is the entropy of the problem being decided

Entropy & Decision tree learning

• Measure the change in entropy after splitting on a variable A

$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p+n} B(\frac{p_k}{p_k + n_k})$$

• The gain of splitting on A is:

$$Gain(a) = B(\frac{p}{p+n}) - Remainder(A)$$

- Gain(Patrons) = 0.541 bits
- Gain(Type) = 0 bits

Class Example

- Everyone provide an example for what we should do tonight.
- Choices:
 - Go out with friends
 - Stay in with friends
 - Stay in and work/sleep
- Features
 - HW: high, medium, low
 - Tired: high, medium, low
 - (other features?)